
z/OS

XL C/C++
User’s Guide

SC09-4767-04

���

z/OS

XL C/C++
User’s Guide

SC09-4767-04

���

Note!

Before using this information and the product it supports, be sure to read the information in “Notices” on page 619.

Fifth Edition (September 2005)

This edition applies to Version 1 Release 7 of z/OS XL C/C++ (5694-A01), Version 1 Release 7 of z/OS.e XL C/C++

(5655-G52), and to all subsequent releases until otherwise indicated in new editions. This edition replaces

SC09-4767-03. Make sure that you use the correct edition for the level of the program listed above. Also, ensure that

you apply all necessary PTFs for the program.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are

not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The

Library″ link on the z/OS home page. The web address for this page is

www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments to the following Internet address:

compinfo@ca.ibm.com. Be sure to include your e-mail address if you want a reply.

Include the title and order number of this book, and the page number or topic related to your comment. When you

send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes

appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . xv

How to read syntax diagrams . xv

Symbols . xv

Syntax items . xv

Syntax examples . xvi

z/OS XL C/C++ and related publications xvii

Softcopy documents . xxii

Softcopy examples . xxii

z/OS XL C/C++ on the World Wide Web xxiii

Where to find more information xxiii

Part 1. Introduction . 1

Chapter 1. About IBM z/OS XL C/C++ 3

Changes for z/OS V1R7 . 3

The XL C/C++ compilers . 4

The C language . 4

The C++ language . 5

Common features of the z/OS XL C and XL C++ compilers 5

z/OS XL C compiler specific features 6

z/OS XL C++ compiler specific features 7

Class libraries . 7

Utilities . 7

dbx . 8

z/OS Language Environment . 8

z/OS Language Environment downward compatibility 9

About prelinking, linking, and binding 10

Notes on the prelinking process 10

File format considerations . 11

The program management binder 11

z/OS UNIX System Services . 12

z/OS XL C/C++ applications with z/OS UNIX System Services C functions . . . 13

Input and output . 14

I/O interfaces . 14

File types . 14

Additional I/O features . 15

The System Programming C facility 16

Interaction with other IBM products 16

Additional features of z/OS XL C/C++ 18

Part 2. User’s reference . 21

Chapter 2. z/OS XL C example 23

Example of a C program . 23

CCNUAAM . 23

CCNUAAN . 24

Compiling, binding, and running the z/OS XL C example 25

Under z/OS batch . 25

Non-XPLINK and XPLINK under TSO 26

Non-XPLINK and XPLINK under the z/OS UNIX System Services shell . . . 27

Chapter 3. z/OS XL C++ examples 29

© Copyright IBM Corp. 1996, 2005 iii

||

Example of a C++ program . 29

CCNUBRH . 30

CCNUBRC . 32

Compiling, binding, and running the z/OS XL C++ example 34

Under z/OS batch . 34

Non-XPLINK and XPLINK under TSO 35

Non-XPLINK and XPLINK under the z/OS UNIX shell 37

Example of a C++ template program 37

CLB3ATMP.CXX . 38

Compiling, binding, and running the C++ template example 39

Under z/OS batch . 39

Under TSO . 41

Under the z/OS UNIX shell 42

Chapter 4. Compiler Options 43

Specifying compiler options . 43

IPA considerations . 44

Using special characters . 46

Specifying z/OS XL C compiler options using #pragma options 46

Specifying compiler options under z/OS UNIX System Services 47

Compiler option defaults . 48

Summary of compiler options 50

Compiler options for file management 54

Options that control the preprocessor 55

Options that control the processing of an input source file 55

Options that control the compiler listing 56

Options that control the IPA object 57

Options that control the IPA Link step 58

Options for debugging and diagnosing errors 58

Options that control the programming language characteristics 59

Options that control object code generation 60

Options that control program execution 63

Portability options . 63

Description of compiler options 63

AGGRCOPY . 64

AGGREGATE | NOAGGREGATE 65

ALIAS | NOALIAS . 65

ANSIALIAS | NOANSIALIAS 66

ARCHITECTURE . 69

ARGPARSE | NOARGPARSE 72

ASCII | NOASCII . 73

ATTRIBUTE | NOATTRIBUTE 73

BITFIELD(SIGNED) | BITFIELD(UNSIGNED) 74

CHARS(SIGNED) | CHARS(UNSIGNED) 74

CHECKOUT | NOCHECKOUT 75

COMPACT | NOCOMPACT 77

COMPRESS | NOCOMPRESS 78

CONVLIT | NOCONVLIT . 79

CSECT | NOCSECT . 81

CVFT | NOCVFT . 84

DBRMLIB . 85

DEBUG | NODEBUG . 86

DEFINE . 89

DIGRAPH | NODIGRAPH . 90

DLL | NODLL . 92

ENUMSIZE . 94

iv z/OS V1R7.0 XL C/C++ User’s Guide

EVENTS | NOEVENTS . 96

EXECOPS | NOEXECOPS 97

EXH | NOEXH . 97

EXPMAC | NOEXPMAC . 98

EXPORTALL | NOEXPORTALL 99

FASTTEMPINC | NOFASTTEMPINC 99

FLAG | NOFLAG . 100

FLOAT . 101

GOFF | NOGOFF . 105

GONUMBER | NOGONUMBER 106

HALT(num) . 108

HALTONMSG | NOHALTONMSG 108

IGNERRNO | NOIGNERRNO 108

INFO | NOINFO . 110

INITAUTO | NOINITAUTO 111

INLINE | NOINLINE . 112

INLRPT | NOINLRPT . 116

IPA | NOIPA . 117

KEYWORD | NOKEYWORD 125

LANGLVL . 125

LIBANSI | NOLIBANSI . 137

LIST | NOLIST . 138

LOCALE | NOLOCALE . 140

LONGNAME | NOLONGNAME 141

LP64 | ILP32 . 143

LSEARCH | NOLSEARCH 145

MARGINS | NOMARGINS 150

MAXMEM | NOMAXMEM 151

MEMORY | NOMEMORY 153

NAMEMANGLING . 153

NESTINC | NONESTINC . 155

OBJECT | NOOBJECT . 156

OBJECTMODEL . 157

OE | NOOE . 158

OFFSET | NOOFFSET . 159

OPTFILE | NOOPTFILE . 160

OPTIMIZE | NOOPTIMIZE 162

PHASEID | NOPHASEID . 165

PLIST . 166

PORT | NOPORT . 167

PPONLY | NOPPONLY . 168

REDIR | NOREDIR . 170

RENT | NORENT . 171

ROCONST | NOROCONST 172

ROSTRING | NOROSTRING 173

ROUND . 174

RTTI | NORTTI . 175

SEARCH | NOSEARCH . 176

SEQUENCE | NOSEQUENCE 177

SERVICE | NOSERVICE . 178

SHOWINC | NOSHOWINC 179

SOURCE | NOSOURCE . 180

SPILL | NOSPILL . 181

SQL | NOSQL . 182

SSCOMM | NOSSCOMM 183

START | NOSTART . 184

Contents v

STATICINLINE | NOSTATICINLINE 185

STRICT | NOSTRICT . 185

STRICT_INDUCTION | NOSTRICT_INDUCTION 186

SUPPRESS | NOSUPPRESS 187

TARGET . 187

TEMPINC | NOTEMPINC 192

TEMPLATERECOMPILE | NOTEMPLATERECOMPILE 193

TEMPLATEREGISTRY | NOTEMPLATEREGISTRY 194

TERMINAL | NOTERMINAL 195

TEST | NOTEST . 195

TMPLPARSE . 199

TUNE . 200

UNDEFINE . 202

UNROLL . 202

UPCONV | NOUPCONV . 203

WARN64 | NOWARN64 . 204

WSIZEOF | NOWSIZEOF 204

XPLINK | NOXPLINK . 205

XREF | NOXREF . 209

Using the z/OS XL C compiler listing 210

IPA considerations . 210

Example of a C compiler listing 210

z/OS XL C compiler listing components 241

Using the z/OS XL C++ compiler listing 244

IPA considerations . 245

Example of a C++ compiler listing 245

z/OS XL C++ compiler listing components 261

Using the IPA Link step listing 264

Example of an IPA Link step listing 265

IPA Link step listing components 271

Chapter 5. Binder options and control statements 279

Chapter 6. Run-Time options 281

Specifying run-time options . 281

Using the #pragma runopts preprocessor directive 281

Part 3. Compiling, binding, and running z/OS XL C/C++ programs 283

Chapter 7. Compiling . 285

Input to the z/OS XL C/C++ compiler 285

Primary input . 285

Secondary input . 286

Output from the compiler . 286

Specifying output files . 286

Valid input/output file types . 289

Compiling under z/OS batch 290

Using cataloged procedures for z/OS XL C 291

Using cataloged procedures for z/OS XL C++ 291

Using special characters . 292

Examples of compiling programs using your own JCL 292

Specifying source files . 294

Specifying include files . 295

Specifying output files . 296

Compiling under TSO . 296

Using the CC and CXX REXX EXECs 296

vi z/OS V1R7.0 XL C/C++ User’s Guide

Specifying sequential and partitioned data sets 297

Specifying HFS files or directories 298

Compiling and binding in the z/OS UNIX System Services environment . . . 299

Compiling without binding using compiler invocation command names

supported by c89 and xlc 301

Compiling and binding in one step using compiler invocation command

names supported by c89 and xlc 303

Building an application with XPLINK using the c89 or xlc utilities 304

Building a 64-bit application using the c89 or xlc utilities 304

Invoking IPA using the c89 or xlc utilities 304

Using IPA(OBJONLY) with the c89 or xlc utilities 305

Using the make utility . 305

Compiling with IPA . 306

The IPA Compile step . 306

The IPA Link step . 307

Compiling with IPA(OBJONLY) 308

Working with object files . 309

Browsing object files . 309

Identifying object file variations 310

Using feature test macros . 310

Using include files . 310

Specifying include file names 311

Forming file names . 311

Forming data set names with LSEARCH | SEARCH options 312

Search sequence . 314

Determining whether the file name is in absolute form 315

Using SEARCH and LSEARCH 317

Search sequences for include files 318

With the NOOE option . 319

With the OE option . 319

Compiling z/OS XL C source code using the SEARCH option 320

Compiling z/OS XL C++ source code using the SEARCH option 321

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 323

Invoking IPA using the c89 and xlc utilities 323

Specifying options . 324

Other considerations . 325

Compiling under z/OS batch 325

Using cataloged procedures for IPA Link 325

Creating a module with IPA . 325

Example 1. all C parts . 325

Example 2. all C parts built with XPLINK 336

Creating a DLL with IPA . 337

Example 1. a mixture of C and C++ 338

Example 2. using the IPA control file 340

Using Profile-Directed Feedback (PDF) 342

Steps for utilizing PDF optimization 342

Steps for building a module in UNIX System Services using PDF 344

Reference Information . 344

IPA Link step control file . 344

Object file directives understood by IPA 348

Troubleshooting . 348

Chapter 9. Binding z/OS XL C/C++ programs 351

When you can use the binder 351

When you cannot use the binder 351

Contents vii

||

||
||

||

Your output is a PDS, not a PDSE 351

CICS . 351

MTF . 351

IPA . 351

Using different methods to bind 352

Single final bind . 352

Bind each compile unit . 353

Build and use a DLL . 354

Rebind a changed compile unit 356

Binding under z/OS UNIX System Services 356

z/OS UNIX System Services example 357

Steps for single final bind using c89 357

Steps for binding each compile unit using c89 358

Steps for building and using a DLL using c89 359

Steps for rebinding a changed compile unit using c89 360

Using the non-XPLINK version of the Standard C++ Library and c89 . . . 361

Using the non-XPLINK version of the Standard C++ Library and xlc 362

Binding under z/OS batch . 362

z/OS batch example . 363

Steps for single final bind under z/OS batch 363

Steps for binding each compile unit under z/OS batch 364

Steps for building and using a DLL under z/OS batch 366

Build and use a 64-bit application under z/OS batch 367

Build and use a 64-bit application with IPA under z/OS batch 368

Using the non-XPLINK version of the Standard C++ Library and z/OS batch 370

Steps for rebinding a changed compile unit under z/OS batch 371

Writing JCL for the binder 372

Binding under TSO using CXXBIND 374

TSO example . 376

Steps for single final bind under TSO 376

Steps for binding each compile unit under TSO 377

Steps for building and using a DLL under TSO 377

Steps for rebinding a changed compile unit under TSO 378

Chapter 10. Binder processing 379

Linkage considerations . 380

Primary input processing . 381

C or C++ object module as input 381

Secondary input processing . 381

Load module as input . 381

Program object as input . 381

Autocall input processing (library search) 382

Incremental autocall processing (AUTOCALL control statement) 382

Final autocall processing (SYSLIB) 382

Rename processing . 384

Generating aliases for automatic library call (library search) 384

Dynamic Link Library (DLL) processing 385

Statically bound functions 385

Imported variables . 386

Imported functions . 386

Output program object . 386

Output IMPORT statements . 386

Output listing . 386

Header . 388

Input Event Log . 388

Module Map . 388

viii z/OS V1R7.0 XL C/C++ User’s Guide

||

Cross Reference Table . 390

Imported and Exported Symbols Listing 390

Mangled to Demangled Symbol Cross Reference 391

Processing Options . 392

Save Operation Summary 392

Save Module Attributes . 393

Entry Point and Alias Summary 393

Long Symbol Abbreviation Table 394

DDname vs Pathname Cross Reference Table 394

Message Summary Report 395

Binder processing of C/C++ object to program object 395

Rebindability . 397

Error recovery . 398

Unresolved symbols . 399

Significance of library search order 399

Duplicates . 400

Duplicate functions from autocall 402

Hunting down references to unresolved symbols 402

Incompatible linkage attributes 403

Non-reentrant DLL problems 403

Code that has been prelinked 403

Chapter 11. Running a C or C++ application 405

Setting the region size for z/OS XL C/C++ applications 405

Running an application under z/OS batch 406

Specifying run-time options under z/OS batch 406

Specifying run-time options in the EXEC statement 407

Using cataloged procedures 407

Running an application under TSO 408

Specifying run-time options under TSO 409

Passing arguments to the z/OS XL C/C++ application 409

Running an application under z/OS UNIX System Services 410

z/OS UNIX System Services Application environments 410

Specifying run-time options under z/OS UNIX System Services 410

Restriction on using 24-bit AMODE programs 411

Copying applications between a PDS and HFS 411

Running a data Set member from the z/OS Shell 411

Running z/OS UNIX System Services applications under z/OS batch . . . 411

Part 4. Utilities and tools . 413

Chapter 12. Object Library Utility 415

Creating an object library under z/OS batch 415

Creating an object library under TSO 416

Object Library Utility Map . 418

Chapter 13. Filter Utility . 427

CXXFILT options . 428

SYMMAP | NOSYMMAP . 428

SIDEBYSIDE | NOSIDEBYSIDE 428

WIDTH(width) | NOWIDTH 428

REGULARNAME | NOREGULARNAME 428

CLASSNAME | NOCLASSNAME 429

SPECIALNAME | NOSPECIALNAME 429

Unknown type of name . 429

Under z/OS batch . 429

Contents ix

Under TSO . 430

Chapter 14. DSECT Conversion Utility 433

DSECT Utility options . 433

SECT . 433

BITF0XL | NOBITF0XL . 434

COMMENT | NOCOMMENT 435

DECIMAL | NODECIMAL . 435

DEFSUB | NODEFSUB . 436

EQUATE | NOEQUATE . 437

HDRSKIP | NOHDRSKIP . 439

INDENT | NOINDENT . 439

LOCALE | NOLOCALE . 439

LOWERCASE | NOLOWERCASE 440

LP64 | NOLP64 . 440

OPTFILE | NOOPTFILE . 440

PPCOND | NOPPCOND . 440

SEQUENCE | NOSEQUENCE 441

UNIQUE | NOUNIQUE . 441

UNNAMED | NOUNNAMED 442

OUTPUT . 442

RECFM . 442

LRECL . 442

BLKSIZE . 442

Generation of structures . 442

Under z/OS batch . 445

Under TSO . 446

Chapter 15. Coded Character Set and Locale Utilities 447

Coded Character Set Conversion Utilities 447

iconv Utility . 447

genxlt Utility . 449

localedef Utility . 451

Part 5. z/OS UNIX System Services utilities 457

Chapter 16. Archive and Make Utilities 459

Archive libraries . 459

Creating archive libraries . 459

Creating makefiles . 460

Makedepend Utility . 460

Chapter 17. BPXBATCH Utility 461

BPXBATCH usage . 461

Parameter . 462

Usage notes . 463

Files . 463

Chapter 18. c89 — Compiler invocation using host environment variables 465

Format . 465

Description . 465

Options . 467

Operands . 478

Environment variables . 480

Files . 495

Usage notes . 496

x z/OS V1R7.0 XL C/C++ User’s Guide

Localization . 502

Exit values . 502

Portability . 502

Related information . 503

Chapter 19. xlc — Compiler invocation using a customizable

configuration file . 505

Format . 505

Description . 505

Invocation commands . 506

Setting up the compilation environment 507

Environment variables . 507

Setting up a configuration file 509

Configuration file attributes 509

Tailoring a configuration file 513

Default configuration file . 513

Invoking the compiler . 516

Invoking the binder . 516

Supported options . 516

–q options syntax . 516

Flag options syntax . 518

Specifying compiler options . 521

Specifying compiler options on the command line 522

Specifying flag options . 523

Specifying compiler options in a configuration file 523

Specifying compiler options in your program source files 523

Specifying compiler options for architecture-specific 32-bit or 64-bit

compilation . 524

Part 6. Appendixes . 525

Appendix A. Prelinking and linking z/OS XL C/C++ programs 527

Restrictions on using the prelinker 527

Prelinking an application . 527

Using DD Statements for the standard data sets - prelinker 528

Input to the prelinker . 530

Prelinker output . 530

Mapping long names to short names 531

Linking an application . 532

Using DD statements for standard data sets—linkage editor 532

Input to the linkage editor 533

Output from the linkage editor 534

Link-editing multiple object modules 535

Building DLLs . 536

Linking your code . 537

Using DLLs . 537

Prelinking and linking an application under z/OS batch and TSO 541

z/OS Language Environment Prelinker Map 542

Processing the prelinker automatic library call 547

References to currently undefined symbols (external references) 547

Prelinking and linking under z/OS batch 547

Writing JCL for the prelinker and linkage editor 549

Secondary input to the linker 550

Using additional input object modules under z/OS batch 551

Under TSO . 551

Using CPLINK . 554

Contents xi

Using LINK . 556

Prelinking and link-editing under the z/OS Shell 558

Using your JCL . 558

Setting c89 to invoke the prelinker 560

Using the c89 utility . 560

Prelinker control statement processing 560

IMPORT control statement 561

INCLUDE control statement 561

LIBRARY control statement 562

RENAME control statement 563

Reentrancy . 564

Natural or constructed reentrancy 564

Using the prelinker to make your program reentrant 564

Steps for generating a reentrant load module in C 565

Steps for generating a reentrant load module in C++ 566

Resolving multiple definitions of the same template function 566

External variables . 567

Appendix B. Prelinker and linkage editor options 569

Prelinker options . 569

DLLNAME(dll-name) . 569

DUP | NODUP . 569

DYNAM | NODYNAM . 569

ER | NOER . 569

MAP | NOMAP . 570

MEMORY | NOMEMORY 570

NCAL | NONCAL . 570

OMVS | NOOMVS . 570

UPCASE | NOUPCASE . 571

Linkage editor options . 571

Appendix C. Diagnosing problems 573

Problem checklist . 573

When does the error occur? 574

Steps for problem diagnosis using optimization levels 575

Steps for diagnosing errors that occur at compile time 576

Steps for diagnosing errors that occur at IPA Link time 577

The error occurs at bind time 578

The error occurs at prelink time 578

The error occurs at link time 579

Steps for diagnosing errors that occur at run time 579

Steps for avoiding installation problems 581

Appendix D. Cataloged procedures and REXX EXECs 583

Tailoring cataloged procedures, REXX EXECs, and EXECs 585

Data sets used . 588

Description of data sets used 588

Examples using cataloged procedures 595

Other z/OS XL C utilities . 595

Using the old syntax for CC 595

Using CMOD . 596

Appendix E. Calling the Compiler from Assembler 599

Example of using the Assembler ATTACH macro (CCNUAAP) 601

Example of JCL for the Assembler ATTACH macro (CCNUAAQ) 603

Example of using the Assembler LINK macro (CCNUAAR) 604

xii z/OS V1R7.0 XL C/C++ User’s Guide

Example of JCL for the Assembler LINK macro (CCNUAAS) 606

Example of using the Assembler CALL macro (CCNUAAT) 607

Example of JCL for Assembler CALL macro (CCNUAAU) 609

Appendix F. Layout of the Events file 611

Description of the Fileid field 611

Description of the Filend field 612

Description of the Error field 612

Appendix G. Customizing default options for z/OS XL C/C++ compiler 615

Appendix H. Accessibility . 617

Accessibility . 617

Using assistive technologies 617

Keyboard navigation of the user interface 617

z/OS information . 617

Notices . 619

Programming interface information 620

Trademarks . 620

Standards . 621

Glossary . 623

Bibliography . 651

z/OS . 651

z/OS XL C/C++ . 651

z/OS Run-Time Library Extensions 651

Debug Tool . 651

z/OS Language Environment 652

Assembler . 652

COBOL . 652

PL/I . 652

VS FORTRAN . 652

CICS Transaction Server for z/OS 652

DB2 . 653

IMS/ESA . 653

MVS . 653

QMF . 653

DFSMS . 653

INDEX . 655

Contents xiii

||

||

xiv z/OS V1R7.0 XL C/C++ User’s Guide

About this document

This edition of z/OS XL C/C++ User’s Guide is intended for users of the z/OS® or

z/OS.e XL C/C++ compiler with the z/OS or z/OS.e Language Environment®

product. It provides you with information about implementing (compiling, linking, and

running) programs that are written in C and C++. It contains guidelines for preparing

C and C++ programs to run on the z/OS or z/OS.e operating systems. References

to z/OS in this document refer to both z/OS and z/OS.e.

Systems programmers who are interested in customizing compiler option defaults,

should review Appendix G, “Customizing default options for z/OS XL C/C++

compiler,” on page 615. Information on customizing cataloged procedures, REXX

EXECs, and EXECs is available in “Tailoring cataloged procedures, REXX EXECs,

and EXECs” on page 585.

Note: As of z/OS V1R7, the z/OS C/C++ compiler has been rebranded to z/OS XL

C/C++.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

You may notice changes in the style and structure of some of the contents in this

document; for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram

symbols, items that may be contained within the diagrams (keywords, variables,

delimiters, operators, fragment references, operands) and provides syntax examples

that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that

comprise a command statement. They are read from left to right and from top to

bottom, following the main path of the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:

Symbol Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

© Copyright IBM Corp. 1996, 2005 xv

|
|
|
|
|

|
|

v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

v Separators - a separator separates keywords, variables or operators. For

example, a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example,

parentheses, periods, commas, equal signs, a blank space), enter the

character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or

default. Fragments, separators, and delimiters may be displayed as required or

optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal

line.

Optional Optional items are displayed below the main path of the horizontal

line.

Default Default items are displayed above the main path of the horizontal

line.

Syntax examples

The following table provides syntax examples.

 Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal line.

You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears in a vertical stack

on the main path of the horizontal line. You must choose one of

the items in the stack.

�� KEYWORD required_choice1

required_choice2
 ��

Optional item.

Optional items appear below the main path of the horizontal line.

�� KEYWORD

optional_item
 ��

Optional choice.

An optional choice (two or more items) appears in a vertical stack

below the main path of the horizontal line. You may choose one

of the items in the stack.

�� KEYWORD

optional_choice1

optional_choice2

 ��

xvi z/OS V1R7.0 XL C/C++ User’s Guide

Table 1. Syntax examples (continued)

Item Syntax example

Default.

Default items appear above the main path of the horizontal line.

The remaining items (required or optional) appear on (required)

or below (optional) the main path of the horizontal line. The

following example displays a default with optional items.

��
 default_choice1

KEYWORD

optional_choice2

optional_choice3

��

Variable.

Variables appear in lowercase italics. They represent names or

values.

�� KEYWORD variable ��

Repeatable item.

An arrow returning to the left above the main path of the

horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate repeated

items with that character.

An arrow returning to the left above a group of repeatable items

indicates that one of the items can be selected, or a single item

can be repeated.

��

�

KEYWORD

repeatable_item

��

��

�

 ,

KEYWORD

repeatable_item

��

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group is

described below the main syntax diagram. Syntax is occasionally

broken into fragments if the inclusion of the fragment would

overly complicate the main syntax diagram.

�� KEYWORD fragment ��

fragment:

 ,required_choice1

,default_choice

,required_choice2

,optional_choice

z/OS XL C/C++ and related publications

This section summarizes the content of the z/OS XL C/C++ publications and shows

where to find related information in other publications.

About this document xvii

Table 2. z/OS XL C/C++ publications

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide,

SC09-4765

Guidance information for:

v XL C/C++ input and output

v Debugging z/OS XL C programs that use input/output

v Using linkage specifications in C++

v Combining C and assembler

v Creating and using DLLs

v Using threads in z/OS UNIX® System Services applications

v Reentrancy

v Handling exceptions, error conditions, and signals

v Performance optimization

v Network communications under z/OS UNIX System Services

v Interprocess communications using z/OS UNIX System Services

v Structuring a program that uses C++ templates

v Using environment variables

v Using System Programming C facilities

v Library functions for the System Programming C facilities

v Using run-time user exits

v Using the z/OS XL C multitasking facility

v Using other IBM® products with z/OS XL C/C++ (CICS® Transaction Server

for z/OS, CSP, DWS, DB2®, GDDM®, IMS™, ISPF, QMF™)

v Internationalization: locales and character sets, code set conversion

utilities, mapping variant characters

v POSIX® character set

v Code point mappings

v Locales supplied with z/OS XL C/C++

v Charmap files supplied with z/OS XL C/C++

v Examples of charmap and locale definition source files

v Converting code from coded character set IBM-1047

v Using built-in functions

v Programming considerations for z/OS UNIX System Services C/C++

z/OS XL C/C++ User’s Guide,

SC09-4767

Guidance information for:

v z/OS XL C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying Language Environment run-time options

v Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and

Locale, ar and make, BPXBATCH, c89, xlc)

v Diagnosing problems

v Cataloged procedures and REXX EXECs supplied by IBM

v Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference,

SC09-4815

Reference information for:

v The C and C++ languages

v Lexical elements of z/OS XL C and C++

v Declarations, expressions, and operators

v Implicit type conversions

v Functions and statements

v Preprocessor directives

v C++ classes, class members, and friends

v C++ overloading, special member functions, and inheritance

v C++ templates and exception handling

v z/OS XL C and C++ compatibility

xviii z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

Table 2. z/OS XL C/C++ publications (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Messages,

GC09-4819

Provides error messages and return codes for the compiler, and its related

application interface libraries and utilities. For the XL C/C++ Run-Time Library

messages, refer to z/OS Language Environment Run-Time Messages,

SA22-7566. For the c89 and xlc utility messages, refer to z/OS UNIX System

Services Messages and Codes, SA22-7807.

z/OS XL C/C++ Run-Time Library

Reference, SA22-7821

Reference information for:

v header files

v library functions

z/OS C Curses, SA22-7820 Reference information for:

v Curses concepts

v Key data types

v General rules for characters, renditions, and window properties

v General rules of operations and operating modes

v Use of macros

v Restrictions on block-mode terminals

v Curses functional interface

v Contents of headers

v The terminfo database

z/OS XL C/C++ Compiler and

Run-Time Migration Guide for the

Application Programmer, GC09-4913

Guidance and reference information for:

v Common migration questions

v Application executable program compatibility

v Source program compatibility

v Input and output operations compatibility

v Class library migration considerations

v Changes between releases of z/OS

v C/370™ to current compiler migration

v Other migration considerations

Standard C++ Library Reference,

SC09-4949

The documentation describes how to use the following three main

components of the Standard C++ Library to write portable C/C++ code that

complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++

library headers (along with the additional 18 Standard C headers) constitute a

hosted implementation of the C++ library. Of these 51 headers, 13 constitute

the Standard Template Library, or STL.

C/C++ Legacy Class Libraries

Reference, SC09-7652

Reference information for:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

This reference is part of the Run-Time Library Extensions documentation.

IBM Open Class Library Transition

Guide, SC09-4948

The documentation explains the various options to application owners and

users for migrating from the IBM Open Class® library to the Standard C++

Library.

z/OS Common Debug Architecture

User’s Guide, SC09-7653

This documentation is the user’s guide for IBM’s libddpi library. It includes:

v Overview of the architecture

v Information on the order and purpose of API calls for model user

applications and for accessing DWARF information

v Information on using the Common Debug Architecture with C/C++ source

This user’s guide is part of the Run-Time Library Extensions documentation.

About this document xix

Table 2. z/OS XL C/C++ publications (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS Common Debug Architecture

Library Reference, SC09-7654

This documentation is the reference for IBM’s libddpi library. It includes:

v General discussion of Common Debug Architecture

v Description of APIs and data types related to stacks, processes, operating

systems, machine state, storage, and formatting

This reference is part of the Run-Time Library Extensions documentation.

DWARF/ELF Extensions Library

Reference, SC09-7655

This documentation is the reference for IBM’s extensions to the libdwarf and

libelf libraries. It includes information on:

v Consumer APIs

v Producer APIs

This reference is part of the Run-Time Library Extensions documentation.

Debug Tool documentation, available

on the Debug Tool for z/OS library

page on the World Wide Web

The documentation, which is available at

www.ibm.com/software/awdtools/debugtool/library/, provides guidance and

reference information for debugging programs, using Debug Tool in different

environments, and language-specific information.

APAR and BOOKS files (Shipped with

Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the

members, APAR and BOOKS, which provide additional information for using

the z/OS XL C/C++ licensed program, including:

v Isolating reportable problems

v Keywords

v Preparing an Authorized Program Analysis Report (APAR)

v Problem identification worksheet

v Maintenance on z/OS

v Late changes to z/OS XL C/C++ publications

Note: For complete and detailed information on linking and running with Language Environment and using the

Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561. For

complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing

Interlanguage Communication Applications, SA22-7563.

The following table lists the z/OS XL C/C++ and related publications. The table

groups the publications according to the tasks they describe.

 Table 3. Publications by task

Tasks Documents

Planning, preparing, and migrating to z/OS XL

C/C++

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the

Application Programmer, GC09-4913

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Run-Time Application Migration

Guide, GA22-7565

v z/OS UNIX System Services Planning, GA22-7800

v z/OS and z/OS.e Planning for Installation, GA22-7504

Installing v z/OS Program Directory

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Language Environment Customization, SA22-7564

Coding programs v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

xx z/OS V1R7.0 XL C/C++ User’s Guide

http://www.ibm.com/software/awdtools/debugtool/library/

Table 3. Publications by task (continued)

Tasks Documents

Coding and binding programs with

interlanguage calls

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Writing Interlanguage Communication

Applications, SA22-7563

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling, binding, and running programs v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling and binding applications in the z/OS

UNIX System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Debugging programs v README file

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Run-Time Messages, SA22-7566

v z/OS UNIX System Services Messages and Codes, SA22-7807

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Programming Tools, SA22-7805

v Debug Tool documentation, available on the Debug Tool Library

page on the World Wide Web

(www.ibm.com/software/awdtools/debugtool/library/)

v z/OS messages database, available on the z/OS Library page at

www.ibm.com/servers/eserver/zseries/zos/bkserv/ through the

LookAt Internet message search utility.

Developing debuggers and profilers v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Using shells and utilities in the z/OS UNIX

System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Messages and Codes, SA22-7807

Using sockets library functions in the z/OS

UNIX System Services environment

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write

portable C/C++ code that complies with ISO

standards

v Standard C++ Library Reference, SC09-4949

Migrating from the IBM Open Class Library to

the Standard C++ Library

v IBM Open Class Library Transition Guide, SC09-4948

About this document xxi

|

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Table 3. Publications by task (continued)

Tasks Documents

Porting a z/OS UNIX System Services

application to z/OS

v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files

and C functions, sockets in z/OS UNIX System Services, process

management, compiler optimization tips, and suggestions for

improving the application’s performance after it has been ported.

The Porting Guide is available as a PDF file which you can

download, or as web pages which you can browse, at the following

web address:

www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html

Working in the z/OS UNIX System Services

Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and

Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI

Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an

Authorized Program Analysis Report (APAR)

v z/OS XL C/C++ User’s Guide, SC09-4767

v CBC.SCCNDOC(APAR) on z/OS XL C/C++ product tape

Tuning Large C/C++ Applications on OS/390®

UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on OS/390

UNIX System Services, which is available at:

www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on z/OS and OS/390 UNIX v IBM Redbook called C/C++ Applications on z/OS and OS/390

UNIX, which is available at:

www.redbooks.ibm.com/abstracts/sg245992.html

Performance considerations for XPLINK v IBM Redbook called XPLink: OS/390 Extra Performance Linkage,

which is available at:

www.redbooks.ibm.com/abstracts/sg245991.html

Note: For information on using the prelinker, see Appendix A, “Prelinking and linking z/OS XL C/C++ programs,” on

page 527.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF and BookMaster® formats on

the following CD: z/OS Collection, SK3T-4269. They are also available at

www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe

Acrobat Reader, you can download it for free from the Adobe Web site at

www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS

library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and

using BookManager®, see z/OS Information Roadmap.

Softcopy examples

Most of the larger examples in the following documents are available in

machine-readable form:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

xxii z/OS V1R7.0 XL C/C++ User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.redbooks.ibm.com/abstracts/sg245606.html
http://www.redbooks.ibm.com/abstracts/sg245992.html
http://www.redbooks.ibm.com/abstracts/sg245991.html
http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

In the following documents, a label on an example indicates that the example is

distributed as a softcopy file:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

The label is the name of a member in the data set CBC.SCCNSAM. The labels begin

with the form CCN or CLB. Examples labelled as CLB appear only in the z/OS XL

C/C++ User’s Guide, while examples labelled as CCN appear in all three

documents, and are further distinguished by x following CCN, where x represents

one of the following:

v R and X refer to z/OS XL C/C++ Language Reference, SC09-4815

v G refers to z/OS XL C/C++ Programming Guide, SC09-4765

v U refers to z/OS XL C/C++ User’s Guide, SC09-4767

z/OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on

the z/OS XL C/C++ home page at: www.ibm.com/software/awdtools/czos/

This page contains late-breaking information about the z/OS XL C/C++ product,

including the compiler, the class libraries, and utilities. There are links to other

useful information, such as the z/OS XL C/C++ information library and the libraries

of other z/OS elements that are available on the Web. The z/OS XL C/C++ home

page also contains links to other related Web sites.

Where to find more information

Please see z/OS Information Roadmap for an overview of the documentation

associated with z/OS, including the documentation available for z/OS Language

Environment.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message explanations

for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows command prompt (also known as the DOS command line).

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt Web

site.

About this document xxiii

http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book may

refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. z/OS V1R4, V1R5, and V1R6

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS and z/OS.e, see the online document at:

publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

xxiv z/OS V1R7.0 XL C/C++ User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Part 1. Introduction

This part discusses introductory concepts for the z/OS XL C/C++ product.

Specifically, it discusses the following:

v Chapter 1, “About IBM z/OS XL C/C++,” on page 3

v “About prelinking, linking, and binding” on page 10

© Copyright IBM Corp. 1996, 2005 1

2 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 1. About IBM z/OS XL C/C++

The C/C++ feature of the IBM z/OS licensed program provides support for C and

C++ application development on the z/OS platform.

z/OS XL C/C++ includes:

v A C compiler (referred to as the z/OS XL C compiler)

v A C++ compiler (referred to as the z/OS XL C++ compiler)

v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product

v A set of utilities for C/C++ application development

Notes:

1. The Run-Time Library Extensions base element was introduced in z/OS V1R5.

It includes the Common Debug Architecture (CDA) Libraries, the c89 utility, and,

as of z/OS V1R6, the xlc utility. The Common Debug Architecture provides a

consistent and common format for debugging information across the various

languages and operating systems that are supported on the IBM eServer™

zSeries® platform. Run-Time Library Extensions also includes legacy libraries to

support existing programs. These are the UNIX System Laboratories (USL) I/O

Stream Library, USL Complex Mathematics Library, and IBM Open Class DLLs.

Application development using the IBM Open Class Library is not supported.

2. The Standard C++ Library is included with the Language Environment.

3. The z/OS XL C/C++ compiler works with the mainframe interactive Debug Tool

product.

IBM offers the C and C++ compilers on other platforms, such as the AIX, Linux,

OS/400®, z/VM and Mac OS X operating systems. The C compiler is also available

on the VSE/ESA platform.

Changes for z/OS V1R7

z/OS XL C/C++ has made the following performance and usability enhancements

for the V1R7 release:

C99 (ISO/IEC 9899:1999) standard

z/OS V1R7 XL C is designed to support the Programming

languages - C (ISO/IEC 9899:1999) standard. The c99 command is

used (through the xlc utility) to invoke the compiler.

New compiler suboptions

z/OS V1R7 XL C/C++ introduces the following new compiler

suboptions:

v ARCHITECTURE(7)

v LANGLVL(ANSISINIT)

v LANGLVL(EXTC89)

v LANGLVL(EXTC99)

v LANGLVL(STDC89)

v LANGLVL(STDC99)

v TARGET(zOSV1R7)

v TUNE(7)

Removal of OS/390 V2R10 C/C++ compiler

The OS/390 V2R10 C/C++ compiler is removed in z/OS V1R7.

© Copyright IBM Corp. 1996, 2005 3

|

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

For z/OS V1R7, the Language Environment provides the following:

C99 (ISO/IEC 9899:1999) standard

z/OS XL C/C++ Run-Time Library is designed to support the latest

level of the C standard, including:

v Date and time enhancements

v Numeric conversion functions, including wide enhancements

v printf() and scanf(), including wide enhancements

v fwide()

For more information, see z/OS XL C/C++ Run-Time Library

Reference.

Hexadecimal floating point support for AMODE 64 C/C++ applications

z/OS XL C/C++ applications compiled using LP64 and FLOAT(HEX)

can use the z/OS XL C/C++ Run-Time Library math, numeric

conversion, and formatted I/O functions that work with float,

double, and long double data types. The initial C/C++ run-time

library for AMODE 64 applications on z/OS V1R6 provided floating

point support for applications compiled using FLOAT(IEEE). This new

support completes IBM’s planned floating point support within the

C/C++ run-time library for AMODE 64 C/C++ applications.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference .

New SUSv3 APIs

Language Environment provides interfaces for

pthread_key_delete() and pthread_sigmask()

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

fork() in a multi-threaded environment

The fork() function is supported in a multi-threaded environment.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

IPv6 advanced socket application programming interface (API) functions

support IPv6 support is provided for advanced socket APIs.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

Large format data set support

Large format data sets are not supported except when reading a

large format sequential data set that has no more than 65535

tracks on the volume. For more information on large format data

support, see z/OS DFSMS Using Data Sets.

The XL C/C++ compilers

The following sections describe the C and C++ languages and the z/OS XL C/C++

compilers.

The C language

The C language is a general purpose, versatile, and functional programming

language that allows a programmer to create applications quickly and easily. C

4 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
||

|
|

|
|
|
|
|

provides high-level control statements and data types as do other structured

programming languages. It also provides many of the benefits of a low-level

language.

The C++ language

The C++ language is based on the C language and includes all of the advantages

of C listed above. In addition, C++ also supports object-oriented concepts, generic

types or templates, and an extensive library. For a detailed description of the

differences between z/OS XL C++ and z/OS XL C, refer to z/OS XL C/C++

Language Reference.

The C++ language introduces classes, which are user-defined data types that may

contain data definitions and function definitions. You can use classes from

established class libraries, develop your own classes, or derive new classes from

existing classes by adding data descriptions and functions. New classes can inherit

properties from one or more classes. Not only do classes describe the data types

and functions available, but they can also hide (encapsulate) the implementation

details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It

also supports polymorphism and the overloading of operators.

Common features of the z/OS XL C and XL C++ compilers

The C and C++ compilers, when used with z/OS Language Environment, offer

many features to increase your productivity and improve program execution times:

v Optimization support:

– Extra Performance Linkage (XPLINK) function calling convention, which has

the potential for a significant performance increase when used in an

environment of frequent calls between small functions. XPLINK makes

subroutine calls more efficient by removing non-essential instructions from the

main path.

– Algorithms to take advantage of the z/Series architecture to achieve improved

optimization and memory usage through the OPTIMIZE and IPA compiler

options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the

machine instructions it generates to produce faster-running object code, which

improves application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across procedural and

compilation unit boundaries, thereby optimizing application performance at run

time.

– Additional optimization capabilities are available with the INLINE compiler

option.

v DLLs (dynamic link libraries) to share parts among applications or parts of

applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use

a definition located in another executable at run time.

You can use DLLs to split applications into smaller modules and improve system

memory usage. DLLs also offer more flexibility for building, packaging, and

redistributing applications.

v Full program reentrancy

Chapter 1. About IBM z/OS XL C/C++ 5

|

|
|
|
|
|

|
|

|
|

With reentrancy, many users can simultaneously run a program. A reentrant

program uses less storage if it is stored in the LPA (link pack area) or ELPA

(extended link pack area) and simultaneously run by multiple users. It also

reduces processor I/O when the program starts up, and improves program

performance by reducing the transfer of data to auxiliary storage. z/OS XL C

programmers can design programs that are naturally reentrant. For those

programs that are not naturally reentrant, z/OS XL C programmers can use

constructed reentrancy. To do this, compile programs with the RENT option and

use the program management binder supplied with z/OS or the z/OS Language

Environment prelinker and program management binder. The z/OS XL C++

compiler always uses the constructed reentrancy algorithms.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992

standard. Also derived from X/Open CAE Specification, System Interface

Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use

locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,

PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS XL

C/C++ code with existing applications.

v Exploitation of z/OS and z/OS UNIX System Services technology.

z/OS UNIX System Services is an IBM implementation of the open operating

system environment, as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

– A subset of ISO/IEC 9899:1999

– ISO/IEC 9945-1:1990 (POSIX-1)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX

committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the S/390® environment.

– X/Open CAE Specification, Networking Services, Issue 4

v Support for the Euro currency

z/OS XL C compiler specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C

compiler provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– ISO/IEC 9899:1999

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Languages, Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS XL C in place of

assembler

v Extensions of the standard definitions of the C language to provide programmers

with support for the z/OS environment, such as fixed-point (packed) decimal data

support

6 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

z/OS XL C++ compiler specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:1998)

standard. Also, it further conforms to the Programming languages - C++ (ISO/IEC

14882:2003(E)) standard, which incorporates the latest Technical Corrigendum 1.

Class libraries

z/OS V1R7 XL C/C++ uses the following thread-safe class libraries:

v Standard C++ Library, including the Standard Template Library (STL), and other

library features of Programming languages - C++ (ISO/IEC 14882:1998) and

Programming languages - C++ (ISO/IEC 14882:2003(E)).

v UNIX System Laboratories (USL) C++ Language System Release I/O Stream

and Complex Mathematics Class Libraries

Note: Starting with z/OS V1R5, all application development using the C/C++ IBM

Open Class Library (Application Support Class and Collection Class

Libraries) is not supported. Run-time support for the execution of existing

applications, which use the IBM Open Class, is provided with z/OS V1R7 but

is planned to be removed in a future release. For additional information, see

IBM Open Class Library Transition Guide.

For new code and enhancements to existing applications, the Standard C++ Library

should be used. The Standard C++ Library includes the following:

v Stream classes for performing input and output (I/O) operations

v The Standard C++ Complex Mathematics Library for manipulating complex

numbers

v The Standard Template Library (STL) which is composed of C++ template-based

algorithms, container classes, iterators, localization objects, and the string class

Utilities

The z/OS XL C/C++ compilers provide the following utilities:

v The xlc utility to invoke the compiler using a customizable configuration file.

v The c89 utility to invoke the compiler using host environment variables.

v The CXXFILT utility to map z/OS XL C++ mangled names to their original function

names.

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into

z/OS XL C/C++ data structures.

v The makedepend utility to derive all dependencies in the source code and write

these into the makefile for the make command to determine which source files to

recompile, whenever a dependency has changed. This frees the user from

manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The Object Library Utility (C370LIB; also known as EDCALIAS) to update

partitioned data set (PDS and PDSE) libraries of object modules. The Object

Library Utility supports XPLINK, IPA, and LP64 compiled objects.

v The prelinker which combines object modules that comprise a z/OS XL C/C++

application to produce a single object module. The prelinker supports only object

and extended object format input files, and does not support GOFF.

Chapter 1. About IBM z/OS XL C/C++ 7

|
|
|
|

|

|
|
|

|
|

|
|

dbx

You can use the dbx shell command to debug programs, as described in z/OS UNIX

System Services Command Reference.

Please refer to www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html for

further information on dbx.

z/OS Language Environment

z/OS XL C/C++ exploits the C/C++ run-time environment and library of run-time

services available with z/OS Language Environment (formerly OS/390 Language

Environment, Language Environment for MVS™ & VM, Language Environment/370

and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,

and Base Routines and Common Services, as shown below. z/OS Language

Environment establishes a common run-time environment and common run-time

services for language products, user programs, and other products.

The common execution environment is composed of data items and services that

are included in library routines available to an application that runs in the

environment. The z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation of

storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS XL C/C++

contains these functions within a library of callable routines, and includes

interfaces to operating system functions and a variety of other commonly used

functions.

v Run-time options that help in the execution, performance, and diagnosis of your

application.

v Access to operating system services; z/OS UNIX System Services are available

to an application programmer or program through the z/OS XL C/C++ language

bindings.

v Access to language-specific library routines, such as the z/OS XL C/C++ library

functions.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

8 z/OS V1R7.0 XL C/C++ User’s Guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html

Note: The z/OS Language Environment run-time option TRAP(ON) should be set

when using z/OS XL C/C++. Refer to z/OS Language Environment

Programming Reference for details on the z/OS Language Environment

run-time options.

z/OS Language Environment downward compatibility

z/OS Language Environment provides downward compatibility support. Assuming

that you have met the required programming guidelines and restrictions, described

in z/OS Language Environment Programming Guide, this support enables you to

develop applications on higher release levels of z/OS for use on platforms that are

running lower release levels of z/OS. In XL C and XL C++, downward compatibility

support is provided through the XL C/C++ TARGET compiler option. See “TARGET”

on page 187 for details on this compiler option.

For example, a company may use z/OS V1R7 with Language Environment on a

development system where applications are coded, link-edited, and tested, while

using any supported lower release of z/OS Language Environment on their

production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases

of the operating system. Applications developed that exploit the downward

compatibility support must not use any Language Environment function that is

unavailable on the lower release of z/OS where the application will be used.

The downward compatibility support includes toleration PTFs for lower releases of

z/OS to assist in diagnosing applications that do not meet the programming

requirements for this support. (Specific PTF numbers can be found in the PSP

buckets.)

The diagnosis assistance that will be provided by the toleration PTFs includes

detection of an unsupported program object format. If the program object format is

at a level which is not supported by the target deployment system, then the

deployment system will produce an abend when trying to load the application

program. The abend will indicate that DFSMS was unable to find or load the

application program. Correcting this problem does not require the installation of any

toleration PTFs. Instead, the application developer will need to recreate the program

object which is compatible with the older deployment system.

The downward compatibility support provided by z/OS Language Environment and

by the toleration PTFs does not change Language Environment’s upward

compatibility. That is, applications coded and link-edited with one release of z/OS

Language Environment will continue to run on later releases of z/OS Language

Environment without the need to recompile or re-link edit the application,

independent of the downward compatibility support.

The current z/OS level header files and SYSLIB can be used (the user no longer has

to copy header files and SYSLIB data sets from the deployment release).

Note: As of z/OS V1R3, the executables produced with the binder’s

COMPAT=CURRENT setting will not run on lower levels of z/OS. You will have to

explicitly override to a particular program object level, or use the COMPAT=MIN

setting introduced in z/OS V1R3.

Chapter 1. About IBM z/OS XL C/C++ 9

About prelinking, linking, and binding

When describing the process to build an application, this document refers to the

bind step.

Normally, the program management binder is used to perform the bind step.

However, in many cases the prelink and link steps can be used in place of the bind

step. When they cannot be substituted, and the program management binder alone

must be used, it will be stated.

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual

processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application.

The term link refers to the case where the binder does not perform this additional

processing, due to one of the following:

– The processing is not required, because none of the object files in the

application use constructed reentrancy, use long names, are DLL or are C++.

– The processing is handled by executing the prelinker step before running the

binder.

The term bind refers to the case where the binder is required to perform this

processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program

functions and methods. This includes the passing of control and parameters.

Refer to Program Linkage in z/OS XL C/C++ Language Reference for more

information on linkage specification.

Some platforms have a single linkage convention. z/OS has a number of linkage

conventions, including standard operating system linkage, Extra Performance

Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the prelinking process

Note that you cannot use the prelinker if you are using the XPLINK, GOFF, or LP64

compiler options. Also, IBM recommends using the binder instead of the prelinker

whenever possible.

The prelinker was designed to process long names and support constructed

reentrancy in earlier versions of the C complier on the MVS and OS/390 operating

systems. The prelinker, shipped with the z/OS XL C/C++ Run-Time Library, provides

output that is compatible with the linkage editor, that is shipped with the binder.

The binder is designed to include the function of the prelinker, the linkage editor, the

loader, and a number of APIs to manipulate the program object. Thus, the binder is

a superset of the linkage editor. Its functionality provides a high level of compatibility

with the prelinker and linkage editor, but provides additional functionality in some

areas. Generally, the terms binding and linking are interchangeable. In particular,

the binder supports:

v Inputs from the object module

v XOBJ, GOFF, load module and program object

10 z/OS V1R7.0 XL C/C++ User’s Guide

v Auto call resolutions from HFS archives and C370LIB object directories

v Long external names

v All prelinker control statements

Note: You need to use the binder for 64-bit objects.

For more information on the compatibility between the binder, and the linker and

prelinker, see z/OS MVS Program Management: User’s Guide and Reference.

Updates to the prelinking, linkage-editing, and loading functions that are performed

by the binder are delivered through the binder. If you use the prelinker shipped with

the z/OS XL C/C++ Run-Time Library and the linkage editor (supplied through the

binder), you have to apply the latest maintenance for the run-time library as well as

the binder.

File format considerations

You can use the binder in place of the prelinker and linkage editor but there are

exceptions involving file format considerations. For further information, on when you

cannot use the binder, see Chapter 9, “Binding z/OS XL C/C++ programs,” on page

351.

The program management binder

The binder provided with z/OS combines the object modules, load modules, and

program objects comprising an application. It produces a single z/OS output

program object or load module that you can load for execution. The binder supports

all C and C++ code, provided that you store the output program in a PDSE

(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++

code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA compiler

options, you must use the prelinker. C and C++ code compiled with the GOFF or

XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the

IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:

– Long names do not get converted into prelinker generated names

– Long names appear in the binder maps, enabling full cross-referencing

– Variables do not disappear after prelink

– Fewer steps in the process of producing your executable program

The prelinker provided with z/OS Language Environment combines the object

modules comprising a z/OS XL C/C++ application and produces a single object

module. You can link-edit the object module into a load module (which is stored in a

PDS), or bind it into a load module or a program object (which is stored in a PDS,

PDSE, or HFS file).

Chapter 1. About IBM z/OS XL C/C++ 11

z/OS UNIX System Services

z/OS UNIX System Services provides capabilities under z/OS to make it easier to

implement or port applications in an open, distributed environment. z/OS UNIX

System Services are available to z/OS XL C/C++ application programs through the

C/C++ language bindings available with z/OS Language Environment.

Together, the z/OS UNIX System Services, z/OS Language Environment, and z/OS

XL C/C++ compilers provide an application programming interface that supports

industry standards.

z/OS UNIX System Services provides support for both existing z/OS applications

and new z/OS UNIX System Services applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;

subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:

System Interfaces and Headers, Issue 4, Version 2, which provides standard

interfaces for better source code portability with other conforming systems; and

X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open

UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX System Services extensions that provide z/OS-specific support

beyond the defined standards

v The z/OS UNIX System Services Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide

z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,

scripts, or z/OS XL C/C++ executable files in HFS files from a

shell session

c89 Uses host environment variables to compile, assemble, and

bind z/OS UNIX System Services C/C++ and assembler

applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files (usually *.msg) into a

formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on

a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent

files, such as a program with many z/OS source and object

files, keeping all such files up to date with one another

xlc Allows you to invoke the compiler using a customizable

configuration file

12 z/OS V1R7.0 XL C/C++ User’s Guide

yacc Allows you to write compilers and other programs that parse

input according to strict grammar rules

– Support for other utilities such as:

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

mkcatdefs Preprocesses a message source file for input to the gencat

utility

runcat Invokes mkcatdefs and pipes the message catalog source

data (the output from mkcatdefs) to gencat

v Access to a hierarchical file system (HFS), with support for the POSIX.1 and

XPG4 standards

v Access to zSeries File System (zFS), which provides performance improvements

over HFS

v z/OS XL C/C++ I/O routines, which support using HFS files, standard z/OS data

sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS XL C/C++ DLLs

z/OS UNIX System Services offers program portability across multivendor operating

systems, with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft

6), and XPG4.2.

For application developers who have worked with other UNIX environments, the

z/OS UNIX System Services Shell and Utilities are a familiar environment for XL

C/C++ application development. If you are familiar with existing MVS development

environments, you may find that the z/OS UNIX System Services environment can

enhance your productivity. Refer to z/OS UNIX System Services User’s Guide for

more information on the Shell and Utilities.

z/OS XL C/C++ applications with z/OS UNIX System Services C

functions

All z/OS UNIX System Services C functions are available at all times. In some

situations, you must specify the POSIX(ON) run-time option. This is required for the

POSIX.4a threading functions, POSIX system(), and signal handling functions

where the behavior is different between POSIX/XPG4 and ISO. Refer to z/OS XL

C/C++ Run-Time Library Reference for more information about requirements for

each function.

You can invoke a z/OS XL C/C++ program that uses z/OS UNIX System Services C

functions using the following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,

or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time

option.

Chapter 1. About IBM z/OS XL C/C++ 13

Input and output

The z/OS XL C/C++ Run-Time Library that supports the z/OS XL C/C++ compiler

supports different input and output (I/O) interfaces, file types, and access methods.

The Standard C++ Library provides additional support.

I/O interfaces

The z/OS XL C/C++ Run-Time Library supports the following I/O interfaces:

C Stream I/O

This is the default and the ISO-defined I/O method. This method processes

all input and output on a per-character basis.

Record I/O

The library can also process your input and output by record. A record is a

set of data that is treated as a unit. It can also process VSAM data sets by

record. Record I/O is a z/OS XL C/C++ extension to the ISO standard.

TCP/IP Sockets I/O

z/OS UNIX System Services provides support for an enhanced version of

an industry-accepted protocol for client/server communication that is known

as sockets. A set of C language functions provides support for z/OS UNIX

System Services sockets. z/OS UNIX System Services sockets correspond

closely to the sockets used by UNIX applications that use the Berkeley

Software Distribution (BSD) 4.3 standard (also known as Berkeley sockets).

The slightly different interface of the X/Open CAE Specification, Networking

Services, Issue 4, is supplied as an additional choice. This interface is

known as X/Open Sockets.

 The z/OS UNIX System Services socket application program interface (API)

provides support for both UNIX domain sockets and Internet domain

sockets. UNIX domain sockets, or local sockets, allow interprocess

communication within z/OS, independent of TCP/IP. Local sockets behave

like traditional UNIX sockets and allow processes to communicate with one

another on a single system. With Internet sockets, application programs can

communicate with each other in the network using TCP/IP.

In addition, the Standard C++ Library provides stream classes, which support

formatted I/O in C++. You can code sophisticated I/O statements easily and clearly,

and define input and output for your own data types. This helps improve the

maintainability of programs that use input and output.

File types

In addition to conventional files, such as sequential files and partitioned data sets,

the z/OS XL C/C++ Run-Time Library supports the following file types:

Virtual Storage Access Method (VSAM) data sets

z/OS XL C/C++ has native support for three types of VSAM data

organization:

v Key-Sequenced Data Sets (KSDS). Use KSDS to access a record

through a key within the record. A key is one or more consecutive

characters that are taken from a data record that identifies the record.

v Entry-Sequenced Data Sets (ESDS). Use ESDS to access data in the

order it was created (or in reverse order).

v Relative-Record Data Sets (RRDS). Use RRDS for data in which each

item has a particular number (for example, a telephone system where a

record is associated with each telephone number).

14 z/OS V1R7.0 XL C/C++ User’s Guide

For more information on how to perform I/O operations on these VSAM file

types, see Performing VSAM I/O operations in z/OS XL C/C++

Programming Guide.

Hierarchical File System files

z/OS XL C/C++ recognizes Hierarchical File System (HFS) file names. The

name specified on the fopen() or freopen() call has to conform to certain

rules. See Opening Files in z/OS XL C/C++ Programming Guide for the

details of these rules. You can create regular HFS files, special character

HFS files, or FIFO HFS files. You can also create links or directories.

Memory files

Memory files are temporary files that reside in memory. For improved

performance, you can direct input and output to memory files rather than to

devices. Since memory files reside in main storage and only exist while the

program is executing, you primarily use them as work files. You can access

memory files across load modules through calls to non-POSIX system()

and C fetch(); they exist for the life of the root program. Standard streams

can be redirected to memory files on a non-POSIX system() call using

command line redirection.

Hiperspace™ expanded storage

Large memory files can be placed in Hiperspace expanded storage to free

up some of your home address space for other uses. Hiperspace expanded

storage or high performance space is a range of up to 2 GB of contiguous

virtual storage space. A program can use this storage as a buffer

(1 gigabyte(GB) = 230 bytes).

zSeries File System

zSeries File System (zFS) is a z/OS UNIX file system that can be used in

addition to the Hierarchical File System (HFS). zFS provides performance

gains in accessing files that are frequently accessed and updated. The I/O

functions in the z/OS XL C/C++ Run-Time Library support zFS.

Additional I/O features

z/OS XL C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from Hierarchical File System (HFS)

files that are larger than 2 GB (see large file support in z/OS XL C/C++

Language Reference)

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the

DFSMS support for 31-bit sequential data buffers and sequential data striping on

extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened

for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD

or tape

v Support for Generation Data Group I/O

Chapter 1. About IBM z/OS XL C/C++ 15

The System Programming C facility

The System Programming C (SPC) facility allows you to build applications that

require no dynamic loading of z/OS Language Environment libraries. It also allows

you to tailor your application for better utilization of the low-level services available

on your operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment

rather than with z/OS Language Environment services. Note that if you do not

use z/OS Language Environment services, only some built-in functions and a

limited set of z/OS XL C/C++ Run-Time Library functions are available to you.

v You can substitute the z/OS XL C language in place of assembler language

when writing system exit routines, by using the interfaces that are provided by

SPC.

v SPC lets you develop applications featuring a user-controlled environment, in

which a z/OS XL C environment is created once and used repeatedly for C

function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application

service routines. In this model, the application calls on the service routine to

perform services independent of the user. The application is then suspended

when control is returned to the user application.

Interaction with other IBM products

When you use z/OS XL C/C++, you can write programs that utilize the power of

other IBM products and subsystems:

v CICS Transaction Server for z/OS

You can use the CICS Command-Level Interface to write C/C++ application

programs. The CICS Command-Level Interface provides data, job, and task

management facilities that are normally provided by the operating system.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can

access the data by using a structured set of queries that are written in Structured

Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application

program. The SQL translator (DB2 preprocessor) translates the embedded SQL

into host language statements, which are then compiled by the z/OS XL C/C++

compilers. Alternatively, use the SQL compiler option to compile a DB2 program

with embedded SQL without using the DB2 preprocessor. The DB2 program

processes requests, then returns control to the application program.

v Debug Tool

z/OS XL C/C++ supports program development by using the Debug Tool. This

tool allows you to debug applications in their native host environment, such as

CICS Transaction Server for z/OS, IMS, and DB2. Debug Tool provides the

following support and function:

– Step mode

– Breakpoints

– Monitor

– Frequency analysis

– Dynamic patching

You can record the debug session in a log file, and replay the session. You can

also use Debug Tool to help capture test cases for future program validation, or

to further isolate a problem within an application.

16 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

You can specify either data sets or Hierarchical File System (HFS) files as source

files.

For further information, see www.ibm.com/software/awdtools/debugtool/.

v IBM C/C++ Productivity Tools for OS/390

Note: Starting with z/OS V1R5, both the C/C++ compiler optional feature and

the Debug Tool product will need to be installed if you wish to use IBM

C/C++ Productivity Tools for OS/390. For more information on Debug Tool,

refer to www.ibm.com/software/awdtools/debugtool/.

With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your

z/OS application development environment out to the workstation, while

remaining close to your familiar host environment. IBM C/C++ Productivity Tools

for OS/390 includes the following workstation-based tools to increase your

productivity and code quality:

– A Performance Analyzer to help you analyze, understand, and tune your C

and C++ applications for improved performance

– A Distributed Debugger that allows you to debug C or C++ programs from the

convenience of the workstation

– A workstation-based editor to improve the productivity of your C and C++

source entry

– Advanced online help, with full text search and hypertext topics as well as

printable, viewable, and searchable Portable Document Format (PDF)

documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host

components:

– Debug Tool

– Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and

analyze a profile of the execution of your host z/OS XL C or C++ application. Use

this information to time and tune your code so that you can increase the

performance of your application.

Use the Distributed Debugger to debug your z/OS XL C or C++ application

remotely from your workstation. Set a breakpoint with the simple click of the

mouse. Use the windowing capabilities of your workstation to view multiple

segments of your source and your storage, while monitoring a variable at the

same time.

Use the workstation-based editor to quickly develop C and C++ application code

that runs on z/OS. Context-sensitive help information is available to you when

you need it.

References to Performance Analyzer in this document refer to the IBM OS/390

Performance Analyzer included in the C/C++ Productivity Tools for OS/390

product.

v Fault Analyzer for z/OS

The IBM Fault Analyzer helps developers analyze and fix application and system

failures. It gathers information about an application and the surrounding

environment at the time of the abend, providing the developer with valuable

information needed for developing and testing new and existing applications. For

more information, please refer to: www.ibm.com/software/awdtools/faultanalyzer/

v Application Monitor for z/OS

The IBM Application Monitor provides resource utilization information for your

applications. This resource information can be the current system data (online

Chapter 1. About IBM z/OS XL C/C++ 17

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/faultanalyzer/

analysis) or data collected over a certain time period (historical analysis). It helps

you to isolate performance problems in applications, improve response time in

online transactions and improve batch turnaround time. It also collects samples

from the monitored address space and analyzes the system or resource

application. For more information please refer to:

www.ibm.com/software/awdtools/applicationmonitor/

v Software Configuration and Library Manager facility (SCLM)

The ISPF Software Configuration and Library Manager facility (SCLM) maintains

information about the source code, objects and load modules. It also keeps track

of other relationships in your application, such as test cases, JCL, and

publications. The SCLM Build function translates input to output, managing not

only compilation and linking, but all associating processes required to build an

application. This facility helps to ensure that your production load modules match

the source in your production source libraries.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print

applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

z/OS XL C supports the Query Management Facility (QMF), a query and report

writing facility, which allows you to write applications through a callable interface.

You can create applications to perform a variety of tasks, such as data entry,

query building, administration aids, and report analysis.

v z/OS Java Support

The Java language supports the Java Native Interface (JNI) for making calls to

and from C/C++. These calls do not use ILC support but rather the Java defined

JNI, which is supported by both compiled and interpreted Java code. Calls to C

or C++ do not distinguish between these two.

Additional features of z/OS XL C/C++

 Feature Description

long long Data Type The z/OS XL C/C++ compiler supports long long as a native data type when the

compiler option LANGLVL(LONGLONG) is turned on. This option is turned on by default by

the compiler option LANGLVL(EXTENDED). As of z/OS V1R7, the XL C compiler supports

long long as a native data type (according to the ISO/IEC 9899:1999 standard), when

the LANGLVL(STDC99) option or LANGLVL(EXTC99) option is in effect.

Multibyte Character Support z/OS XL C/C++ supports multibyte characters for those national languages such as

Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS XL C library functions and encoded in

units of one length. These normalized characters are called wide characters.

Conversions between multibyte and wide characters can be performed by string

conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),

as well as the family of wide-character I/O functions. Wide-character data can be

represented by the wchar_t data type.

18 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

http://www.ibm.com/software/awdtools/applicationmonitor/

Feature Description

Extended Precision

Floating-Point Numbers

z/OS XL C/C++ provides three S/390 floating-point number data types: single precision

(32 bits), declared as float; double precision (64 bits), declared as double; and

extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical

calculations.

As of OS/390 V2R6, C/C+ also supports IEEE 754 floating-point representation. By

default, float, double, and long double values are represented in IBM S/390 floating

point format. However, the IEEE 754 floating-point representation is used if you specify

the FLOAT(IEEE754) compiler option. For details on this support, see “FLOAT” on page

101.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command

line or when calling programs using the system() function.

National Language Support z/OS XL C/C++ provides message text in either American English or Japanese. You

can dynamically switch between these two languages.

Coded Character Set (Code

Page) Support

The z/OS XL C/C++ compiler can compile C/C++ source written in different EBCDIC

code pages. In addition, the iconv utility converts data or source from one code page to

another.

Selected Built-in Library

Functions

For selected library functions, the compiler generates an instruction sequence directly

into the object code during optimization to improve execution performance. String and

character functions are examples of these built-in functions. No actual calls to the

library are generated when built-in functions are used.

Multi-threading Threads are efficient in applications that allow them to take advantage of any

underlying parallelism available in the host environment. This underlying parallelism in

the host can be exploited either by forking a process and creating a new address

space, or by using multiple threads within a single process. For more information, refer

to Using Threads in z/OS UNIX Applications in z/OS XL C/C++ Programming Guide.

Packed Structures and

Unions

z/OS XL C provides support for packed structures and unions. Structures and unions

may be packed to reduce the storage requirements of a z/OS XL C program or to

define structures that are laid out according to COBOL or PL/I structure alignment rules.

Fixed-point (Packed)

Decimal Data

z/OS XL C supports fixed-point (packed) decimal as a native data type for use in

business applications. The packed data type is similar to the COBOL data type COMP-3

or the PL/I data type FIXED DEC, with up to 31 digits of precision.

Long Name Support For portability, external names can be mixed case and up to 32 K - 1 characters in

length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under

z/OS, z/OS UNIX System Services, and TSO. You can also use the system() function

to call EXECs on z/OS and TSO, or Shell scripts using z/OS UNIX System Services.

Exploitation of Hardware Use the ARCHITECTURE compiler option to select the minimum level of machine

architecture on which your program will run. Note that certain features provided by the

compiler require a minimum architecture level. The highest level currently supported is

ARCH(6), which exploits instructions available on model 2084-xxx (z/900) in

z/Architecture™ mode. For more information, refer to “ARCHITECTURE” on page 69.

Use the TUNE compiler option to optimize your application for a specific machine

architecture within the constraints imposed by the ARCHITECTURE option. The TUNE level

must not be lower than the setting in the ARCHITECTURE option. For more information,

refer to “TUNE” on page 200.

Built-in Functions for

Floating-Point and Other

Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are

otherwise inaccessible to XL C/C++ programs. For more information, see the appendix

on built-in functions in z/OS XL C/C++ Programming Guide.

Chapter 1. About IBM z/OS XL C/C++ 19

20 z/OS V1R7.0 XL C/C++ User’s Guide

Part 2. User’s reference

This part reviews the basic steps for compiling, binding, and running z/OS XL

C/C++ programs under the z/OS operating system. It also describes the options

available to you at compile, IPA link, bind, and run time.

v Chapter 2, “z/OS XL C example,” on page 23

v Chapter 3, “z/OS XL C++ examples,” on page 29

v Chapter 4, “Compiler Options,” on page 43

v Chapter 5, “Binder options and control statements,” on page 279

v Chapter 6, “Run-Time options,” on page 281

© Copyright IBM Corp. 1996, 2005 21

22 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 2. z/OS XL C example

This chapter outlines the basic steps for compiling, binding, and running a C

example program under z/OS batch, TSO, or the z/OS shell.

If you have not yet compiled a C program, some concepts in this chapter may be

unfamiliar. Refer to Chapter 7, “Compiling,” on page 285, Chapter 9, “Binding z/OS

XL C/C++ programs,” on page 351, and Chapter 11, “Running a C or C++

application,” on page 405 for a detailed description on compiling, binding, and

running a C program.

This chapter describes steps to bind a C example program. It does not describe the

prelink and link steps. If you are using the prelinker, see Appendix A, “Prelinking

and linking z/OS XL C/C++ programs,” on page 527.

The example program that this chapter describes is shipped with the z/OS XL C

compiler in the data set CBC.SCCNSAM.

Example of a C program

The following example shows a simple z/OS XL C program that converts

temperatures in Celsius to Fahrenheit. You can either enter the temperatures on the

command line or let the program prompt you for the temperature.

In this example, the main program calls the function convert() to convert the

Celsius temperature to a Fahrenheit temperature and to print the result.

CCNUAAM

#include <stdio.h> �1�

#include "ccnuaan.h" �2�

void convert(double); �3�

int main(int argc, char **argv) �4�

{

 double c_temp; �5�

 if (argc == 1) { /* get Celsius value from stdin */

 printf("Enter Celsius temperature: \n"); �6�

 if (scanf("%f", &c_temp) != 1) {

 printf("You must enter a valid temperature\n");

 }

 else {

 convert(c_temp); �7�

 }

 }

Figure 2. Celsius-to-Fahrenheit conversion (Part 1 of 2)

© Copyright IBM Corp. 1996, 2005 23

CCNUAAN

 �1� The #include preprocessor directive names the stdio.h system file. stdio.h

contains declarations of standard library functions, such as the printf()

function used by this program.

 The compiler searches the system libraries for the stdio.h file. For more

information about searches for include files, see “Search sequences for

include files” on page 318.

�2� The #include preprocessor directive names the CCNUAAN user file.

CCNUAAN defines constants that are used by the program.

 The compiler searches the user libraries for the file CCNUAAN.

 If the compiler cannot locate the file in the user libraries, it searches the

system libraries.

�3� This is a function prototype declaration. This statement declares convert()

as an external function having one parameter.

�4� The program begins execution at this entry point.

�5� This is the automatic (local) data definition to main().

�6� This printf statement is a call to a library function that allows you to format

your output and print it on the standard output device. The printf()

function is declared in the standard I/O header file stdio.h included at the

beginning of the program.

 else { /* convert the command-line arguments to Fahrenheit */

 int i;

 for (i = 1; i < argc; ++i) {

 if (sscanf(argv[i], "%f", &c_temp) != 1)

 printf("%s is not a valid temperature\n",argv[i]);

 else

 convert(c_temp); �7�

 }

 }

 return 0;

}

void convert(double c_temp) { �8�

 double f_temp = (c_temp * CONV + OFFSET);

 printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

}

Figure 2. Celsius-to-Fahrenheit conversion (Part 2 of 2)

/**

 * User include file: ccnuaan.h * �9�

 **/

#define CONV (9./5.)

#define OFFSET 32

Figure 3. User #include file for the conversion program

24 z/OS V1R7.0 XL C/C++ User’s Guide

�7� This statement contains a call to the convert() function, which was

declared earlier in the program as receiving one double value, and not

returning a value.

�8� This is a function definition. In this example, the declaration for this function

appears immediately before the definition of the main() function. The code

for the function is in the same file as the code for the main() function.

�9� This is the user include file containing the definitions for CONV and OFFSET.

If you need more details on the constructs of the z/OS XL C language, see z/OS XL

C/C++ Language Reference and z/OS XL C/C++ Run-Time Library Reference.

Compiling, binding, and running the z/OS XL C example

In general, you can compile, bind, and run z/OS XL C programs under z/OS batch,

TSO, or the z/OS shell. You cannot run the IPA Link step under TSO. For more

information, see Chapter 7, “Compiling,” on page 285, Chapter 9, “Binding z/OS XL

C/C++ programs,” on page 351, and Chapter 11, “Running a C or C++ application,”

on page 405.

This document uses the term user prefix to refer to the high-level qualifier of your

data sets. For example, in PETE.TESTHDR.H, the user prefix is PETE. Under TSO, your

prefix is set or queried by the PROFILE command.

Note: The z/OS XL C compiler does not support TSO PROFILE NOPREFIX.

Under z/OS batch

Copy the IBM-supplied sample program and header file into your data set. For

example, if your user prefix is PETE, store the sample program (CCNUAAM) in

PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CCNUAAN). You can use

the IBM-supplied cataloged procedure EDCCBG to compile, bind, and run the example

program as follows:

 In Figure 4, the LSEARCH statement describes where to find the user include files.

The system header files will be searched in the data sets specified on the SEARCH

compiler option, which defaults to CEE.SCEEH.+. The GO.SYSIN statement indicates

that the input that follows it is given for the execution of the program.

XPLINK under z/OS batch

Figure 5 on page 26 shows the JCL for building with XPLINK.

//DOCLG EXEC PROC=EDCCBG,INFILE=’PETE.TEST.C(CTOF)’,

// CPARM=’LSEARCH(’’’’PETE.TESTHDR.+’’’’)’

//GO.SYSIN DD DATA,DLM=@@

19

@@

Figure 4. JCL to compile, bind, and run the example program using the EDCCBG procedure

Chapter 2. z/OS XL C example 25

Non-XPLINK and XPLINK under TSO

Copy the IBM-supplied sample program and header file into your data set. For

example, if your user prefix is PETE, store the sample z/OS XL C program (CCNUAAM)

in PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CCNUAAN).

Steps for compiling, binding, and running the example program

using TSO commands

Before you begin: You need to have ensured that the z/OS Language Environment

run-time libraries SCEERUN and SCEERUN2, and the z/OS XL C compiler are in the

STEPLIB, LPALST, or LNKLST concatenation.

Perform the following steps to compile, bind, and run the example program using

TSO commands:

1. Compile the z/OS XL C source. You can use the REXX EXEC CC to invoke the

z/OS XL C compiler under TSO as follows:

%CC TEST.C(CTOF) (LSEARCH(TESTHDR.H)

-- or, for XPLINK --

%CC TEST.C(CTOF) (LSEARCH(TESTHDR.H) XPLINK

The REXX EXEC CC compiles CTOF with the default compiler options and stores

the resulting object module in PETE.TEST.C.OBJ(CTOF).

The compiler searches for user header files in the PDS PETE.TESTHDR.H, which

you specified at compile time by the LSEARCH option. The system header files

are searched in the data sets specified with the SEARCH compiler option, which

defaults to CEE.SCEEH.+.

For more information see “Compiling under TSO” on page 296.

2. Perform a bind:

CXXBIND OBJ(TEST.C.OBJ(CTOF)) LOAD(TEST.C.LOAD(CTOF))

-- or, for XPLINK --

CXXBIND OBJ(TEST.C.OBJ(CTOF)) LOAD(TEST.C.LOAD(CTOF)) XPLINK

CXXBIND binds the object module PETE.TEST.C.OBJ(CTOF) to create an

executable module CTOF in the PDSE PETE.TEST.C.LOAD, with the default bind

options. See Chapter 9, “Binding z/OS XL C/C++ programs,” on page 351 for

more information.

3. Run the program:

CALL TEST.C.LOAD(CTOF)

//DOCLG EXEC PROC=EDCXCBG,INFILE=’PETE.TEST.C(CTOF)’,

// CPARM=’LSEARCH(’’’’PETE.TESTHDR.+’’’’)’

//GO.SYSIN DD DATA,DLM=@@

19

@@

Figure 5. JCL to build with XPLINK

26 z/OS V1R7.0 XL C/C++ User’s Guide

Example: When a message appears asking you to enter a Celsius

temperature, enter, for example, 25.

Result: The load module displays the following output: 25.00 Celsius is

77.00 Fahrenheit

CALL runs CTOF from PETE.TEST.C.LOAD with the default run-time options in

effect. See Chapter 11, “Running a C or C++ application,” on page 405 for

more information.

Non-XPLINK and XPLINK under the z/OS UNIX System Services shell

Steps for compiling, binding, and running the example program

using UNIX commands

Before you begin: You need to have put the source in HFS and you need to have

ensured that the z/OS Language Environment run-time libraries SCEERUN and

SCEERUN2, and the z/OS XL C compiler are in the STEPLIB, LPALST, or LNKLST

concatenation.

Perform the following steps to compile, bind, and run the example program using

UNIX commands:

1. From the z/OS shell, type the following:

cp "//’cbc.sccnsam(ccnuaam)’" ccnuaam.c

cp "//’cbc.sccnsam(ccnuaan)’" ccnuaan.h

2. Compile and bind:

c89 -o ctof ccnuaam.c

-- or, for XPLINK --

c89 -o ctof -Wc,xplink -Wl,xplink ccnuaam.c

3. Run the program:

./ctof

Example: When a message appears asking you to enter a Celsius

temperature, enter, for example, 25.

Result: The load module displays the following output: 25.00 Celsius is

77.00 Fahrenheit

Chapter 2. z/OS XL C example 27

28 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 3. z/OS XL C++ examples

This chapter outlines the basic steps for compiling, binding, and running z/OS XL

C++ example programs under z/OS batch, TSO, or the z/OS shell.

If you have not yet compiled a C++ program, some concepts in this chapter may be

unfamiliar. Refer to Chapter 7, “Compiling,” on page 285, Chapter 9, “Binding z/OS

XL C/C++ programs,” on page 351, and Chapter 11, “Running a C or C++

application,” on page 405 for a detailed description on compiling, binding, and

running a C++ program.

The example programs that this chapter describes are shipped with the z/OS XL

C++ compiler. Example programs with the names CCNUxxx are shipped in the data

set CCN.SCCNSAM. Example programs with the names CLB3xxxx are shipped in

HFS in /usr/lpp/cbclib/sample.

Example of a C++ program

The following example shows a simple z/OS XL C++ program that prompts you to

enter a birth date. The program output is the corresponding biorhythm chart.

The program is written in object-oriented fashion. A class that is called BioRhythm is

defined. It contains an object birthDate of class BirthDate, which is derived from

the class Date. An object that is called bio of the class BioRhythm is declared.

The example contains two files. File CCNUBRH contains the classes that are used in

the main program. File CCNUBRC contains the remaining source code. The example

files CCNUBRC and CCNUBRH are shipped with the z/OS XL C++ compiler in data sets

CBC.SCCNSAM(CCNUBRC) and CBC.SCCNSAM(CCNUBRH).

If you need more details on the constructs of the z/OS XL C++ language, see z/OS

XL C/C++ Language Reference or z/OS XL C/C++ Run-Time Library Reference.

© Copyright IBM Corp. 1996, 2005 29

CCNUBRH

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current

// system date and birth date entered

//

// File 1 of 2-other file is CCNUBRC

class Date {

 public:

 Date();

 int DaysSince(const char *date);

 protected:

 int curYear, curDay;

 static const int dateLen = 10;

 static const int numMonths = 12;

 static const int numDays[];

};

class BirthDate : public Date {

 public:

 BirthDate();

 BirthDate(const char *birthText);

 int DaysOld() { return(DaysSince(text)); }

 private:

 char text[Date::dateLen+1];

};

Figure 6. Header file for the biorhythm example (Part 1 of 2)

30 z/OS V1R7.0 XL C/C++ User’s Guide

class BioRhythm {

 public:

 BioRhythm(char *birthText) : birthDate(birthText) {

 age = birthDate.DaysOld();

 }

 BioRhythm() : birthDate() {

 age = birthDate.DaysOld();

 }

 ~BioRhythm() {}

 int AgeInDays() {

 return(age);

 }

 double Physical() {

 return(Cycle(pCycle));

 }

 double Emotional() {

 return(Cycle(eCycle));

 }

 double Intellectual() {

 return(Cycle(iCycle));

 }

 int ok() {

 return(age >= 0);

 }

 private:

 int age;

 double Cycle(int phase) {

 return(sin(fmod((double)age, (double)phase) / phase * M_2PI));

 }

 BirthDate birthDate;

 static const int pCycle=23; // Physical cycle - 23 days

 static const int eCycle=28; // Emotional cycle - 28 days

 static const int iCycle=33; // Intellectual cycle - 33 days

};

Figure 6. Header file for the biorhythm example (Part 2 of 2)

Chapter 3. z/OS XL C++ examples 31

CCNUBRC

//

// Sample Program: Biorhythm

// Description : Calculates biorhythm based on the current

// system date and birth date entered

//

// File 2 of 2-other file is CCNUBRH

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <iostream>

#include <iomanip>

#include "ccnubrh.h" //BioRhythm class and Date class

using namespace std;

static ostream& operator << (ostream&, BioRhythm&);

int main(void) {

 BioRhythm bio;

 int code;

 if (!bio.ok()) {

 cerr << "Error in birthdate specification - format is yyyy/mm/dd";

 code = 8;

 }

 else {

 cout << bio; // write out birthdate for bio

 code = 0;

 }

 return(code);

}

const int Date::dateLen ;

const int Date::numMonths;

const int Date::numDays[Date::numMonths] = {

 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

 };

const int BioRhythm::pCycle;

const int BioRhythm::eCycle;

const int BioRhythm::iCycle;

ostream& operator<<(ostream& os, BioRhythm& bio) {

 os << "Total Days : " << bio.AgeInDays() << "\n";

 os << "Physical : " << bio.Physical() << "\n";

 os << "Emotional : " << bio.Emotional() << "\n";

 os << "Intellectual: " << bio.Intellectual() << "\n";

return(os);

}

Figure 7. z/OS XL C++Biorhythm example program (Part 1 of 3)

32 z/OS V1R7.0 XL C/C++ User’s Guide

Date::Date() {

 time_t lTime;

 struct tm *newTime;

 time(&lTime);

 newTime = localtime(&lTime);

 cout << "local time is " << asctime(newTime) << endl;

 curYear = newTime->tm_year + 1900;

 curDay = newTime->tm_yday + 1;

}

BirthDate::BirthDate(const char *birthText) {

 strcpy(text, birthText);

}

BirthDate::BirthDate() {

 cout << "Please enter your birthdate in the form yyyy/mm/dd\n";

 cin >> setw(dateLen+1) >> text;

}

Date::DaysSince(const char *text) {

 int year, month, day, totDays, delim;

 int daysInYear = 0;

 int i;

 int leap = 0;

 int rc = sscanf(text, "%4d%c%2d%c%2d",

 &year, &delim, &month, &delim, &day);

 --month;

 if (rc != 5 || year < 0 || year > 9999 ||

 month < 0 || month > 11 ||

 day < 1 || day > 31 ||

 (day > numDays[month]&& month != 1)) {

 return(-1);

 }

 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

 leap = 1;

 if (month == 1 && day > numDays[month]) {

 if (day > 29)

 return(-1);

 else if (!leap)

 return (-1);

 }

Figure 7. z/OS XL C++Biorhythm example program (Part 2 of 3)

Chapter 3. z/OS XL C++ examples 33

Compiling, binding, and running the z/OS XL C++ example

In general, you can compile, bind, and run z/OS XL C++ programs under z/OS

batch, TSO, or the z/OS shell. You cannot run the IPA Link step under TSO. For

more information, see Chapter 7, “Compiling,” on page 285, Chapter 9, “Binding

z/OS XL C/C++ programs,” on page 351, and Chapter 11, “Running a C or C++

application,” on page 405.

This document uses the term user prefix to refer to the high-level qualifier of your

data sets. For example, in CEE.SCEERUN, the user prefix is CEE.

Note: The z/OS XL C++ compiler does not support TSO PROFILE NOPREFIX.

Under z/OS batch

Copy the IBM-supplied sample program and header file into your data set. For

example, if your user prefix is PETE, store the sample program CCNUBRC in

PETE.TEST.C(CCNUBRC), and the header file CCNUBRH in PETE.TESTHDR.H(CCNUBRH).

You can use the IBM-supplied cataloged procedure CBCCBG to compile, bind, and run

the source code as follows:

 for (i=0;i<month;++i) {

 daysInYear += numDays[i];

 }

 daysInYear += day;

 // correct for leap year

 if (leap == 1 &&

 (month > 1 || (month == 1 && day == 29)))

 ++daysInYear;

 totDays = (curDay - daysInYear) + (curYear - year)*365;

 // now, correct for leap year

 for (i=year+1; i < curYear; ++i) {

 if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {

 ++totDays;

 }

 }

 return(totDays);

}

Figure 7. z/OS XL C++Biorhythm example program (Part 3 of 3)

34 z/OS V1R7.0 XL C/C++ User’s Guide

In Figure 8, the LSEARCH statement describes where to find the user include files,

and the SEARCH statement describes where to find the system include files. The

GO.SYSIN statement indicates that the input that follows it is given for the execution

of the program.

XPLINK under z/OS batch

The following example shows how to compile, bind, and run a program with XPLINK

using the CBCXCBG procedure:

 For more information on compiling, binding, and running, see Chapter 7,

“Compiling,” on page 285, Chapter 9, “Binding z/OS XL C/C++ programs,” on page

351, and Chapter 11, “Running a C or C++ application,” on page 405.

Non-XPLINK and XPLINK under TSO

Copy the IBM-supplied sample program and header file into your data set. For

example, if your user prefix is PETE, store the sample program CCNUBRC in

PETE.TEST.C(CCNUBRC), and the header file CCNUBRH in PETE.TESTHDR.H(CCNUBRH).

Steps for compiling, binding, and running the C++ example

program using TSO commands

Before you begin: You need to have ensured that the z/OS Language Environment

run-time libraries SCEERUN and SCEERUN2, the z/OS class library DLLs, and the z/OS

XL C++ compiler are in the STEPLIB, dynamic LPA, or Link List concatenation.

//*

//* COMPILE, BIND AND RUN

//*

//DOCLG EXEC CBCCBG,

// INFILE=’PETE.TEST.C(CCNUBRC)’,

// CPARM=’OPTFILE(DD:CCOPT)’

//COMPILE.CCOPT DD *

 LSEARCH(’PETE.TESTHDR.H’)

 SEARCH(’CEE.SCEEH.+’,’CBC.SCLBH.+’)

/*

//* ENTER A DATE IN THE FORM YYYY/MM/DD

//GO.SYSIN DD *

 1997/10/19

/*

Figure 8. JCL to compile, bind, and run the example program using the CBCCBG procedure

//*

//* COMPILE, BIND AND RUN

//*

//DOCLG EXEC CBCXCBG,

// INFILE=’PETE.TEST.C(CCNUBRC)’,

// CPARM=’OPTFILE(DD:CCOPT)’

//COMPILE.CCOPT DD *

 LSEARCH(’PETE.TESTHDR.H’)

 SEARCH(’CEE.SCEEH.+’,’CBC.SCLBH.+’)

/*

//* ENTER A DATE IN THE FORM YYYY/MM/DD

//GO.SYSIN DD *

 1997/10/19

/*

Figure 9. JCL to compile, bind, and run the example program with XPLINK using the

CBCXCBG procedure

Chapter 3. z/OS XL C++ examples 35

Perform the following steps to compile, bind, and run the example program using

TSO commands:

1. Compile the z/OS XL C++ source. You can use the REXX EXEC CXX to invoke

the z/OS XL C++ compiler under TSO as follows:

CXX ’PETE.TEST.C(CCNUBRC)’ (LSEARCH(’PETE.TESTHDR.H’) OBJECT(BIO.TEXT)

 SEARCH(’CEE.SCEEH.+’,’CBC.SCLBH.+’)

-- or, for XPLINK --

 CXX ’PETE.TEST.C(CCNUBRC)’ (LSEARCH(’PETE.TESTHDR.H’) OBJECT(BIO.TEXT)

 SEARCH(’CEE.SCEEH.+’,’CBC.SCLBH.+’) XPLINK

CXX compiles CCNUBRC with the specified compiler options and stores the

resulting object module in PETE.BIO.TEXT(CCNUBRC).

The compiler searches for user header files in the PDS PETE.TESTHDR.H , which

you specified at compile time with the LSEARCH option. The compiler searches

for system header files in the PDS CEE.SCEEH.+ and PDS CBC.SCLBH.+, which

you specified at compile time with the SEARCH option.

For more information see “Compiling under TSO” on page 296.

2. Bind:

CXXBIND OBJ(BIO.TEXT(CCNUBRC)) LOAD(BIO.LOAD(BIORUN))

-- or, for XPLINK --

 CCXXBIND OBJ(BIO.TEXT(CCNUBRC)) LOAD(BIO.LOAD(BIORUN)) XPLINK

CXXBIND binds the object module PETE.BIO.TEXT(CCNUBRC), and creates an

executable module BIORUN in PETE.BIO.LOAD PDSE with the default bind

options.

Note: To avoid a bind error, the data set PETE.BIO.LOAD must be a PDSE, not

a PDS.

For more information see Chapter 9, “Binding z/OS XL C/C++ programs,” on

page 351.

3. Run the program:

CALL BIO.LOAD(BIORUN)

Example: When you are asked to enter your birthdate, enter, for example,

1999/01/03.

Result: The following information displays:

Total Days : 1116

Physical : -0.136167

Emotional : -0.781831

Intellectual: -0.909632

CALL runs the module BIORUN from the PDSE PETE.BIO.LOAD with the default

run-time options.

For more information see “Running an application under TSO” on page 408.

36 z/OS V1R7.0 XL C/C++ User’s Guide

Non-XPLINK and XPLINK under the z/OS UNIX shell

Steps for compiling, binding, and running the C++ example

program using UNIX commands

Before you begin: You need to have put the source in HFS. From the z/OS shell

type:

cp "//’cbc.sccnsam(ccnubrc)’" ccnubrc.C

cp "//’cbc.sccnsam(ccnubrh)’" ccnubrh.h

In this example, the current working directory is used, so make sure that you are in

the directory you want to use. Use the pwd command to display the current working

directory, the mkdir command to create a new directory, and the cd command to

change directories.

Ensure that the z/OS Language Environment run-time libraries SCEERUN and

SCEERUN2, the z/OS class library DLLs, and the z/OS XL C++ compiler are in the

STEPLIB, dynamic LPA, or Link List concatenation.

Perform the following steps to compile, bind, and run the example program using

UNIX commands:

1. Compile and bind:

c++ -o bio ccnubrc.C

-- or, for XPLINK --

c++ -o bio -Wc,xplink -Wl,xplink ccnubrc.C

Note: You can use c++ to compile source that is stored in a data set.

2. Run the program:

./bio

Example: When you are asked to enter your birthdate, enter, for example,

1999/01/03.

Result: The following information displays:

Total Days : 1116

Physical : -0.136167

Emotional : -0.781831

Intellectual: -0.909632

Example of a C++ template program

A class template or generic class is a blueprint that describes how members of a

set of related classes are constructed.

The following example shows a simple z/OS XL C++ program that uses templates

to perform simple operations on linked lists. It resides in HFS in the directory

/usr/lpp/cbclib/sample/clb3atmp. The main program, CLB3ATMP.CXX (see

“CLB3ATMP.CXX” on page 38), uses three header files that are from the Standard

C++ Library: list, string, and iostream. It has one class template: list.

Chapter 3. z/OS XL C++ examples 37

CLB3ATMP.CXX

#include <list>

#include <string>

#include <iostream>

using namespace std;

template <class Item> class IOList {

 public:

 IOList() : myList() {}

 void write();

 void read(const char *msg);

 void append(Item item) {

 myList.push_back(item);

 }

 private:

 list<Item> myList;

};

template <class Item> void IOList<Item>::write() {

 ostream_iterator<Item> oi(cout, " ");

 copy(myList.begin(), myList.end(), oi);

 cout << ’\n’;

}

template <class Item> void IOList<Item>::read(const char *msg) {

 Item item;

 cout << msg << endl;

 istream_iterator<Item> ii(cin);

 copy(ii, istream_iterator<Item>(), back_insert_iterator<list<Item> >(myList));

}

int main() {

 IOList<string> stringList;

 IOList<int> intList;

 char line1[] = "This program will read in a list of ";

 char line2[] = "strings, integers and real numbers";

 char line3[] = "and then print them out";

 stringList.append(line1);

 stringList.append(line2);

 stringList.append(line3);

 stringList.write();

 intList.read("Enter some integers (/* to terminate)");

 intList.write();

 string name1 = "Bloe, Joe";

 string name2 = "Jackson, Joseph";

 if (name1 < name2)

 cout << name1 << " comes before " << name2;

 else

 cout << name2 << " comes before " << name1;

 cout << endl;

Figure 10. z/OS XL C++ template program (Part 1 of 2)

38 z/OS V1R7.0 XL C/C++ User’s Guide

Compiling, binding, and running the C++ template example

This section describes the commands to compile, bind and run the template

example under z/OS batch, TSO, and the z/OS shell.

Under z/OS batch

Steps for compiling, binding, and running the C++ template

example program under z/OS batch

Before you begin: You need to have ensured that z/OS Language Environment

run-time libraries SCEERUN and SCEERUN2, and the z/OS XL C++ compiler are in

STEPLIB, LPALST, or the LNKLST concatenation.

Perform the following step to compile, bind, and run the C++ template example

program under z/OS batch:

v Change <userhlq> to your own user prefix in the example JCL.

 int num1 = 23;

 int num2 = 28;

 if (num1 < num2)

 cout << num1 << " comes before " << num2;

 else

 cout << num2 << "comes before " << num1;

 cout << endl;

 return(0);

}

Figure 10. z/OS XL C++ template program (Part 2 of 2)

Chapter 3. z/OS XL C++ examples 39

CCNUNCL

//Jobcard info

//PROC JCLLIB ORDER=(CBC.SCCNPRC,

// CEE.SCEEPROC)

//*

//* Compile MAIN program,creating an object deck

//*

//MAINCC EXEC CBCC,

// OUTFILE=’<userhlq>.SAMPLE.OBJ(CLB3ATMP),DISP=SHR ’,

// CPARM=’XPLINK,OPTF(DD:COPTS)’

//SYSIN DD PATH=’/usr/lpp/cbclib/sample/clb3atmp/clb3atmp.cpp’

//COPTS DD *

 SEARCH(’CEE.SCEEH.+’, ’CBC.SCLBH.+’)

/*

//*

//* Bind the program

//*

//BIND EXEC CBCXB,

// INFILE=’<userhlq>.SAMPLE.OBJ(CLB3ATMP)’,

// OUTFILE=’<userhlq>.SAMPLE.LOAD(CLB3ATMP),DISP=SHR’

//*

//* Run the program

//*

//GO EXEC CBCXG,

// INFILE=’<userhlq>.SAMPLE.LOAD’,

// GOPGM=CLB3ATMP

//GO.SYSIN DD *

 1 2 5 3 7 8 3 2 10 11

/*

Figure 11. JCL to compile, bind and run the template example

40 z/OS V1R7.0 XL C/C++ User’s Guide

Under TSO

Steps for compiling, running, and binding the C++ template

example program using TSO commands

Before you begin: You need to have ensured that the z/OS Language Environment

run-time libraries SCEERUN and SCEERUN2, the z/OS Class Library DLLs, and the z/OS

XL C++ compiler are in STEPLIB, LPALST, or the LNKLST concatenation.

Perform the following steps to compile, bind, and run the C++ template example

program using TSO commands:

1. Compile the source files:

a. cxx /usr/lpp/cbclib/sample/clb3atmp.cpp

(lsearch(/usr/lpp/cbclib/sample) search(’cee.sceeh.+’,’cbc.sclbh.+’)

obj(sample.obj(clb3atmp)) tempinc(//tempinc)

This step compiles CLB3ATMP with the default compiler options, and stores

the object module in userhlq.SAMPLE.OBJ(CLB3ATMP), where userhlq is your

user prefix. The template instantiation files are written to the PDS

userhlq.TEMPINC.

b. cxx TEMPINC (lsearch(/usr/lpp/cbclib/sample)

search(’cee.sceeh.+’,’cbc.sclbh.+’)

This step compiles the PDS TEMPINC and creates the corresponding objects

in the PDS userhlq.TEMPINC.OBJ.

See “Compiling under TSO” on page 296 for more information.

2. Create a library from the PDS userhlq.TEMPINC.OBJ:

C370LIB DIR LIB(TEMPINC.OBJ)

For more information see “Creating an object library under TSO” on page 416

3. Bind the program:

CXXBIND OBJ(SAMPLE.OBJ(CLB3ATMP)) LIB(TEMPINC.OBJ) LOAD(SAMPLE.LOAD(CLB3ATMP))

This step binds the userhlq.SAMPLE.OBJ(CLB3ATMP) text deck using the

userhlq.TEMPINC.OBJ library and the default bind options. It also creates the

executable module userhlq.SAMPLE.LOAD(CLB3ATMP).

Note: To avoid a binder error, the data set userhlq.SAMPLE.LOAD must be a

PDSE.

For more information see “Binding under TSO using CXXBIND” on page 374.

4. Run the program:

CALL SAMPLE.LOAD(CLB3ATMP)

This step executes the module userhlq.SAMPLE.LOAD(CLB3ATMP) using the

default run-time options. For more information see “Running an application

under TSO” on page 408.

Chapter 3. z/OS XL C++ examples 41

Under the z/OS UNIX shell

Steps for compiling, binding, and running the C++ template

example program using UNIX commands

Before you begin: You need to have ensured that the z/OS Language Environment

run-time libraries SCEERUN and SCEERUN2, and the z/OS XL C++ compiler are in

STEPLIB, LPALST, or the LNKLST concatenation.

Perform the following steps to compile, run, and bind the template example program

under the z/OS shell:

1. Copy sample files to your own directory, as follows:

cp /usr/lpp/cbclib/sample/clb3atmp/* your_dir/.

2. Then, to compile and bind:

 c++ -+ -o clb3atmp clb3atmp.cpp

This command compiles clb3atmp.cpp and then compiles the ./tempinc

directory (which is created if it does not already exist). It then binds using all

the objects in the ./tempinc directory. An archive file, or C370LIB object library

is not created.

3. Run the program:

 ./clb3atmp

42 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 4. Compiler Options

This chapter describes the options that you can use to alter the compilation of your

program.

Specifying compiler options

You can override your installation default options when you compile your z/OS XL

C/C++ program, by specifying an option in one of the following ways:

v In the option list when you invoke the IBM-supplied REXX EXECs.

v In the CPARM parameter of the IBM-supplied cataloged procedures, when you are

compiling under z/OS batch.

See Chapter 7, “Compiling,” on page 285, and Appendix D, “Cataloged

procedures and REXX EXECs,” on page 583 for details.

v In your own JCL procedure, by passing a parameter string to the compiler.

v In an options file. See “OPTFILE | NOOPTFILE” on page 160 for details.

v For z/OS XL C, in a #pragma options preprocessor directive within your source

file. See “Specifying z/OS XL C compiler options using #pragma options” on page

46 for details.

Compiler options that you specify on the command line or in the CPARM parameter

of IBM-supplied cataloged procedures can override compiler options that are

used in #pragma options. The exception is CSECT, where the #pragma csect

directive takes precedence.

v On the command line of the c89 utility, by using the -Wc, -WI, and -Wl,I options

to pass options to the compiler.

v On the command line of the xlc utility, by using the -q option or the -Wc and

-Wl,I options to pass options to the compiler.

The following compiler options are inserted in your object module to indicate their

status:

 AGGRCOPY

ALIAS (C compile only)

ANSIALIAS

ARCHITECTURE

ARGPARSE

ASCII

BITFIELD

CHARS

COMPACT

COMPRESS

CONVLIT

CSECT

CVFT (C++ compile only)

DEBUG

DLL

EXECOPS

EXPORTALL

FLOAT

GOFF

GONUMBER

IGNERRNO

© Copyright IBM Corp. 1996, 2005 43

|
|

|
|

ILP32

INITAUTO

INLINE

IPA

LANGLVL

LIBANSI

LOCALE

LONGNAME

LP64

MAXMEM

OBJECTMODEL (C++ compile only)

OPTIMIZE

PLIST

REDIR

RENT (C compile only)

ROCONST

ROSTRING

ROUND

RTTI (C++ compile only)

SERVICE

SPILL

START

STRICT

STRICT_INDUCTION

TARGET

TEMPLATERECOMPILE (C++ compile only)

TEMPLATEREGISTRY (C++ compile only)

TMPLPARSE (C++ compile only)

TEST

TUNE

UNROLL

UPCONV (C compile only)

XPLINK

IPA considerations

The following sections explain what you should be aware of if you request

Interprocedural Analysis (IPA) through the IPA option. Before you use the IPA

compiler option, refer to an overview of IPA in z/OS XL C/C++ Programming Guide.

Applicability of compiler options under IPA

You should keep the following points in mind when specifying compiler options for

the IPA Compile or IPA Link step:

v Many compiler options do not have any special effect on IPA. For example, the

PPONLY option processes source code, then terminates processing prior to IPA

Compile step analysis.

v Compiler options for IPA(OBJONLY) compiles are the same as for NOIPA compiles.

v In some situations, you must specify a compiler option on the IPA Compile step if

you want the benefit of the option on the IPA Link step. In some situations, you

must specify the option again on the IPA Link step.

v Some compiler options have special behavior or restrictions.

v #pragma directives in your source code, and compiler options you specify for the

IPA Compile step, may conflict across compilation units.

44 z/OS V1R7.0 XL C/C++ User’s Guide

#pragma directives in your source code, and compiler options you specify for the

IPA Compile step, may conflict with options you specify for the IPA Link step.

IPA will detect such conflicts and apply default resolutions with appropriate

diagnostic messages. The Compiler Options Map section of the IPA Link step

listing displays the conflicts and their resolutions.

To avoid problems, use the same options and suboptions on the IPA Compile

and IPA Link steps. Also, if you use #pragma directives in your source code,

specify the corresponding options for the IPA Link step.

v If you specify a compiler option that is irrelevant for a particular IPA step, IPA

ignores it and does not issue a message.

In this chapter, the description of each compiler option includes its effect on IPA

processing.

Interactions between compiler options and IPA suboptions

During IPA Compile step processing, IPA handles conflicts between IPA suboptions

and certain compiler options that affect code generation.

If you specify a compiler option for the IPA Compile step, but do not specify the

corresponding suboption of the IPA option, the compiler option may override the IPA

suboption. Table 4 shows how the OPT, LIST, and GONUMBER compiler options interact

with the OPT, LIST, and GONUMBER suboptions of the IPA option. The xxxx indicates

the name of the option or suboption. NOxxxx indicates the corresponding negative

option or suboption.

 Table 4. Interactions between compiler options and IPA suboptions

Compiler Option Corresponding IPA Suboption Value used in IPA Object

no option specified no suboption specified NOxxxx

no option specified NOxxxx NOxxxx

no option specified xxxx xxxx

NOxxxx no option specified NOxxxx

NOxxxx NOxxxx NOxxxx

NOxxxx xxxx xxxx

xxxx no option specified xxxx

xxxx NOxxxx xxxx

1

xxxx xxxx xxxx

Note:

1An informational message is produced that indicates that the suboption

NOxxxx is promoted to xxxx.

IPA compiles versus compiles with IPA optimization

The IPA(OBJONLY) compilation is an intermediate level of optimization. This results

in a modified regular compile, not an IPA Compile step. Unlike the IPA Compile

step, no IPA information is written to the object file.

The object file may be used by an IPA Link step, a prelink/link, or a bind. If it is

used as input to an IPA Linkstep, IPA link-time optimizations cannot be performed

for this compilation unit because no IPA information is available.

Chapter 4. Compiler Options 45

Using special characters

Under TSO

When HFS file names contain the special characters blank, backslash, and double

quote, a backslash (\) must precede these characters.

Note: Under TSO, a backslash \ must precede special characters in file names

and options.

Two backslashes must precede suboptions that contain these special characters:

left parenthesis (, right parenthesis), comma, backslash, blank, double quote, less

than <, and greater than >

For example:

def(errno=\\(*__errno\\(\\)\\))

Under the z/OS UNIX System Services shell

The z/OS UNIX System Services shell imposes its own parsing rules. The c89 utility

escapes special compiler and run-time characters as needed to invoke the compiler,

so you need only be concerned with shell parsing rules.

While the c89 utility uses compiler options, which have parentheses, xlc uses the

-q syntax, which does not use parentheses and is more convenient for shell

invocation.

See Chapter 18, “c89 — Compiler invocation using host environment variables,” on

page 465 and Chapter 19, “xlc — Compiler invocation using a customizable

configuration file,” on page 505 for more information.

Under z/OS batch

When invoking the compiler directly (not through a cataloged procedure), you

should type a single quote (') within a string as two single quotes (''), as follows:

//COMPILE EXEC PGM=CCNDRVR,PARM=’OPTFILE(’’USERID.OPTS’’)’

If you are using the same string to pass a parameter to a JCL PROC, use four

single quotes (''''), as follows:

//COMPILE EXEC CBCC,CPARM=’OPTFILE(’’’’USERID.OPTS’’’’)’

Special characters in HFS file names that are referenced in DD cards do not need a

preceding backslash. For example, the special character blank in the file name obj

1.o does not need a preceding backslash when it is used in a DD card:

//SYSLIN DD PATH=’u/user1/obj 1.o’

A backslash must precede special characters in HFS file names that are referenced

in the PARM statement. The special characters are: backslash, blank, and double

quote. For example, a backslash precedes the special character blank in the file

name obj 1.o, when used in the PARM keyword:

//STEP1 EXEC PGM=CCNDRVR,PARM=’OBJ(/u/user1/obj\ 1.o)’

Specifying z/OS XL C compiler options using #pragma options

You can use the #pragma options preprocessor directive to override the default

values for compiler options. Compiler options that are specified on the command

line or in the CPARM parameter of the IBM-supplied cataloged procedures can

override compiler options that are used in #pragma options. The exception is CSECT,

46 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

where the #pragma csect directive takes precedence. For complete details on the

#pragma options preprocessor directive, see z/OS XL C/C++ Language Reference.

The #pragma options preprocessor directive must appear before the first z/OS XL C

statement in your input source file. Only comments and other preprocessor

directives can precede the #pragma options directive. Only the options that are

listed below can be specified in a #pragma options directive. If you specify a

compiler option that is not in the following list, the compiler generates a warning

message, and does not use the option.

 AGGREGATE ALIAS

ANSIALIAS ARCHITECTURE

ASCII CHECKOUT

ENUMSIZE GONUMBER

IGNERRNO INLINE

LIBANSI MAXMEM

OBJECT OPTIMIZE

RENT SERVICE

SPILL START

TEST TUNE

UPCONV XREF

Notes:

1. When you specify conflicting attributes explicitly, or implicitly by the specification

of other options, the last explicit option is accepted. The compiler usually does

not issue a diagnostic message indicating that it is overriding any options.

2. When you compile your program with the SOURCE compiler option, an options list

in the listing indicates the options in effect at invocation. The values in the list

are the options that are specified on the command line, or the default options

that were specified at installation. These values do not reflect options that are

specified in the #pragma options directive.

Specifying compiler options under z/OS UNIX System Services

The c89 and xlc utilities invoke the z/OS XL C/C++ compiler with the C and C++

compiler options. For further information, see “Compiler option defaults” on page 48.

To change compiler options, use an appropriate c89 or xlc utility option. For

example, use -I to set the search option that specifies where to search for #include

files. If there is no appropriate c89 or xlc option, use -q or -Wc to specify a desired

compiler option. For example, specify -Wc,expo to export all functions and variables.

For a complete description of c89, xlc, and related utilities, refer to Chapter 18, “c89

— Compiler invocation using host environment variables,” on page 465 or

Chapter 19, “xlc — Compiler invocation using a customizable configuration file,” on

page 505.

For compiler options that take file names as suboptions, you can specify a

sequential data set, a partitioned data set, or a partitioned data set member by

prefixing the name with two slashes (’//’). The rest of the name follows the same

syntax rule for naming data sets. Names that are not preceded with two slashes are

HFS file names. For example, to specify HQ.PROG.LIST as the source listing file

(HQ being the high-level qualifier), use SOURCE(//’HQ.PROG.LIST’). The single

quote is needed for specifying a full file name with a high-level qualifier.

Chapter 4. Compiler Options 47

|
|

|

|
|

Compiler option defaults

You can use various options to change the compilation of your program. You can

specify compiler options when you invoke the compiler or, in a C program, in a

#pragma options directive in your source program. Options, that you specify when

you invoke the compiler, override installation defaults and compiler options that are

specified through a #pragma options directive.

The compiler option defaults that are supplied by IBM can be changed to other

selected defaults when z/OS XL C/C++ is installed. For further information, see

Appendix G, “Customizing default options for z/OS XL C/C++ compiler,” on page

615.

To find out the current defaults, compile a program with only the SOURCE compiler

option specified. The compiler listing shows the options that are in effect at

invocation. The listing does not reflect options that are specified through a #pragma

options directive in the source file.

The c89, and xlc utilities that run in the z/OS UNIX System Services shell specify

certain compiler options in order to support POSIX standards. For a complete

description of these utilities, refer to Chapter 18, “c89 — Compiler invocation using

host environment variables,” on page 465, Chapter 19, “xlc — Compiler invocation

using a customizable configuration file,” on page 505, or to the z/OS UNIX System

Services Command Reference. For some options, these utilities specify values that

are different than the supplied defaults in MVS batch or TSO environments.

However, for many options, they specify the same values as in MVS batch or TSO.

There are also some options that the above utilities do not specify explicitly. In

those cases, the default value is the same as in batch or TSO. An option that you

specify explicitly using the above z/OS UNIX System Services utilities overrides the

setting of the same option if it is specified using a #pragma options directive. The

exception is CSECT, where the #pragma csect directive takes precedence.

In effect, invoking the compiler with the c89, and xlc utilities overrides the default

values for many options, compared to running the compiler in MVS batch or TSO.

For example, the c89 utility specifies the RENT option, while the compiler default in

MVS batch or TSO is NORENT. Any overrides of the defaults by the c89, and xlc

utilities are noted in the DEFAULT category for the option. As the compiler defaults

can always be changed during installation, you should always consult the compiler

listing to verify the values passed to the compiler. See “Using the z/OS XL C

compiler listing” on page 210 and “Using the z/OS XL C++ compiler listing” on page

244 for more information.

The c89 utility remaps the following options to the values shown. Note that these

values are set for a regular (non-IPA) compile. These values will change if you

invoke IPA Compile, IPA link, or specify certain other options. For example,

specifying the c89 -V option changes the settings of many of the compiler listing

options. See Chapter 18, “c89 — Compiler invocation using host environment

variables,” on page 465 or Chapter 19, “xlc — Compiler invocation using a

customizable configuration file,” on page 505 for more information and also refer to

the default information provided for each compiler option.

The c89 options remapped are as follows:

 LOCALE(POSIX)

 LANGLVL(ANSI)

 OE

 LONGNAME

48 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|

RENT

 OBJECT(file_name.o)

 NOLIST(/dev/fd1)

 NOSOURCE(/dev/fd1)

 NOPPONLY(NOCOMMENTS,NOLINES,/dev/fd1,2048)

 FLAG(W)

 DEFINE(errno=\\(*__errno\\(\\)\\))

 DEFINE(_OPEN_DEFAULT=1)

The c89 command name supported by the xlc utility has the same defaults as the

c89 command name supported by the c89 utility.

The cc options remapped are as follows:

 NOANSIALIAS

 LOCALE(POSIX)

 LANGLVL(COMMONC)

 OE

 LONGNAME

 RENT

 OBJECT(file_name.o)

 NOLIST(/dev/fd1)

 NOSOURCE(/dev/fd1)

 NOPPONLY(NOCOMMENTS,NOLINES,/dev/fd1,2048)

 FLAG(W)

 DEFINE(errno=\\(*__errno\\(\\)\\))

 DEFINE(_OPEN_DEFAULT=0)

 DEFINE(_NO_PROTO=1)

The cc command name supported by the xlc utility has the same defaults as the cc

command name supported by the c89 utility.

The c++ options remapped are as follows:

 LOCALE(POSIX)

 OE

 OBJECT(file_name.o)

 NOINLRPT(/dev/fd1)

 NOLIST(/dev/fd1)

 NOSOURCE(/dev/fd1)

 NOPPONLY(NOCOMMENTS,NOLINES,/dev/fd1,2048)

 FLAG(W)

 DEFINE(errno=\\(*__errno\\(\\)\\))

 DEFINE(_OPEN_DEFAULT=1)

All C++ command names (xlC, cxx, c++, xlc++) supported by the xlc utility have the

same defaults as the c++ and cxx commands supported by the c89 utility.

The xlc and c99 command names supported by the xlc utility have the same

defaults as the c89 command name supported by the c89 utility, except for the

following:

v LANGLVL(EXTENDED) is the default for the xlc command name

v LANGLVL(STDC99) is the default for the c99 command name

v SSCOMM is the default for both the c99 and xlc command names

Note that the locale option is set according to the environment where the cc, c89,

and c++ utilities are invoked. The current execution locale is determined by the

values associated with environment variables LANG and LC_ALL. The following list

shows the order of precedence for determining the current execution locale:

v If you specify LC_ALL, the current execution locale will be the value associated

with LC_ALL.

Chapter 4. Compiler Options 49

|
|

|
|

|
|

|
|
|

|

|

|

v If LC_ALL was not specified but LANG was specified, the current execution locale

will be the value associated with LANG.

v If neither of the two environment variables is specified, the current execution

locale will default to ″C″.

v If the current execution locale is ″C″, the compiler will be invoked with

LOCALE(POSIX); otherwise, it will be invoked with the current execution locale.

Note that for SEARCH, the value is determined by the following:

v Additional include search directories identified by the c89 -I options. Refer to

Chapter 18, “c89 — Compiler invocation using host environment variables,” on

page 465 for more information.

v z/OS UNIX System Services environment variable settings: prefix_INCDIRS,

prefix_INCLIBS, and prefix_CYSLIB. They are normally set during compiler

installation to reflect the compiler and run-time include libraries. Refer to

“Environment variables” on page 480 in Chapter 18, “c89 — Compiler invocation

using host environment variables,” on page 465 for more information.

Refer to “SEARCH | NOSEARCH” on page 176 for more information on SEARCH.

For the remainder of the compiler options, the c89 utility default matches the C/C++

default. Some of these are explicitly specified by c89, cc, or c++. Therefore if the

installation changes the default options, you may find that c89, cc, or c++ continues

to use the default options. You can use the _C89_OPTIONS, _CC_OPTIONS, or

_CXX_OPTIONS environment variable to override these settings if necessary. Note that

certain options are required for the correct execution of c89, cc, or c++.

Summary of compiler options

Most compiler options have a positive and negative form. The negative form is the

positive with NO before it. For example, NOXREF is the negative form of XREF. The

table that follows lists the compiler options in alphabetical order, their abbreviations,

and the defaults that are supplied by IBM. Suboptions inside square brackets are

optional.

Note: For a description of the compiler options that can be specified with xlc, type

xlc —help to access the help file.

The C, C++, and IPA Link columns, which are shown in the table below, indicate

where the option is accepted by the compiler but this acceptance does not

necessarily cause an action; for example, IPA LINK accepts the MARGINS option but

ignores it. ″C″ refers to a C language compile step. ″C++″ refers to a C++ language

compile step. These options are accepted regardless of whether they are for

NOIPA, IPA (OBJONLY), or IPA(NOLINK).

 Table 5. Compiler options, abbreviations, and IBM supplied defaults

Compiler Option (Abbreviated Names are

underlined) IBM Supplied Default C C++

IPA

Link

More

Information

AGGRCOPY (OVERLAP | NOOVERLAP) AGGRC(NOOVERL) U U U See 64

AGGREGATE | NOAGGREGATE NOAGG U U See 65

ALIAS[(name)] | NOALIAS NOALI U U See 65

ANSIALIAS | NOANSIALIAS ANS U U U See 66

ARCHITECTURE(n) ARCH(5) U U U See 69

ARGPARSE | NOARGPARSE ARG U U U See 72

50 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

Table 5. Compiler options, abbreviations, and IBM supplied defaults (continued)

Compiler Option (Abbreviated Names are

underlined) IBM Supplied Default C C++

IPA

Link

More

Information

ASCII | NOASCII NOASCII U U U See 73

ATTRIBUTE[(FULL)] | NOATTRIBUTE NOATT U U See 73

BITFIELD(SIGNED|UNSIGNED) BITF(UNSIGNED) U U U See 74

CHARS(SIGNED | UNSIGNED) CHARS(UNSIGNED) U U U See 74

CHECKOUT(subopts) | NOCHECKOUT NOCHE U U See 75

COMPACT | NOCOMPACT NOCOMPACT U U U See 77

COMPRESS | NOCOMPRESS NOCOMPRESS U U U See 78

CONVLIT[(subopts)] | NOCONVLIT[(subopts)] NOCONV (, NOWCHAR) U U U See 79

CSECT([qualifier]) | NOCSECT([qualifier]) NOCSE for NOGOFF or

CSE() for GOFF

U U U See 81

CVFT | NOCVFT CVFT U See 84

DBRMLIB(filename) DBRMLIB(DD:DBRMLIB) U U U See 85

DEBUG[(subopts)] | NODEBUG[(subopts)] NODEBUG U U See 86

DEFINE(name1[= | =def1], name2[= | =def2],...) no default user definitions U U U See 89

DIGRAPH | NODIGRAPH DIGR U U U See 90

DLL(CBA | NOCBA) | NODLL(CBA | NOCBA) NODLL(NOCBA) U U See 92

DLL(CBA | NOCBA) DLL(NOCBA) U U See 92

ENUMSIZE(subopts) ENUM(SMALL) U U U See 94

EVENTS[(filename)] | NOEVENTS NOEVENT U U U See 96

EXECOPS | NOEXECOPS EXEC U U U See 97

EXH | NOEXH EXH U See 97

EXPMAC | NOEXPMAC NOEXP U U U See 98

EXPORTALL | NOEXPORTALL NOEXPO U U U See 99

FASTTEMPINC | NOFASTTEMPINC NOFASTT U See 99

FLAG(severity) | NOFLAG FL(I) U U U See 100

FLOAT(subopts) FLOAT(HEX, FOLD, NOMAF,

NORRM, NOAFP or AFP).

For ARCH(2) the default is

NOAFP. For ARCH(3) or

higher, the default is AFP.

U U U See 101

GOFF | NOGOFF NOGOFF U U U See 105

GONUMBER | NOGONUMBER NOGONUM U U U See 106

HALT(num) HALT(16) U U U See 108

HALTONMSG(msgno) | NOHALTONMSG NOHALTON U U U See 108

IGNERRNO | NOIGNERRNO NOIGNER U U U See 108

INFO[(subopts)] | NOINFO For C++: IN(LAN)

For C: NOIN

U U See 110

INITAUTO(number [,word]) | NOINITAUTO NOINITA U U U See 111

Chapter 4. Compiler Options 51

Table 5. Compiler options, abbreviations, and IBM supplied defaults (continued)

Compiler Option (Abbreviated Names are

underlined) IBM Supplied Default C C++

IPA

Link

More

Information

INLINE(subopts) | NOINLINE [(subopts)] C/C++ NOOPT:

NOINL(AUTO, NOREPORT,

100, 1000) C/C++ OPT:

INL(AUTO, NOREPORT, 100,

1000)

IPA Link NOOPT:

NOINL(AUTO, NOREPORT,

1000, 8000)

IPA Link OPT: INL (AUTO,

NOREPORT, 1000, 8000)

U U U See 112

INLRPT[(filename)] | NOINLRPT[(filename)] NOINLR U U U See 116

IPA[(subopts)] | NOIPA[(subopts)] NOIPA(NOLINK, OBJECT,

OPT, NOLIST,

NOGONUMBER,

NOATTRIBUTE, NOXREF,

LEVEL(1),NOMAP, DUP, ER,

NONCAL, NOUPCASE,

NOCONTROL, NOPDF1,

NOPDF2, NOPDFNAME)

U U U See 117

KEYWORD(name) | NOKEYWORD(name) Recognizes all C++ keywords U U See 125

LANGLVL(subopts) LANG(EXTENDED) U U U See 125

LIBANSI | NOLIBANSI NOLIB U U U See 137

LIST[(filename)] | NOLIST [(filename)] NOLIS U U U See 138

LOCALE[(name)] | NOLOCALE NOLOC U U U See 140

LONGNAME | NOLONGNAME C:NOLO C++: LO U U U See 141

LP64 | ILP32 ILP32 U U U See 143

LSEARCH(subopts) | NOLSEARCH NOLSE U U U See 145

MARGINS | NOMARGINS NOMAR U See 150

MARGINS(m,n) | NOMARGINS V-format: NOMAR F-format:

MAR(1,72)

U U See 150

MAXMEM(size) | NOMAXMEM MAXM(2097152) U U U See 151

MEMORY | NOMEMORY MEM U U U See 153

NAMEMANGLING(subopt) NAMEMANGLING(zOSV1R2) U U See 153

NESTINC(num) | NONESTINC NEST(255) U U U See 155

OBJECT[(filename)] | NOOBJECT [(filename)] OBJ U U U See 156

OBJECTMODEL(subopt) OBJECTMODEL(COMPAT) U U See 157

OE[(filename)] | NOOE[(filename)] NOOE U U U See 158

OFFSET | NOOFFSET NOOF U U U See 159

OPTFILE[(filename)] | NOOPTFILE[(filename)] NOOPTF U U U See 160

OPTIMIZE[(level)] | NOOPTIMIZE NOOPT U U U See 162

PHASEID | NOPHASEID NOPHASEID U U U See 165

PLIST(HOST | OS) PLIST(HOST) U U U See 166

PORT(PPS | NOPPS) | NOPORT(PPS | NOPPS) NOPORT(NOPPS) U See 167

52 z/OS V1R7.0 XL C/C++ User’s Guide

Table 5. Compiler options, abbreviations, and IBM supplied defaults (continued)

Compiler Option (Abbreviated Names are

underlined) IBM Supplied Default C C++

IPA

Link

More

Information

PPONLY[(subopts)] | NOPPONLY [(subopts)] NOPP U U U See 168

REDIR | NOREDIR RED U U U See 170

RENT | NORENT NORENT U U See 171

ROCONST | NOROCONST C: NOROC

C++: ROC

U U U See 172

ROSTRING | NOROSTRING ROS U U U See 173

ROUND(opt) For IEE: ROUND(N) For

HEX: ROUND(Z)

U U U See 174

RTTI | NORTTI NORTTI U U See 175

SEARCH(opt1,opt2,...) | NOSEARCH For C++,

SE(//’CEE.SCEEH.+,

//’CBC.SCLBH.+’) For C,

SE(//’CEE.SCEEH.+’)

U U U See 176

SEQUENCE | NOSEQUENCE NOSEQ U See 177

SEQUENCE(m,n) | NOSEQUENCE V-format: NOSEQ F-format:

SEQ(73,80)

U U See 177

SERVICE(string) | NOSERVICE NOSERV U U U See 178

SHOWINC | NOSHOWINC NOSHOW U U U See 179

SOURCE[(filename)] | NOSOURCE[(filename)] NOSO U U U See 180

SPILL(size) | NOSPILL[(size)] SP(128) U U U See 181

SQL | NOSQL NOSQL U U U See 182

SSCOMM | NOSSCOMM NOSS U U See 183

START | NOSTART STA U U U See 184

STATICINLINE | NOSTATICINLINE NOSTATICI U U See 185

STRICT | NOSTRICT STRICT U U U See 185

STRICT_INDUCTION | NOSTRICT_INDUCTION NOSTRICT_INDUC U U U See 186

SUPPRESS(msg-no) | NOSUPPRESS NOSUPP U U U See 187

TARGET(suboption) TARG(LE, CURRENT) U U U See 187

TEMPINC[(filename)] | NOTEMPINC[(filename)] PDS: TEMPINC(TEMPINC)

HFS Directory:

TEMPINC(./tempinc)

U See 192

TEMPLATERECOMPILE |

NOTEMPLATERECOMPILE

TEMPLATEREC U See 193

TEMPLATEREGISTRY |

NOTEMPLATEREGISTRY

NOTEMPL U U See 194

TERMINAL | NOTERMINAL TERM U U U See 195

TEST[(subopts)] | NOTEST[(subopts)] C: NOTEST (HOOK, SYM,

BLOCK, LINE, PATH)

C++: NOTEST(HOOK)

U U U See 195

TMPLPARSE(subopts) TMPLPARSE(NO) U See 199

TUNE(n) TUN(5) U U U See 200

Chapter 4. Compiler Options 53

Table 5. Compiler options, abbreviations, and IBM supplied defaults (continued)

Compiler Option (Abbreviated Names are

underlined) IBM Supplied Default C C++

IPA

Link

More

Information

UNDEFINE(name) no default U U U See 202

UNROLL(subopts) UNROLL(AUTO) U U U See 202

UPCONV | NOUPCONV NOUPC U U See 203

WARN64 | NOWARN64 NOWARN64 U U U See 204

WSIZEOF| NOWSIZEOF NOWSIZEOF U U U See 204

XPLINK[(subopts)] | NOXPLINK[(subopts)] NOXPL U U U See 205

XREF | NOXREF NOXR U U U See 209

Compiler options for file management

These options specify the data set or HFS directory where the compiler stores

output files, and direct the search for include files by the compiler.

 Table 6. Compiler options for file management

Option Description

C

Compile

C++

Compile IPA Link

More

Information

DBRMLIB Enables the SQL option to be used in the

z/OS UNIX System Services environment.

U U U See 85

FASTTEMPINC Defers generating object code until the

final version of all template definitions have

been determined. Then, a single

compilation pass generates the final object

code, resulting in improved compilation

time when recursive templates are used in

an application.

U See 99

IPA(CONTROL) Indicates the name of the control file that

contains additional directives for the IPA

Link step. This option only affects the IPA

Link step.

U U U See 120

LSEARCH Specifies the libraries or disks to be

scanned for user include files.

U U U See 145

MEMORY Improves compile-time performance by

using a MEMORY file in place of a work

file, if possible.

U U U See 153

OBJECT Produces an object module, and stores it

in the file that you specify, or in the data

set associated with SYSLIN.

U U U See 156

OE Specifies that file names used in compiler

options and include directives should be

interpreted as HFS file names when the

file name provided is ambiguous. Also

specifies that POSIX.2 standard rules for

include file searching should be used.

U U U See 158

OPTFILE Directs the compiler to look for compiler

options in the file specified.

U U U See 160

SEARCH Specifies the libraries or disks to be

scanned for system include files.

U U U See 176

54 z/OS V1R7.0 XL C/C++ User’s Guide

Table 6. Compiler options for file management (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

TEMPINC Places template instantiation files in the

PDS or HFS directory specified.

U See 192

TEMPLATERECOMPILE Helps to manage dependencies between

compilation units that have been compiled

using the TEMPLATEREGISTRY option.

U U See 193

TEMPLATEREGISTRY Maintains records of all templates as they

are encountered in the source and ensures

that only one instantiation of each template

is made.

U U See 194

Options that control the preprocessor

These options specify how the preprocessor runs.

 Table 7. Summary of compiler options for preprocessor

Option Description

C

Compile

C++

Compile IPA Link

More

Information

CONVLIT Turns on string literal codepage

conversion.

U U U See 79

DEFINE Defines preprocessor macro names. U U U See 89

DIGRAPH Allows you to use additional digraphs in

both C and C++ applications.

U U U See 90

LOCALE Specifies the locale to be used at compile

time.

U U U See 140

PPONLY Specifies that only the preprocessor is to

be run and not the compiler.

U U U See 168

UNDEFINE Undefines preprocessor macro names. U U U See 202

Options that control the processing of an input source file

These options allow you to control your z/OS XL C/C++ processing of an input

source file.

 Table 8. Summary of compiler options used for input source file processing control

Option Description

C

Compile

C++

Compile IPA Link

More

Information

HALT Specifies that the compiler stop processing

files when it returns an error severity level

of n or above.

U U U See 108

HALTONMSG Instructs the compiler front-end to stop

after the translation phase when it

encounters the specified msg_number.

U U U See 108

MARGINS Identifies position of source to be scanned

by the compiler.

U U U See 150

NESTINC Specifies the number of nested include

files to be allowed.

U U U See 155

Chapter 4. Compiler Options 55

|

|
|
|

Table 8. Summary of compiler options used for input source file processing control (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

SEQUENCE Specifies the columns used for sequence

numbers.

U U U See 177

Options that control the compiler listing

These options control the generation of a compiler listing, and the information that

goes into the listing.

 Table 9. Compiler Options That Control Listings

Option Description

C

Compile

C++

Compile IPA Link

More

Information

AGGREGATE Lists structures and unions, and their

sizes. The IPA Link step accepts but

ignores this option.

U U See 65

ATTRIBUTE For C++ compile, generates a cross

reference section showing attributes for

each symbol and External Symbol Cross

Reference section. For IPA link, it also

generates the Storage Offset Listing if IPA

objects were created using the C compiler

with XREF, IPA(ATTR), or IPA(XREF) options

and the symbols for the current partition

were not coalesced.

U U See 73

EXPMAC Lists all expanded macros. You must use

the SOURCE option with EXPMAC.

U U U See 98

INLINE(,REPORT,,) Generates a report on the status of inlined

functions.

U U U See 112

INLRPT Generates a report on the status of inlined

functions.

U U U See 116

IPA(MAP) Generates the following listing sections for

the IPA Link step: Object File Map, Source

File Map, Compiler Options Map, Global

Symbols Map, Partition Map. This option

only affects the IPA Link step.

U U U See 117

LIST Includes the object module in the compiler

listing, in assembler-like code.

U U U See 138

OFFSET Lists offset addresses relative to entry

points of functions. The LIST option must

be used with OFFSET.

U U U See 159

SHOWINC Lists include files if SOURCE option is

specified.

U U U See 179

SOURCE Lists source file. U U U See 180

56 z/OS V1R7.0 XL C/C++ User’s Guide

Table 9. Compiler Options That Control Listings (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

XREF For C/C++, generates a cross-reference

listing showing file/line definition, reference

and modification information for each

symbol. Also generates the External

Symbol Cross Reference and Static Map.

If you specify the XREF option for the IPA

Link step, it generates an External Symbol

Cross Reference listing section for each

partition and Static Map. The IPA Link step

creates a Storage Offset listing section if

you created your IPA objects with the C

compiler and the XREF, IPA(ATTR), or

IPA(XREF) option, and if IPA did not

coalesce the symbols for the current

partition.

U U U See 209

Options that control the IPA object

These options control the content of the IPA object that is produced by the IPA

Compile step.

 Table 10. Compiler Options for IPA Object Control

Option Description

C

Compile

C++

Compile IPA Link

More

Information

IPA(ATTRIBUTE) Saves information about symbol storage

offsets in the IPA object file.

U U See 118

IPA(GONUMBER) Saves source line numbers in the IPA

object file without generating line number

tables. This option can only be specified

for the IPA Compile step, if a combined

conventional/IPA object file is requested.

U U See 118

IPA(LIST) Saves source line numbers in the IPA

object file without generating a Pseudo

Assembly listing. This option can only be

specified for the IPA Compile step, if a

combined conventional/IPA object file is

requested.

U U See 118

IPA(OBJECT) Indicates whether a conventional

(non-IPA)/IPA object is to be produced

during the IPA Compile step.

U U See 118

IPA(OPTIMIZE) Generates information in the IPA object file

that the compiler option OPT needs during

IPA Link processing. IPA(OPTIMIZE) is the

default setting. If you specify

IPA(NOOPTIMIZE), IPA will change the

option to IPA(OPTIMIZE) and issue an

informational message.

U U See 118

IPA(XREF) Saves information about symbol storage

offsets in the IPA object file.

U U See 118

Chapter 4. Compiler Options 57

Options that control the IPA Link step

These options control the IPA Link step.

 Table 11. Compiler options for IPA Link control

Option Description

C

Compile

C++

Compile IPA Link

More

Information

IPA(LEVEL(0 | 1 | 2 |

PDF1 | PDF2 |

PDFNAME))

Indicates the level of IPA optimization that

the IPA Link step should perform after it

links the object files into the call graph.

U U U See 120

IPA(LINK) Instructs the compiler to perform IPA Link

processing.

U U U See 120

IPA(NCAL) Indicates whether library searches are

performed during the IPA Link step to

locate an object file or files that satisfy

unresolved symbol references within the

current set of object information. This

suboption controls both explicit searches

triggered by the LIBRARY IPA Link control

statement, and the implicit SYSLIB search

that occurs at the end of IPA Link step

input processing.

U U U See 120

IPA(UPCASE) Determines whether an additional

automatic library call pass is made for

SYSLIB if unresolved references remain at

the end of standard IPA Link step

processing. Symbol matching is not

case-sensitive in this pass.

U U U See 120

Options for debugging and diagnosing errors

These options help you to detect and correct errors in your z/OS XL C/C++

program.

 Table 12. Compiler options for debugging and diagnostics

Option Description

C

Compile

C++

Compile IPA Link

More

Information

CHECKOUT Gives informational messages for possible

programming errors. The IPA Link step

accepts but ignores this option.

U U See 75

DEBUG Instructs the compiler to generate debug

information.

U U See 86

EVENTS Produces an events file that contains error

information and source file statistics. The

IPA Link step accepts but ignores this

option.

U U U See 96

FLAG Specifies the lowest severity level to be

listed.

U U U See 100

GONUMBER Generates line number tables for Debug

Tool and error trace backs. The TEST

option turns on GONUMBER.

U U U See 106

INFO Generates informational messages. U U See 110

58 z/OS V1R7.0 XL C/C++ User’s Guide

Table 12. Compiler options for debugging and diagnostics (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

IPA(DUP) Indicates whether a message and a list of

duplicate symbols are written to the

console during the IPA Link step. This

option only affects the IPA Link step.

U U U See 117

IPA(ER) Indicates whether a message and a list of

unresolved symbols are written to the

console during the IPA Link step. This

option only affects the IPA Link step.

U U U See 117

PHASEID Causes each compiler module (phase) to

issue an informational message which

identifies the compiler phase module

name, product identifier, and build level.

U U U See 165

SERVICE Places a string in the object module, which

is displayed in the traceback if the

application fails abnormally.

U U U See 178

SUPPRESS Prevents the batch compiler, or driver

informational, or warning messages from

being displayed or added to the listings.

U U U See 187

TERMINAL Directs diagnostic messages to be

displayed on the terminal.

U U U See 195

TEST Generates information that Debug Tool

needs to debug your program.

U U U See 195

WARN64 Generates diagnostic messages for

situations where compiling the source code

with ILP32 and LP64 may produce

different behavior. This option is designed

to help a program migrate to 64-bit mode.

U U U See 204

XPLINK (BACKCHAIN) Generates a prolog that saves information

about the calling function in the called

function stack frame. This facilitates

debugging using storage dumps, at a cost

in execution time.

U U U See 205

XPLINK (STOREARGS) Generates code to store arguments that

are normally passed in registers, into the

argument area. This facilitates debugging

using storage dumps, at a cost in

execution time.

U U U See 205

Options that control the programming language characteristics

These options allow you to control your z/OS XL C/C++ programming language

characteristics.

 Table 13. Summary of compiler options used for programming language characteristics control

Option Description

C

Compile

C++

Compile IPA Link

More

Information

BITFIELD(UNSIGNED) Specifies the default sign for bit fields. U U U See 74

CHARS(UNSIGNED) Instructs the compiler to treat all variables

of type char as either signed or unsigned.

U U U See 74

Chapter 4. Compiler Options 59

Table 13. Summary of compiler options used for programming language characteristics control (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

KEYWORD Controls whether the specified name is

created as a keyword or an identifier

whenever it appears in your C++ source.

U U See 125

LANGLVL Specifies the language standard to be

used.

U U U See 125

SSCOMM Allows comments to be specified by two

slashes (//). The IPA Link step accepts but

ignores this option.

U U See 183

STATICINLINE Treats an inline function as static instead

of extern.

U U See 185

TMPLPARSE Controls whether parsing and semantic

checking are applied to template definition

implementations (function bodies and static

data member initializers) or only to

template instantiations.

U See 199

UPCONV Preserves unsignedness during z/OS XL

C/C++ type conversions. The IPA Link step

accepts but ignores this option.

U U See 203

Options that control object code generation

These options are used to control how your z/OS XL C/C++ object code is

produced.

 Table 14. Summary of compiler options used for object code control

Option Description

C

Compile

C++

Compile IPA Link

More

Information

AGGRCOPY Instructs the compiler whether or not the

source and destination in structure

assignments can overlap. (They cannot

overlap according to ISO Standard C

rules.)

U U U See 64

ALIAS Generates ALIAS binder control statements

for each required entry point.

U U See 65

ANSIALIAS Indicates to the compiler that the code

strictly follows the type-based aliasing rule

in the ISO C and C++ standards, and can

therefore be compiled with higher

performance optimization of the generated

code.

U U U See 66

ARCHITECTURE Specifies the architecture for which the

executable program instructions are to be

generated.

U U U See 69

ASCII Provides native ASCII/NLS support. U U U See 73

COMPACT Controls choices made between those

optimizations which tend to result in faster

but larger code and those which tend to

result in smaller but slower code.

U U U See 77

60 z/OS V1R7.0 XL C/C++ User’s Guide

Table 14. Summary of compiler options used for object code control (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

COMPRESS Suppresses the generation of function

names in the function control block,

thereby reducing the size of your

application’s load module.

U U U See 78

CSECT Instructs the compiler to generate csect

names in the output object module.

U U U See 81

CVFT Shrinks the size of the writeable static area

(WSA) and reduces the size of

construction virtual function tables (CVFT),

which in turn reduces the load module

size.

U See 84

DLL Generates object code for DLLs or DLL

applications.

U U U See 92

ENUMSIZE Specifies the amount of storage occupied

by enumerations

U U U See 94

EXH Controls the generation of C++ exception

handling code.

U See 97

EXPORTALL Exports all externally defined functions and

variables.

U U U See 99

FLOAT Switches floating-point representation

between IEEE and hexadecimal.

U U U See 101

GOFF Instructs the compiler to produce an object

file in the Generalized Object File Format.

U U U See 105

IGNERRNO Informs the compiler that your application

is not using errno, allowing the compiler to

explore additional optimization

opportunities for library functions in

LIBANSI.

U U U See 108

INITAUTO Directs the compiler to generate code to

initialize automatic variables. Automatic

variables require storage only while the

function in which they are declared are

active.

U U U See 111

INLINE Inlines user functions into source and

helps maximize optimization.

U U U See 112

IPA Instructs the compiler to perform

Interprocedural Analysis (IPA) processing.

U U U See 117

IPA(LEVEL) Indicates the level of IPA optimization that

the IPA Link step should perform.

U U U See 117

LIBANSI Indicates whether or not functions with the

name of an ANSI C library function are in

fact ANSI C library functions.

U U U See 137

LONGNAME Provides support for external names of

mixed case and up to 1024 characters

long.

U U U See 141

LP64 Instructs the compiler to generate code

that runs on a 64-bit architecture machine.

U U U See 143

Chapter 4. Compiler Options 61

Table 14. Summary of compiler options used for object code control (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

MAXMEM Limits the amount of memory used for

local tables of specific, memory intensive

optimization.

U U U See 151

NAMEMANGLING Enables the encoding of variable names

into unique names so that linkers can

separate common names in the language.

U U See 153

OBJECT Produces an object module, and stores it

in the file that you specify, or in the data

set associated with SYSLIN.

U U U See 156

OBJECTMODEL Sets the type of object model. U U U See 157

OPTIMIZE Improves run-time performance by

introducing optimizations during code

generation.

U U U See 162

RENT Generates reentrant code. The IPA Link

step accepts but ignores this option.

U U See 171

ROCONST Informs the compiler that the const

qualifier is respected by the program so

that variables defined with the const

keyword are not be overridden (for

example, by a casting operation).

U U U See 172

ROSTRING Informs the compiler that string literals are

read-only.

U U U See 173

ROUND Sets the rounding mode for binary floating

point numbers.

U U U See 174

SPILL Specifies the size of the spill area to be

used for compilation.

U U U See 181

SQL Enables the compiler to process

embedded SQL statements.

U U U See 182

START Generates a CEESTART whenever

necessary.

U U U See 184

STRICT Affects the precision of floating point

calculations.

U U U See 185

STRICT_INDUCTION Instructs the compiler to disable loop

induction variable optimizations.

U U U See 186

TARGET Generates an object module for the

targeted operating system or run-time

library.

U U U See 187

TUNE Specifies the architecture for which the

executable program will be optimized.

U U U See 200

UNROLL Determines whether or not unrolling is

allowed on any loops in a specified

program.

U U U See 202

WSIZEOF Causes the size of operator to return the

widened size for function return types.

U U U See 204

62 z/OS V1R7.0 XL C/C++ User’s Guide

Table 14. Summary of compiler options used for object code control (continued)

Option Description

C

Compile

C++

Compile IPA Link

More

Information

XPLINK Instructs the compiler to generate extra

performance linkage for function calls.

XPLINK(CALLBACK) specifies that all calls

via function pointers will be considered

potentially incompatible, and fix-up code

will be inserted by the compiler to assist

the call.

U U U See 205

Options that control program execution

These options control the execution of your program

 Table 15. Summary of compiler options for program execution

Option Description

C

Compile

C++

Compile IPA Link

More

Information

ARGPARSE Parses arguments provided on the

invocation line.

U U U See 72

ASCII Provides ASCII/NLS support. U U U See 73

EXECOPS Allows you to specify run-time options on

the invocation line.

U U U See 97

PLIST Specifies that the original operating system

parameter list should be available.

U U U See 166

REDIR Allows redirection of stderr, stdin, and

stdout from the invocation line.

U U U See 170

RTTI Generates run-time type identification

(RTTI) information for the typeid operator

and the dynamic_cast operator.

U U See 175

TARGET Generates an object module for the

targeted operating system or run-time

library.

U U U See 187

Portability options

These options allow you to port your C++ code to the z/OS XL C++ compiler.

 Table 16. Summary of compiler options for portability

Option Description

C

Compile

C++

Compile IPA Link

More

Information

PORT Adjusts the error recovery action that the

compiler takes when it encounters an

ill-formed #pragma pack directive.

U See 167

Description of compiler options

The following sections describe the compiler options and their usage. Compiler

options are listed alphabetically. Syntax diagrams show the abbreviated forms of the

compiler options.

Chapter 4. Compiler Options 63

The "Default", which is the default compiler option for the z/OS XL C/C++ compiler

(batch and TSO environments), is listed at the top of each compiler option

description.

Each compiler option description that follows includes an Option Scope table. The

following Option Scope table is an example that shows that, in this case, the

compiler option is supported by both the C compiler and the C++ compiler. The

table also shows that, in this case, the compiler option is accepted by the IPA Link

step.

 Option Scope

C Compile C++ Compile IPA Link

U U U

AGGRCOPY

Default: AGGRCOPY(NOOVERLAP)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOOVERL

AGGRC

OVERL

��

The AGGRCOPY option instructs the compiler on whether or not the source and

destination assignments for structures can overlap. They cannot overlap according

to ISO Standard C rules. For example, in the assignment a = b;, where a and b are

structs, a is the destination and b is the source.

In the case of structure assignments, the compiler can generate faster code if no

overlap is assumed. The OVERLAP suboption specifies that the source and

destination in a structure assignment might overlap. The NOOVERLAP option specifies

that they do not, and that the compiler can assume this when generating code.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The AGGRCOPY

option affects the regular object module if you requested one by specifying the

IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step accepts the AGGRCOPY option, but ignores it.

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition.

The value of the AGGRCOPY option for a partition is set to the value of the first

subprogram that is placed in the partition. During IPA inlining, subprograms with

64 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

|
|
|
|
|

different AGGRCOPY settings may be combined in the same partition. When this

occurs, the resulting partition is always set to AGGRCOPY(OVERLAP).

AGGREGATE | NOAGGREGATE

Default: NOAGGREGATE

For the z/OS UNIX System Services utilities, the default for a regular compile is

NOAGGREGATE. To specify AGGREGATE, you must specify-V.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Listing

��
 NOAGG

AGG

��

The AGGREGATE option instructs the compiler to include a layout of all struct or

union types in the compiler listing. Depending on the struct or union declaration,

the maps are generated as follows:

v If the typedef name refers to a struct or union, one map is generated for the

struct or union for which the typedef name refers to. If the typedef name can be

qualified with the _Packed keyword, then a packed layout of the struct or union

is generated as well. Each layout map contains the offset and lengths of the

structure members and the union members. The layout map is identified by the

struct/union tag name (if one exists) and by the typedef names.

v If the struct or union declaration has a tag, two maps are created: one contains

the unpacked layout, and the other contains the packed layout. The layout map

is identified by the struct/union tag name.

v If the struct or union declaration does not have a tag, one map is generated for

the struct or union declared. The layout map is identified by the variable name

that is specified on the struct or union declaration.

You can specify this option using the #pragma options directive for C.

ALIAS | NOALIAS

Default: NOALIAS

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Object Code Control

��
 NOALI

ALI

()

(

name

)

��

Chapter 4. Compiler Options 65

The ALIAS option generates ALIAS control statements that help the binder locate

modules in a load library. The suboption name is assigned to the NAME control

statement.

ALIAS(name) If you specify ALIAS(name), the compiler generates the following:

v Control statements in the object module.

v A NAME control statement in the form NAME name (R). R indicates

that the binder should replace the member in the library with the

new member.

The compiler generates one ALIAS control statement for every

external entry point that it encounters during compilation. These

control statements are then appended to the object module.

ALIAS If you specify ALIAS with no suboption, the compiler selects an

existing CSECT name from the program, and nominates it on the

NAME statement.

ALIAS() If you use an empty set of parentheses, ALIAS(), or specify

NOALIAS, the compiler does not generate a NAME control statement.

NOALIAS If you specify NOALIAS, the compiler does not generate a NAME

control statement. NOALIAS has the same effect as ALIAS().

 If you specify the ALIAS option with LONGNAME, the compiler does not generate an

ALIAS control statement.

For complete details on ALIAS and NAME control statements, see z/OS MVS Program

Management: User’s Guide and Reference.

You can specify this option using the #pragma options directive for C.

ANSIALIAS | NOANSIALIAS

Default: ANSIALIAS

The cc compiler invocation command for a regular compile in the z/OS UNIX

System Services environment uses NOANSIALIAS as the default option.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 ANS

NOANS

��

The ANSIALIAS option indicates to the compiler that the code strictly follows the

type-based aliasing rules in the ISO C and C++ standards, and can therefore be

compiled with higher performance optimization of the generated code. When

type-based aliasing is used during optimization, the optimizer assumes that pointers

can only be used to access objects of the same type.

Type-based aliasing improves optimization in the following ways.

v It provides precise knowledge of what pointers can and cannot point at.

66 z/OS V1R7.0 XL C/C++ User’s Guide

v It allows more loads to memory to be moved up and stores to memory moved

down past each other, which allows the delays that normally occur in the original

written sequence of statements to be overlapped with other tasks. These

re-arrangements in the sequence of execution increase parallelism, which is

desirable for optimization.

v It allows the removal of some loads and stores that otherwise might be needed in

case those values were accessed by unknown pointers.

v It allows more identical calculations to be recognized (″commoning″).

v It allows more calculations that do not depend on values modified in a loop to be

moved out of the loop (″code motion″).

v It allows better optimization of parameter usage in inlined functions.

Simplified, the rule is that you cannot safely dereference a pointer that has been

cast to a type that is not closely related to the type of what it points at. The ISO C

and C++ standards define the closely related types.

The following are not subject to type-based aliasing:

v Types that differ only in reference to whether they are signed or unsigned. For

example, a pointer to a signed int can point to an unsigned int.

v Character pointer types (char, unsigned char, and in C but not C++ signed

char).

v Types that differ only in their const or volatile qualification. For example, a

pointer to a const int can point to an int.

v C++ types where one is a class derived from the other.

z/OS XL C/C++ compilers often expose type-based aliasing violations that other

compilers do not. The C++ compiler corrects most but not all suspicious and

incorrect casts without warnings or informational messages. For examples of

aliasing violations that are detected and quietly fixed by the compiler, see the

discussion of the reinterpret_cast operator in the z/OS XL C/C++ Language

Reference.

In addition to the specific optimizations to the lines of source code that can be

obtained by compiling with the ANSIALIAS compiler option, other benefits and

advantages, which are at the program level, are described below:

v It reduces the time and memory needed for the compiler to optimize programs.

v It allows a program with a few coding errors to compile with optimization, so that

a relatively small percentage of incorrect code does not prevent the optimized

compilation of an entire program.

v It positively affects the long-term maintainability of a program by supporting

ISO-compliant code.

It is important to remember that even though a program compiles, its source code

may not be completely correct. When you weigh tradeoffs in a project, the

short-term expedience of getting a successful compilation by forgoing performance

optimization should be considered with awareness that you may be nurturing an

incorrect program. The performance penalties that exist today could worsen as the

compilers that base their optimization on strict adherence to ISO rules evolve in

their ability to handle increased parallelism.

If you specify NOANSIALIAS, the optimizer assumes that a given pointer of a given

type can point to an external object or any object whose address is taken,

regardless of type. This assumption creates a larger aliasing set at the expense of

performance optimization.

Chapter 4. Compiler Options 67

For C, the CHECKOUT(CAST) compiler option can help you locate some but not all

suspicious casts and ANSIALIAS violations.

The following example executes as expected when compiled unoptimized or with

the NOANSIALIAS option; it successfully compiles optimized with ANSIALIAS, but does

not necessarily execute as expected. On non-IBM compilers, the following code

may execute properly, even though it is incorrect.

1 extern int y = 7.;

2

3 void main() {

4 float x;

5 int i;

6 x = y;

7 i = *(int *) &x;

8 printf("i=%d. x=%f.\n", i, x);

9 }

In the example above, the value in object x of type float has its stored value

accessed via the expression * (int *) &x. The access to the stored value is done

by the * operator, operating on the expression (int *) &x. The type of that

expression is (int *), which is not covered by the list of valid ways to access the

value in the ISO standard, so the program violates the standard.

When ANSIALIAS (the default) is in effect, you are making a promise to the compiler

that your source code obeys the constraints in the ISO standard. On the basis of

using this compiler option, the compiler front end passes aliasing information to the

optimizer that, in this case, an object of type float could not possibly be pointed to

by an (int *) pointer (that is, that they could not be aliases for the same storage).

The optimizer believes this promise and performs optimization accordingly. When it

compares the instruction that stores into x and the instruction that loads out of

*(int *), it believes it is safe to put them in either order. Doing the load before the

store will make the program run faster, so it interchanges them. The program

becomes equivalent to:

1 extern int y = 7.;

2

3 void main() {

4 float x;

5 int i;

6 int temp;

7 temp = *(int *) &x; /* uninitialized */

8 x = y;

9 i = temp;

10 printf("i=%d. x=%f.\n", i, x);

9 }

The value stored into variable i is the old value of x, before it was initialized,

instead of the new value that was intended. IBM compilers apply some

optimizations more aggressively than some other compilers so correctness is more

important.

Notes:

1. This option only takes effect if the OPTIMIZE option is in effect.

2. If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically turned

off. If you want ANSIALIAS turned on, you must explicitly specify it. Using

LANGLVL(COMMONC) and ANSIALIAS together may have undesirable effects on your

code at a high optimization level. See “LANGLVL” on page 125 for more

information on LANGLVL(COMMONC).

68 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

3. A comment that indicates the ANSIALIAS option setting is generated in your

object module to aid you in diagnosing a problem with your program.

4. Although type-based aliasing does not apply to the volatile and const

qualifiers, these qualifiers are still subject to other semantic restrictions. For

example, casting away a const qualifier might lead to an error at run time.

See “CHECKOUT | NOCHECKOUT” on page 75 to see how to obtain more

diagnostic information.

You can specify this option using the #pragma options directive for C.

Effect on IPA Link step

If the ANSIALIAS option is specified, then the IPA Link step phase will take

advantage of the knowledge that the program will adhere to the standard C/C++

aliasing rules in order to improve its variable aliasing calculations.

ARCHITECTURE

Default: ARCH(5) for TARGET(zOSV1R6) and above and ARCH(2) for TARGET(zOSV1R4)

to TARGET(zOSV1R5)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

�� ARCH (n) ��

The ARCH option selects the instruction set available during the code generation of

your program based on the specified machine architecture. Specifying a higher ARCH

level generates code that uses newer and faster instructions instead of the

sequences of common instructions. A subparameter specifies the group to which a

model number belongs. Note that your application will not run on a lower

architecture processor than what you specified using the ARCH option. Use the ARCH

level that matches the lowest machine architecture where your program will run.

Use the ARCH option in conjunction with the TUNE option. For more information on the

interaction between ARCH and TUNE, see “TUNE” on page 200.

If you specify a group that does not exist or is not supported, the compiler uses the

default, and issues a warning message.

Current groups of models that are supported include the following:

0 Produces code that is executable on all models.

1 Produces code that uses instructions available on the following system

machine models:

v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and

9021-900

v 9021-xx1 and 9021-xx2

v 9672-Rx1, 9672-Rx2 (G1), 9672-Exx, and 9672-Pxx

Chapter 4. Compiler Options 69

|
|
|

Specifically, these ARCH(1) machines and their follow-ons add the C Logical

String Assist hardware instructions. These instructions are exploited by the

compiler, when practical, for a faster and more compact implementation of

some functions, for example, strcmp().

2 It produces code that uses instructions available on the following system

machine models:

v 9672-Rx3 (G2), 9672-Rx4 (G3), 9672-Rx5 (G4), and 2003

Specifically, these ARCH(2) machines and their follow-ons add the Branch

Relative instruction (Branch Relative and Save - BRAS), and the halfword

Immediate instruction set (for example, Add Halfword Immediate - AHI)

which may be exploited by the compiler for faster processing.

3 Produces code that uses instructions available on the 9672-xx6 (G5),

9672-xx7 (G6), and follow-on models.

 Specifically, these ARCH(3) machines and their follow-ons add a set of

facilities for IEEE floating-point representation, as well as 12 additional

floating-point registers and some new floating-point support instructions that

may be exploited by the compiler.

 Note that ARCH(3) is required for execution of a program that specifies the

FLOAT(IEEE) compiler option. However, if the program is executed on a

physical processor that does not actually provide these ARCH(3) facilities,

any program check (operation or specification exception), resulting from an

attempt to use features associated with IEEE floating point or the additional

floating point registers, will be intercepted by the underlying OS/390 V2R6

or higher operating system, and simulated by software. There will be a

significant performance degradation for the simulation.

4 Produces code that uses instructions available on model 2064-100 (z/900)

in ESA/390 mode.

 Specifically, the following instructions are used for long long operations:

v 32-bit Add-With-Carry (ALC, ALCR) for long long addition (rather than

requiring a branch sequence)

v 32-bit Subtract-With-Borrow (SLB, SLBR) for long long subtraction (rather

than requiring a branch sequence)

v Inline sequence with 32-bit Multiply-Logical (ML, MLR) for long long

multiplication (rather than calling @@MULI64)

5 Is the default value. Produces code that uses instructions available on

model 2064-100 (z/900) in z/Architecture mode.

 Specifically, this is required for execution of a program in 64-bit mode. If

you specify the LP64 compiler option, the compiler will use ARCH(5) as the

default. If you explicitly set ARCH to a lower level, the compiler will issue a

warning and ignore your setting. ARCH(5) specifies the target machine

architecture and the application can be either 31-bit or 64-bit.

6 Produces code that uses instructions available on the 2084-xxx models in

z/Architecture mode.

 Specifically, the compiler on these ARCH(6) machines and their follow-ons

may exploit the long-displacement instruction set. The long-displacement

facility provides a 20-bit signed displacement field in 69 previously existing

instructions (by using a previously unused byte in the instructions) and 44

new instructions. A 20-bit signed displacement allows relative addressing of

up to 524,287 bytes beyond the location designated by a base register or

70 z/OS V1R7.0 XL C/C++ User’s Guide

base and index register pair and up to 524,288 bytes before that location.

The enhanced previously existing instructions generally are ones that

handle 64-bit binary integers. The new instructions generally are new

versions of instructions for 32-bit binary integers. The new instructions also

include:

v A LOAD BYTE instruction that sign-extends a byte from storage to form a

32-bit or 64-bit result in a general register

v New floating-point LOAD and STORE instructions

The long-displacement facility provides register-constraint relief by reducing

the need for base registers, code size reduction by allowing fewer

instructions to be used, and additional improved performance through

removal of possible address-generation interlocks.

7 Produces code that uses instructions available on the 2094-xxx models in

z/Architecture mode.

 Specifically, these ARCH(7) machines and their follow-ons add instructions

supported by facilities such as extended-immediate and extended

translation facilities, which may be exploited by the compiler. For further

information on these facilities, refer to z/Architecture Principles of Operation.

Notes:

1. Code that is compiled at ARCH(1) runs on machines in the ARCH(1) group and

later machines, including those in the ARCH(2) and ARCH(3)groups. It may not

run on earlier machines. Code that is compiled at ARCH(2) may not run on

ARCH(1) or earlier machines. Code that is compiled at ARCH(3) may not run on

ARCH(2) or earlier machines.

2. For the above system machine models, x indicates any value. For example,

9672-Rx4 means 9672-RA4 through to 9672-RX4, not just 9672-RX4.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the ARCHITECTURE option for any compilation unit in the IPA Compile

step, the compiler generates information for the IPA Link step. This option also

affects the regular object module if you request one by specifying the IPA(OBJECT)

option.

Effect on IPA Link step

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition.

If you specify the ARCH option on the IPA Link step, it uses the value of that option

for all partitions. The IPA Link step Prolog and all Partition Map sections of the IPA

Link step listing display that value.

If you do not specify the option on the IPA Link step, the value used for a partition

depends on the value that you specified for the IPA Compile step for each

compilation unit that provided code for that partition. If you specified the same value

for each compilation unit, the IPA Link step uses that value. If you specified different

values, the IPA Link step uses the lowest level of ARCH.

The level of ARCH for a partition determines the level of TUNE for the partition. For

more information on the interaction between ARCH and TUNE, see “TUNE” on page

200.

Chapter 4. Compiler Options 71

||
|

|
|
|
|

The Partition Map section of the IPA Link step listing, and the object module display

the final option value for each partition. If you override this option on the IPA Link

step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the option

value that you specified for each IPA object file during the IPA Compile step.

ARGPARSE | NOARGPARSE

Default: ARGPARSE

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Program Execution

��
 ARG

NOARG

��

The ARGPARSE option specifies that the arguments supplied to your program on the

invocation line are parsed and passed to the main() routine in the C argument

format, commonly argc and argv. argc contains the argument count, and argv

contains the tokens after the command processor has parsed the string.

If you specify NOARGPARSE, arguments on the invocation line are not parsed. argc

has a value of 2, and argv contains a pointer to the string.

Note: If you specify NOARGPARSE, you cannot specify REDIR. The compiler will turn

off REDIR with a warning since the whole string on the command line is

treated as an argument and put into argv .

This option has no effect under CICS.

Effect on IPA Compile step

If you specify ARGPARSE for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

If you specify this option for both the IPA Compile and the IPA Link steps, the

setting on the IPA Link step overrides the setting on the IPA Compile step. This

applies whether you use ARGPARSE and NOARGPARSE as compiler options, or specify

them using the #pragma runopts directive on the IPA Compile step.

If you specified ARGPARSE on the IPA Compile step, you do not need to specify it

again on the IPA Link step to affect that step. The IPA Link step uses the

information generated for the compilation unit that contains the main() function. If it

cannot find a compilation unit that contains main(), it uses the information

generated by the first compilation unit that it finds.

72 z/OS V1R7.0 XL C/C++ User’s Guide

|

ASCII | NOASCII

Default: NOASCII

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control and Program Execution

��
 NOASCII

ASCII

��

The ASCII option instructs the compiler to perform the following:

v Use XPLink linkage unless explicitly overwritten by the NOXPLINK option. Note that

the ASCII run-time functions require XPLINK. The system headers check the

__XPLINK__ macro (which is predefined when the XPLINK option is turned on). The

prototypes for the ASCII run-time functions will not be exposed under NOXPLINK.

Specifying the NOXPLINK option explicitly will prevent you from using the ASCII

run-time functions. ASCII NOXPLINK will be accepted, and will generate an error

(CCN8136) if there is a main() in the code (an executable to be generated).

v Use ISO8859-1 for its default codepage rather than IBM-1047 for character

constants and string literals.

v Set a flag in the program control block to indicate that the compile unit is ASCII.

v Pre-define the macro __CHARSET_LIB for use in header files.

Use the ASCII option and the ASCII version of the run-time library if your application

must process ASCII data natively at execution time.

Note: You can use EBCDIC instead of NOASCII. The two names are synonymous.

There is no negative form for EBCDIC, which means that NOEBCDIC is not

supported. Since EBCDIC is the default, there is usually no need to specify it.

If you must specify it, use EBCDIC instead of NOASCII as the former is

self-documenting.

ATTRIBUTE | NOATTRIBUTE

Default: NOATTRIBUTE

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the cxx command.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Listing

��
 NOATT

ATT

(

FULL

)

��

Chapter 4. Compiler Options 73

|
|

The ATTRIBUTE option produces a Cross Reference listing that shows the attributes

for each symbol, an External Symbol Cross Reference section, and Static Map

section.

The ATTRIBUTE(FULL) option produces a listing of all identifiers that are found in

your code, even those that are not referenced. The compiler writes the listing

produced by ATTRIBUTE or ATTRIBUTE(FULL) to a listing file.

The NOATTRIBUTE option suppresses the attribute listing.

Effect on IPA Compile step

During the IPA Compile step, the compiler saves symbol storage offset information

in the IPA object file as follows:

v For C, if you specify the XREF, IPA(ATTRIBUTE), or IPA(XREF) options or the

#pragma options(XREF)

v For C++, if you specify the ATTR, XREF, IPA(ATTRIBUTE), or IPA(XREF) options

If regular object code/data is produced using the IPA(OBJECT) option, the cross

reference sections of the compile listing will be controlled by the ATTR and XREF

options.

Effect on IPA Link step

If you specify the ATTR or XREF options for the IPA Link step, it generates External

Symbol Cross Reference and Static Map listing sections for each partition.

The IPA Link step creates a Storage Offset listing section if during the IPA Compile

step you requested the additional symbol storage offset information for your IPA

objects.

BITFIELD(SIGNED) | BITFIELD(UNSIGNED)

Default: BITFIELD(UNSIGNED)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Programming Language Characteristics Control

��
 UNSIGNED

BITFIELD

(

SIGNED

)

��

The BITFIELD compiler option instructs the compiler to treat all bit fields by default

as either signed or unsigned.

CHARS(SIGNED) | CHARS(UNSIGNED)

Default: CHARS(UNSIGNED)

 Option Scope

C Compile C++ Compile IPA Link

U U U

74 z/OS V1R7.0 XL C/C++ User’s Guide

CATEGORY: Programming Language Characteristics Control

��
 UNSIGNED

CHARS

(

SIGNED

)

��

The CHARS compiler option instructs the compiler to treat all variables of type char

as either signed or unsigned. This option has the same effect as the #pragma chars

directive, which takes precedence over the compiler option. See z/OS XL C/C++

Language Reference for more information on this directive.

CHECKOUT | NOCHECKOUT

Default: NOCHECKOUT

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Debug/Diagnostic

��

�

 NOCHE

CHE

,

(

subopts

)

��

where:

subopts is one of the suboptions that are shown in Table 17.

Note: As of z/OS V1R6, the INFO option is supported for both C and C++ so you

may prefer to use INFO instead of CHECKOUT.

The CHECKOUT option instructs the compiler to produce additional informational

messages that can indicate possible programming errors. The messages can help

z/OS XL C programmers to debug their programs.

You can specify CHECKOUT with or without suboptions. If you include suboptions, you

can specify any number with commas between them. If you do not include

suboptions, the compiler uses the default for CHECKOUT at your installation.

This table lists the CHECKOUT suboptions, their abbreviations, and the messages they

generate.

Note: Default CHECKOUT suboptions are underlined.

 Table 17. CHECKOUT suboptions, abbreviations, and descriptions

CHECKOUT Suboption Abbreviated Name Description

ACCURACY |

NOACCURACY

AC | NOAC Assignments of long values

to variables that are not long

Chapter 4. Compiler Options 75

Table 17. CHECKOUT suboptions, abbreviations, and descriptions (continued)

CHECKOUT Suboption Abbreviated Name Description

CAST | NOCAST CA | NOCA Potential violation of ANSI

type-based aliasing rules in

explicit pointer type castings.

Implicit conversions, for

example, those due to

assignment statements, are

already checked with a

warning message for

incompatible pointer types.

See “ANSIALIAS |

NOANSIALIAS” on page 66

for more information on ANSI

type-based aliasing. Also see

“DLL | NODLL” on page 92

for DLL function pointer

casting restrictions.

ENUM | NOENUM EN | NOEN Usage of enumerations

EXTERN | NOEXTERN EX | NOEX Unused variables that have

external declarations

GENERAL | NOGENERAL GE | NOGE General checkout messages

GOTO | NOGOTO GO | NOGO Appearance and usage of

goto statements

INIT | NOINIT I | NOI Variables that are not

explicitly initialized

PARM | NOPARM PAR | NOPAR Function parameters that are

not used

PORT | NOPORT POR | NOPOR Non-portable usage of the

z/OS XL C language

PPCHECK | NOPPCHECK PPC | NOPPC All preprocessor directives

PPTRACE | NOPPTRACE PPT | NOPPT Tracing of include files by the

preprocessor

TRUNC | NOTRUNC TRU | NOTRU Variable names that are

truncated by the compiler

ALL ALL Turns on all of the suboptions

for CHECKOUT

NONE NONE Turns off all of the suboptions

for CHECKOUT

You can specify the CHECKOUT option on the invocation line and using the #pragma

options preprocessor directive for C. When you use both methods at the same

time, the options are merged. If an option on the invocation line conflicts with an

option in the #pragma options directive, the option on the invocation line takes

precedence. The following examples illustrate these rules.

Source file:

#pragma options (NOCHECKOUT(NONE,ENUM))

Invocation line:

CHECKOUT (GOTO)

Result:

CHECKOUT (NONE,ENUM,GOTO)

76 z/OS V1R7.0 XL C/C++ User’s Guide

Source file:

#pragma options (NOCHECKOUT(NONE,ENUM))

Invocation line:

CHECKOUT (ALL,NOENUM)

Result:

CHECKOUT (ALL,NOENUM)

Note: If you used the CHECKOUT option and did not receive an informational

message, ensure that the setting of the FLAG option is FLAG(I).

Suboptions that are specified in a #pragma options(NOCHECKOUT(subopts)) directive,

or NOCHECKOUT(subopts), apply if CHECKOUT is specified on the command line.

You can turn the CHECKOUT option off for certain files or statements of your source

program by using a #pragma checkout(suspend) directive. Refer to z/OS XL C/C++

Language Reference for more information regarding this pragma directive.

Note: See the “INFO | NOINFO” on page 110 compiler option section for

information on C++ support for similar functionality.

COMPACT | NOCOMPACT

Default: NOCOMPACT

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOCOMPACT

COMPACT

��

During optimizations performed as part of code generation, for both NOIPA and IPA,

choices must be made between those optimizations which tend to result in faster

but larger code and those which tend to result in smaller but slower code. The

COMPACT option influences these choices. When the COMPACT option is used, the

compiler favours those optimizations which tend to limit the growth of the code.

Because of the interaction between various optimizations, including inlining, code

compiled with the COMPACT option may not always generate smaller code and data.

To determine the final status of inlining, generate and check the inline report. Not all

subprograms are inlined when COMPACT is specified.

To evaluate the use of the COMPACT option for your application:

v Compare the size of the objects generated with COMPACT and NOCOMPACT

v Compare the size of the modules generated with COMPACT and NOCOMPACT

v Compare the execution time of a representative workload with COMPACT and

NOCOMPACT

If the objects and modules are smaller with an acceptable change in execution time,

then you can consider the benefit of using COMPACT.

Chapter 4. Compiler Options 77

As new optimizations are added to the compiler, the behavior of the COMPACT option

may change. You should re-evaluate the use of this option for each new release of

the compiler and when the user changes the application code.

You can specify this option for a specific subprogram using the #pragma

option_override(subprogram_name, "OPT(COMPACT)") directive.

Effect on IPA(OBJONLY) compilation

During a compilation with IPA compile-time optimizations active, any

subprogram-specific COMPACT option specified by #pragma

option_override(subprogram_name, "OPT(COMPACT)") directives will be retained.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. This option also

affects the regular object module if you request one by specifying the IPA(OBJECT)

option.

Effect on IPA Link step

If you specify the COMPACT option for the IPA Link step, it sets the Compilation Unit

values of the COMPACT option that you specify. The IPA Link step Prolog listing

section will display the value of this option.

If you do not specify COMPACT option in the IPA Link step, the setting from the IPA

Compile step for each Compilation Unit will be used.

In either case, subprogram-specific COMPACT options will be retained.

The IPA Link step merges and optimizes your application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition. Compatible subprograms have the same COMPACT setting.

The COMPACT setting for a partition is set to the specification of the first subprogram

that is placed in the partition. Subprograms that follow are placed in partitions that

have the same COMPACT setting. A NOCOMPACT subprogram is placed in a NOCOMPACT

partition, and a COMPACT subprogram is placed in a COMPACT partition.

The option value that you specified for each IPA object file on the IPA Compile step

appears in the IPA Link step Compiler Options Map listing section.

The Partition Map sections of the IPA Link step listing and the object module END

information section display the value of the COMPACT option. The Partition Map also

displays any subprogram-specific COMPACT values.

COMPRESS | NOCOMPRESS

Default: NOCOMPRESS

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

78 z/OS V1R7.0 XL C/C++ User’s Guide

��
 NOCOMPRESS

COMPRESS

��

Use the COMPRESS option to suppress the generation of function names in the

function control block thereby reducing the size of your application’s load module.

Note that the function names are used by the dump service to provide you with

meaningful diagnostic information when your program encounters a fatal program

error. They are also used by tools such as Debug Tool and the Performance

Analyzer. Without these function names, the reports generated by these services

and tools may not be complete.

Note that if COMPRESS and TEST or DEBUG are in effect at the same time, the compiler

issues a warning message and ignores the COMPRESS option.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. COMPRESS also

affects the regular object module if you request one by specifying the IPA(OBJECT)

option.

Effect on IPA Link step

If you specify the COMPRESS option for the IPA Link step, it uses the value of the

option that you specify. The IPA Link step Prolog listing section will display the value

of the option that you specify.

If you do not specify COMPRESS option in the IPA Link step, the setting from the IPA

Compile step will be used.

The IPA Link step merges and optimizes your application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition. Compatible subprograms have the same COMPRESS setting.

The COMPRESS setting for a partition is set to the specification of the first subprogram

that is placed in the partition. Subprograms that follow are placed in partitions that

have the same COMPRESS setting. A NOCOMPRESS mode subprogram is placed in a

NOCOMPRESS partition, and a COMPRESS mode subprogram is placed in a COMPRESS

partition.

The option value that you specified for each IPA object file on the IPA Compile step

appears in the IPA Link step Compiler Options Map listing section.

The Partition Map sections of the IPA Link step listing and the object module END

information section display the value of the COMPRESS option.

CONVLIT | NOCONVLIT

Default: NOCONVLIT(, NOWCHAR)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

Chapter 4. Compiler Options 79

|

��
 NOCONV

CONV

, NOWCHAR

(

)

codepage

, WCHAR

, UNICODE

��

The CONVLIT option changes the assumed codepage for character and string literals

within the compilation unit. You can use an optional suboption to specify the

codepage that you want to use for string literals. If you specify NOCONV or CONV

without a suboption, the default codepage, or the codepage specified by the LOCALE

option is used.

You can also specify a suboption with the NOCONV option. The result of the following

specifications is the same:

v NOCONV(IBM-1027) CONV

v CONV(IBM-1027)

The CONVLIT option affects all the source files that are processed within a

compilation unit, including user header files and system header files. All string

literals and character constants within a compilation unit are converted to the

specified codepage unless you use #pragma convlit(suspend) and #pragma

convlit(resume) to exclude sections of code from conversion. See z/OS XL C/C++

Language Reference for more information on #pragma convlit.

The CONVLIT option only affects string literals within the compilation unit. The

following determines the codepage that the rest of the program uses:

v If you specified a LOCALE, the remainder of the program will be in the codepage

that you specified with the LOCALE option.

v If you did not specify a LOCALE, the remainder of the program will be in the

default codepage IBM-1047.

The CONVLIT option does not affect the following types of string literals:

v literals in the #include directive

v literals in the#pragma directive

v literals used to specify linkage, for example, extern "C"

v literals used for the __func__ variables

The CONVLIT(, WCHAR) suboption instructs the compiler to change the codepage for

wide character constants and string literals declared with the L’’ or L″″ prefix.

Although optional, the WCHAR suboption is positional, and must appear as the second

suboption to the CONVLIT option. The default is NOWCHAR. Only wide character

constants and string literals made up of single byte character set (SBCS) characters

are converted. If there are any shift-out (SO) and shift-in (SI) characters in the

literal, the compilation will end with an error message.

The z/OS XL C/C++ compiler interprets the CONVLIT(, UNICODE) suboption as a

request to convert the wide string literals and wide character constants (wchar_t) to

Unicode (UCS-2) regardless of the code page used for conversion of string literals

and character constants (char). The conversion is supported for wide string literals

and wide character constants that are coded using characters from the basic

character set defined by the Programming languages - C (ISO/IEC 9899:1999)

80 z/OS V1R7.0 XL C/C++ User’s Guide

|||||||||||||||||||||||||||||||||||||||

|

|

|

|
|
|
|
|
|

standard. The behavior is undefined if wide string literals and wide character

constants are coded using characters outside the basic character set.

The semantics of the #pragma convlit(suspend/resume) are not affected by this

extension. No string literals or character constants (wide included), will be converted

if #pragma convlit(suspend) is in effect.

The interaction between the #pragma convlit(suspend/resume) and the #pragma

convert is not affected by this extension. String literals and character constants will

continue to be converted by the currently active #pragma convert. Wide string

literals and wide character constants are not affected by #pragma convert, even

when the new CONVLIT(, UNICODE) suboption is specified.

If you specify PPONLY with CONVLIT, the compiler ignores CONVLIT.

If you specify the CONVLIT option, the codepage appears after the locale name and

locale code set in the Prolog section of the listing. The option appears in the END

card at the end of the generated object module.

Notes:

1. Although you can continue to use the __STRING_CODE_SET__ macro, you should

use the CONV option instead. If you specify both the macro and the option, the

compiler diagnoses it and uses the option regardless of the order in which you

specify them

2. The #pragma convert directive provides similar functionality to the CONVLIT

option. It has the advantage of allowing more than one character encoding to be

used for string literals in a single compilation unit. For more information on the

#pragma convert directive, see z/OS XL C/C++ Language Reference.

Effect on IPA Compile step

The CONVLIT option only controls processing for the IPA step for which you specify

it.

During the IPA Compile step, the compiler uses the code page that is specified by

the CONVLIT option to convert the character string literals.

CSECT | NOCSECT

Default: For NOGOFF, the default option is NOCSECT. For GOFF, the default option is

CSECT().

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOCSE

CSE

(

qualifier

)

��

The CSECT option ensures that the code, static data, and test sections of your object

module are named. Use this option, or the #pragma CSECT directive, if you will be

Chapter 4. Compiler Options 81

|
|

|
|
|

|
|
|
|
|

using SMP/E to service your product, and to aid in debugging your program. See

z/OS XL C/C++ Language Reference for further information on the #pragma CSECT

directive.

The NOCSECT option does not name the code, static, or test data sections of your

object module.

The qualifier suboption of the CSECT option allows the compiler to generate long

CSECT names.

For NOGOFF, if the LONGNAME compiler option is not in effect when you specify

CSECT(qualifier), the compiler turns it on, and issues an informational message.

For GOFF, both NOLONGNAME and LONGNAME options are supported.

The CSECT option names sections of your object module differently depending on

whether you specified CSECT with or without a qualifier.

The CSECT option with no qualifier

If you specify the CSECT option without the qualifier suboption, the CSECT option

names the code, static data, and test sections of your object module as csectname,

where csectname is one of the following:

v The member name of your primary source file, if it is a PDS member

v The low-level qualifier of your primary source file, if it is a sequential data set

v The source file name with path information and the right-most extension

information removed, if it is an HFS file.

v For NOGOFF, if the NOLONGNAME option is in effect, then the csectname is truncated

to 8 characters long starting from the left. For GOFF, the full csectname is always

used.

code CSECT Is named with csectname name in uppercase.

data CSECT Is named with csectname in lower case.

test CSECT When you use the TEST option together with the CSECT option, the

debug information is placed in the test CSECT. The test CSECT is

the static CSECT name with the prefix $. If the static CSECT name

is eight characters long, the right-most character is dropped and the

compiler issues an informational message except in the case of

GOFF. The test CSECT name is always truncated to eight

characters.

 For example, if you compile /u/cricket/project/mem1.ext.c:

v with the options NOGOFF and CSECT, the test CSECT will have the

name $mem1.ex

v with the options GOFF and CSECT, the test CSECT will have the

name $mem1.ext

The CSECT option with the qualifier suboption

If you specify the CSECT option with the qualifier suboption, the CSECT option

names the code, static data, and test sections of your object module as

qualifier#basename#suffix, where:

qualifier Is the suboption you specified as a qualifier

basename Is one of the following:

v The member name of your primary source file, if it is a PDS

member

v There is no basename, if your primary source file is a sequential

data set or instream JCL

82 z/OS V1R7.0 XL C/C++ User’s Guide

v The source file name with path information and the right-most

extension information removed, if it is an HFS file

suffix Is one of the following:

C For code CSECT

S For static CSECT

T For test CSECT

For example, if you compile /u/cricket/project/mem1.ext.c with the options TEST

and CSECT(example), the compiler constructs the CSECT names as follows:

example#mem1.ext#C

example#mem1.ext#S

example#mem1.ext#T

The qualifier suboption of the CSECT option allows the compiler to generate long

CSECT names. If the compiler option LONGNAME is not in effect when you specify the

CSECT(qualifier), the compiler turns it on, and issues an informational message.

For example, if you compile /u/cricket/project/reallylongfilename.ext.c with

the options TEST and CSECT(example), the compiler constructs the CSECT names as

follows:

example#reallylongfilename.ext#C

example#reallylongfilename.ext#S

example#reallylongfilename.ext#T

When you specify CSECT(qualifier), the code, data, and test CSECTs are always

generated. The test CSECT has content only if you also specify the TEST option.

If you use CSECT("") or CSECT(), the CSECT name has the form basename#suffix,

where basename is:

v @Sequential@ for a sequential data set

v @InStream@ for instream JCL

Notes:

1. If the qualifier suboption is longer than 8 characters you must use the binder.

2. The qualifier suboption takes advantage of the capabilities of the binder, and

may not generate names acceptable to the z/OS Language Environment

Prelinker.

3. The # that is appended as part of the #C, #S, or #T suffix is not locale-sensitive.

4. The string that is specified as the qualifier suboption has the following

restrictions:

v Leading and trailing blanks are removed

v You can specify a string of any length. However if the complete CSECT name

exceeds 1024 bytes, it is truncated starting from the left.

5. If the source file is either sequential or instream in your JCL, you must use the

#pragma csect directive to name your CSECT. Otherwise, you may receive an

error message at bind time.

Effect on IPA Link step

For the IPA Link step, this option has the following effects:

1. If you specify the CSECT option, the IPA Link step names all of the CSECTs that

it generates.

Chapter 4. Compiler Options 83

The IPA Link step determines whether the IPA Link control file contains CSECT

name prefix directives. If you did not specify the directives, or did not specify

enough CSECT entries for the number of partitions, the IPA Link step

automatically generates CSECT name prefixes for the remaining partitions, and

issues an error diagnostic message each time.

The form of the CSECT name that IPA Link generates depends on whether the

CSECT or CSECT(qualifier) format is used.

2. If you do not specify the CSECT option, but you have specified CSECT name

prefix directives in the IPA Link control file, the IPA Link step names all CSECTs

in a partition. If you did not specify enough CSECT entries for the number of

partitions, the IPA Link step automatically generates a CSECT name prefix for

each remaining partition, and issues a warning diagnostic message each time.

3. If you do not specify the CSECT option, and do not specify CSECT name prefix

directives in the IPA Link control file, the IPA Link step does not name the

CSECTs in a partition.

The IPA Link step ignores the information that is generated by #pragma csect on

the IPA Compile step.

CVFT | NOCVFT

Default: CVFT

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: Object Code Control

��
 CVFT

NOCVFT

��

The NOCVFT option benefits your application’s performance by shrinking the size of

the writeable static area (WSA). It reduces the size of construction virtual function

tables (CVFT), which in turn reduces the load module size. Use NOCVFT if none of

the constructors in your application calls virtual functions from within the class

hierarchy, either directly or indirectly.

The NOCVFT option relieves certain constructors from tracking which virtual function

to call at different stages of the construction process. This tracking by the

constructor would require that the constructor maintain its own CVFT. Only

constructors that call virtual functions within a class hierarchy that uses virtual

inheritance are affected.

Example: Consider the following example:

struct A {

 virtual int f() { return 0; } // line a

};

struct B : virtual A {

 virtual int f() { return 1; } // line b

 B() { cout << f() << endl; }

};

struct C : virtual B {

84 z/OS V1R7.0 XL C/C++ User’s Guide

virtual int f() { return 2; } // line c

};

...

In the above example, if an instance of C is constructed, the ISO C++ standard

requires that 1 (the number one) be printed. That is, the function B::f() at line b

should be called during the construction of C. After C is constructed, a call to f()

should invoke C::f() at line c. To support the ANSI behavior and call the right

function, the z/OS XL C++ compiler needs to keep extra information during object

construction. This extra information can require a lot of memory if an application

uses a lot of virtual inheritance.

The NOCVFT option breaks the above ANSI C++ behavior. In that case, the virtual

function called by the application is always the same one that would be called if the

object is fully constructed. In the above example, this is C::f(), and 2 is printed

during the construction of an instance of C (the function at line c). The CVFT option

preserves the ANSI C++ behavior.

The CVFT option is shown on the listing prolog and the text deck end card.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the CVFT option for

that step.

DBRMLIB

Default: DBRMLIB(DD:DBRMLIB)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

�� DBRM (// partitioned data set (member)) ��

The DBRMLIB option specifies the data set for the database request module (DBRM),

which is generated by the SQL option. The DBRM data set contains the embedded

SQL statements and host variable information extracted from the source program,

information that identifies the program, and ties the DBRM to the translated source

statements. It becomes the input to the DB2 bind process. This option is only

effective when the SQL option is specified. The partitioned data set must be either a

relative data set name, or an absolute data set name enclosed in single quotes. In

either case, it must also be prepended by //. When the option is specifed in JCL,

and a DBRMLIB DD statement is also specified, the option will take precedence

over the DD statement. The compiler does not verify the DCB attributes of the data

set; you must ensure the data set is created with the correct attributes, as expected

by DB2 UDB. Refer to DB2 Application Programming and SQL Guide for details.

Chapter 4. Compiler Options 85

DEBUG | NODEBUG

Default: DEBUG(FORMAT(DWARF))

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Debugging

��

DEBUG

NODEBUG

 DWARF

(

FORMAT

(

ISD

)

)

�

�
(

File

(

)

)

Sequential data set

PDS

PDS member

Path

Path name

LEVEL

(

0

)

HOOK | NOHOOK

(

LINE | NOLINE

)

BLOCK | NOBLOCK

PATH | NOPATH

FUNC | NOFUNC

CALL | NOCALL

NONE

ALL

PROFILE

SYMBOL | NOSYMBOL

 ��

The DEBUG option instructs the compiler to generate debug information based on the

DWARF Version 3 debugging information format, which has been developed by the

UNIX International Programming Languages Special Interest Group (SIG), and is an

industry standard format.

Note: Starting with z/OS V1R5, the Performance Analyzer only works with

DEBUG(FORMAT(ISD)). This also means that it will not work on 64-bit

executables.

The TEST and GONUMBER options remain unchanged but will only work with ILP32. If

you specify both TEST and DEBUG, the last valid specification is used. If you specify

DEBUG and NODEBUG multiple times, the compiler uses the last specified option with

the last specified suboption. For example, the following specifications have the

same result:

cc -Wc,"NODEBUG(FORMAT(DWARF),HOOK(ALL))" -Wc,"DEBUG(NOSYMBOL)" hello.c

cc -WC,"DEBUG(FORMAT(DWARF),HOOK(ALL),NOSYMBOL)" hello.c

If you specify OPTIMIZE and DEBUG(FORMAT(DWARF)), no symbolic debug information

is generated, but function entry, function exit, function call and function return hooks

are generated. If you specify OPTIMIZE and DEBUG(FORMAT(ISD)), the behavior is the

same as OPTIMIZE and TEST.

86 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|
|

The following DEBUG suboptions are available:

FORMAT

 DEFAULT: FORMAT(DWARF)

 Has the following suboptions: ISD and DWARF. ISD produces the same debug

information as the TEST option. This suboption is available only with ILP32. If

this format is used, the FILE suboption is ignored.

 The DWARF suboption produces debug information in the DWARF Version 3

debugging information format, stored in the file specified by the FILE

suboption. This is the only FORMAT supported with LP64. The compiler always

generates a line number table in DWARF format when this suboption is

specified; however, this DWARF line number table is incompatible with the

Language Environment dump service routines (for example, ctrace()).

FILE

 Specifies the name of the output file for FORMAT(DWARF). It can be a

sequential data set, a PDS member, or an HFS file. If you do not specify a

file name, the compiler uses the SYSCDBG DD statement, or its alternative,

if you allocated it. Otherwise, the compiler constructs a file name as follows:

v If you are compiling a data set, the compiler uses the source file name to

form the name of the output data set. The high-level qualifier is replaced

with the userid under which the compiler is running, and .DBG is

appended as the low-level qualifier.

v If you are compiling an HFS file, the compiler stores the debug

information in a file that has the name of the source file with an .dbg

extension.

For example, if TSYOU19 is compiling TSPERF.EON.SOURCE(EON) with the DEBUG

option and does not specify a file name, the default output file name will be

TSYOU19.EON.SOURCE.DBG(EON).

 For a PDS or HFS directory compile, the FILE option specifies the PDS or

HFS directory where the output files are generated.

 The default for c89 is FILE(./filename.dbg).

 The compiler resolves the full pathname for this file name, and places it in

the generated object file. This information can be used by program analysis

tools to locate the output file for FORMAT(DWARF). The user can examine this

generated file name in the compiler listing file (see “LIST | NOLIST” on

page 138 for instructions on how to create a compiler listing file), as shown

in the following example:

 PPA4: Compile Unit Debug Block

 000140 0000001A =F’26’ DWARF File Name

 000144 **** C’/hfs/fullpath/filename.dbg’

If the compiler cannot resolve the full pathname for the file name (for

example, because the search permission was denied for a component of

the file name), the compiler will issue a warning message, and the relative

file name will be used instead.

LEVEL

 DEFAULT: LEVEL(0)

Chapter 4. Compiler Options 87

Controls the amount of debug information produced. LEVEL(0) is the only

level currently supported.

HOOK

 DEFAULT: HOOK(ALL) for NOOPTIMIZE, HOOK(NONE,PROFILE) for OPTIMIZE

 Controls the generation of LINE, BLOCK, PATH, CALL, and FUNC hook

instructions. Hook instructions appear in the compiler Pseudo Assembly

listing in the following form:

EX r0,HOOK..[type of hook]

The type of hook that each hook suboption controls is summarized in the

list below:

v LINE

– STMT - General statement

v BLOCK

– BLOCK-ENTRY - Beginning of block

– BLOCK-EXIT - End of block

– MULTIEXIT - End of block and procedure

v PATH

– LABEL - A label

– DOBGN - Start of a loop

– TRUEIF - True block for an if statement

– FALSEIF - False block for an if statement

– WHENBGN - Case block

– OTHERW - Default case block

– GOTO - Goto statement

– POSTCOMPOUND - End of a PATH block

v CALL

– CALLBGN - Start of a call sequence

– CALLRET - End of a call sequence

v FUNC

– PGM-ENTRY - Start of a function

– PGM-EXIT - End of a function

There is also a set of shortcuts for specifying a group of hooks:

NONE It is the same as specifying NOLINE, NOBLOCK, NOPATH, NOCALL, and

NOFUNC. It instructs the compiler to suppress all hook instructions.

ALL It is the same as specifying LINE, BLOCK, PATH, CALL, and FUNC. It

instructs the compiler to generate all hook instructions. This is the

ideal setting for debugging purposes.

PROFILE

It is the same as specifying CALL and FUNC. It is the ideal setting for

tracing the program with the Performance Analyzer.

SYMBOL

 DEFAULT: SYMBOL for NOOPT, NOSYMBOL for OPT

 Generates symbol information that gives you access to variable and other

symbol information.

88 z/OS V1R7.0 XL C/C++ User’s Guide

|

If you specify the INLINE and DEBUG compiler options when NOOPTIMIZE is in effect,

INLINE is ignored.

You can specify the DEBUG option and TARGET to a release prior to z/OS V1R5.

However, if the debug format is DWARF, you must debug using dbx on a z/OS

V1R5 (and above) system.

Effect on IPA Compile step

For the IPA Compile step, you can specify all of the DEBUG suboptions that are

appropriate for the language of the code that you are compiling. However, they

affect processing only if you have requested code generation, and only the

conventional object file is affected. If you specify the NOOBJECT suboption of the IPA

compiler option on the IPA Compile step, the IPA Compile step ignores the DEBUG

option, even though the listing still indicates that the DEBUG option has been

specified.

Effect on IPA Link step

The DEBUG option is not supported by the IPA Link step and is ignored.

The IPA Link step only supports the generation of function calls, entry, exit, and

return hooks for profiling. If you specify any other DEBUG suboptions for the IPA Link

step, it turns them off and issues a warning message. If IPA(OBJONLY) object files

from the IPA Compile step are specified in the IPA Link step, only hooks for profiling

are supported in the input object file.

Note: For an IPA-optimized application, the DEBUG option inserts additional

instructions (the hooks mentioned above) into the application for profiling.

This is different from the IPA Profile Directed Feedback option, which is used

for tuning optimizations. During the compilation phase, in addition to the

existing IPA compilation options, you must specify

DEBUG(HOOK(NONE,PROFILE), NOSYMBOL). During the IPA Link phase, in

addition to the existing IPA link options, you must specify

DEBUG(HOOK(NONE,PROFILE)). Use of these options can affect the

performance of your routine. You may need to remove the options and

recompile your routine before delivering your application.

Note: See the “TEST | NOTEST” on page 195 for more information on debugging

applications linked with IPA.

DEFINE

Default: no default user definitions

For the z/OS UNIX System Services c99, c89, and c++ utilities, the default for a

regular compile is:

DEFINE(errno=*__errno()))

DEFINE(_OPEN_DEFAULT=1)

For the z/OS UNIX System Services cc utility, the default for a regular compile is:

DEFINE(errno=(*__errno()+))

DEFINE(_OPEN_DEFAULT=0)

DEFINE(_NO_PROTO=1)

Chapter 4. Compiler Options 89

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

��

�

 ,

DEF

(

name

)

=def

=

��

The DEFINE option defines preprocessor macros that take effect before the compiler

processes the file. You can use this option more than once.

DEFINE(name)

is equal to the preprocessor directive #define name 1.

DEFINE(name=def)

is equal to the preprocessor directive #define name def.

DEFINE(name=)

is equal to the preprocessor directive #define name.

If the suboptions that you specify contain special characters, see “Using special

characters” on page 46 for information on how to escape special characters.

Note: There is no command-line equivalent for function-like macros that take

parameters such as the following:

#define max(a,b) ((a)>(b)?(a):(b))

In the z/OS UNIX System Services environment, you can unset variables specified

by -D, or automatically specified by c89, using -U when using the c89, cc, or c++

commands.

Note: c89 preprocesses -D and -U flags before passing them onto the compiler.

xlc just passes -D and -U to the compiler, which interprets them as DEFINE

and UNDEFINE. For more information, see Chapter 18, “c89 — Compiler

invocation using host environment variables,” on page 465 or Chapter 19,

“xlc — Compiler invocation using a customizable configuration file,” on page

505.

DIGRAPH | NODIGRAPH

Default: DIGRAPH

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

90 z/OS V1R7.0 XL C/C++ User’s Guide

��
 DIGR

NODIGR

��

The DIGRAPH option allows you to use additional digraphs when building both C and

C++ applications. In addition, it allows you to use additional keywords in C++

applications only. A digraph is a combination of keys that produces a character that

is not available on some keyboards. Table 18 shows the digraphs that z/OS XL

C/C++ supports:

 Table 18. Digraphs

Key Combination Character Produced

<% {

%> }

<: [

:>]

%: #

%%1 #

%:%: ##

%%%%1 ##

Table 19 shows additional keywords that z/OS XL C++ supports:

 Table 19. Additional keywords

Keyword Characters produced

bitand &

and &&

bitor |

or ||

xor ^

compl ~

and_eq &=

or_eq |=

xor_eq ^=

not !

not_eq !=

Note: Digraphs are not replaced in string literals, comments, or character literals.

For example:

 char * s = "<%%>"; // stays "<%%>"

 switch (c) {

 case ’<%’ : ... // stays ’<%’

 case ’%>’ : ... // stays ’%>’

 }

1. The digraphs %% and %%%% are not digraphs in the C Standard. For compatibility with z/OS XL C++, however, they are

supported by z/OS XL C. Use the %: and %:%: digraphs instead of %% and %%%% whenever possible.

Chapter 4. Compiler Options 91

See z/OS XL C/C++ Language Reference for more information on digraphs.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the DIGRAPH option on

that step.

DLL | NODLL

Default: For a C compile and the IPA Link step, the default option is NODLL(NOCBA).

For a C++ compile, the default option is DLL(NOCBA).

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For C and IPA Link:

��
 NODLL

DLL
 (NOCBA)

(CBA)

��

For C++:

��
 DLL

NODLL
 (NOCBA)

(CBA)

��

The DLL option instructs the compiler to produce DLL code. The DLL code can

export or import functions and external variables.

The DLL option has two suboptions:

NOCALLBACKANY

This is the default. If you specify NOCALLBACKANY, no changes will be made

to the function pointer in your compile unit. The abbreviation for

NOCALLBACKANY is NOCBA.

CALLBACKANY

If you specify CALLBACKANY, all calls through function pointers will

accommodate function pointers created by applications compiled without

the DLL option. This accommodation accounts for the incompatibility of

function pointers created with and without the DLL compiler option. The

CALLBACKANY suboption is not supported when the XPLINK option is used.

When function pointers having their origins (that is, where the address of a

function is taken and assigned to a function pointer) in XPLINK code in the

same or another DLL, or NOXPLINK NODLL code in another DLL, or

non-XPLINK DLL code in another DLL, are passed to exported XPLINK

functions, the compiler inserts code to check whether or not the function

pointers received as actual arguments are valid (useable directly) XPLINK

function pointers, and converts them if required. This provides results that

are similar in many respects to the function pointer conversion provided

when DLL(CALLBACKANY) is specified for non-XPLINK code. Other function

92 z/OS V1R7.0 XL C/C++ User’s Guide

pointers that have their origins in non-XPLINK code, including function

pointer parameters passed to non-exported functions or otherwise acquired,

are not converted automatically by XPLINK compiled code. Use of such

function pointers will cause the application to fail. The abbreviation for

CALLBACKANY is CBA.

Note: You should write your code according to the rules listed in the chapter

″Building Complex DLLs″ in the z/OS XL C/C++ Programming Guide, and

compile with the NOCALLBACKANY suboption. Use the suboption CALLBACKANY

only when you have calls through function pointers and C code compiled

without the DLL option. CALLBACKANY causes all calls through function pointers

to incur overhead due to internally-generated calls to library routines that

determine whether the function pointed to is in a DLL (in which case internal

control structures need to be updated), or not. This overhead is unnecessary

in an environment where all function pointers were created either in C++

code or in C code compiled with the DLL option.

For information on how to create or use DLLs, and on when to use the appropriate

DLL options and suboptions, see z/OS XL C/C++ Programming Guide.

Notes:

1. Code compiled with the z/OS XL C++ compiler, and code compiled with the

XPLINK compiler option, is always DLL code. You can not specify NODLL for these

cases.

2. You must use the LONGNAME and RENT options with the DLL option. If you use the

DLL option without RENT and LONGNAME, the z/OS XL C compiler automatically

turns them on. However, when the XPLINK option is used, though RENT and

LONGNAME are the default options, both NOLONGNAME and NORENT are allowed.

3. In code compiled with the XPLINK compiler option, function pointers are

compared using the address of the descriptor. No special considerations, such

as dereferencing, are required to initialize the function pointer prior to

comparison.

4. In code compiled with the NOXPLINK compiler option, you cannot cast a non-zero

integer const type to a DLL function pointer type as shown in the following

example:

void (*foo)();

void main() {

 /* ... */

 if (foo != (void (*)()) (50L)) {

 /* do something other than calling foo */

 }

}

The above conditional expression will cause an abend at execution time

because the function pointer (with value 50L) needs to be dereferenced to

perform the comparison. The compiler will check for this type of casting problem

if you use the CHECKOUT(CAST) option along with the DLL option. See

“CHECKOUT | NOCHECKOUT” on page 75 for more information on obtaining

diagnostic information for C applications.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The CALLBACKANY

option also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

Chapter 4. Compiler Options 93

Effect on IPA Link step

The IPA Link step accepts the DLL compiler option, but ignores it.

The IPA Link step uses information from the IPA Compile step to classify an IPA

object module as DLL or non-DLL as follows:

v C code that is compiled with the DLL option is classified as DLL.

v C++ code is classified as DLL

v C code that is compiled with the NODLL option is classified as non-DLL.

Note: If you are using IPA and specify the DLL compiler option, your code should

export at least one function.

Each partition is initially empty and is set as DLL or non-DLL, when the first

subprogram (function or method) is placed in the partition. The setting is based on

the DLL or non-DLL classification of the IPA object module which contained the

subprogram. Procedures from IPA object modules with incompatible DLL values will

not be inlined. This results in reduced performance. For best performance, compile

your application as all DLL code or all non-DLL code.

The IPA Link step allows you to input a mixture of IPA objects that are compiled

with DLL(CBA) and DLL(NOCBA). The IPA Link step does not convert function pointers

from the IPA Objects that are compiled with the option DLL(NOCBA).

You should only export subprograms (functions and C++ methods) or variables that

you need for the interface to the final DLL. If you export subprograms or variables

unnecessarily (for example, by using the EXPORTALL option), you severely limit IPA

optimization. Global variables are not coalesced, and unreachable or 100% inlined

code is not pruned.

ENUMSIZE

Default: ENUM(SMALL)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 SMALL

ENUM

(

)

INT

INTLONG

1

2

4

8

��

The ENUMSIZE option specifies the amount of storage occupied by enumerations. It

enables a user to select the type used to represent all enums defined in a

compilation unit. ENUMSIZE has the following suboptions:

SMALL

94 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

Specifies that enumerations occupy a minimum amount of storage, which is

either 1, 2, 4, or 8 bytes of storage, depending on the range of the enum

constants.

INT

 Specifies that enumerations occupy 4 bytes of storage and are represented

by int.

INTLONG

 Valid only when LP64 is specified and for C++ only. It specifies that

enumerations occupy 8 bytes of storage and are represented by long if the

range of the enum constants exceed the limit for int. Otherwise, the

enumerations occupy 4 bytes of storage and are represented by int.

1

 Specifies that enumerations occupy 1 byte of storage.

2

 Specifies that enumerations occupy 2 bytes of storage

4

 Specifies that enumerations occupy 4 bytes of storage.

8

 Specifies that enumerations occupy 8 bytes of storage. This suboption is

only valid with LP64.

 The default is ENUM(SMALL). It allocates the amount of storage that is required by the

smallest predefined type, which can represent that range of enum constants, to an

enum variable. The other suboptions allocate a specific amount of storage to an

enum variable.

If the specified storage size is smaller than that required by the range of enum

constants, an error is issued by the compiler; for example:

 #pragma enum(1)

 enum e_tag {

 a = 0,

 b = SHRT_MAX /* error CCN3387 for C, CCN5525 for C++ */

 } e_var;

 #pragma enum(reset)

The following tables illustrate the preferred sign and type for each range of enum

constants:

 Table 20. ENUM constants for C and C++

ENUM Constants small 1 2 4 8 * int

intlong *

(C++ only)

0..127 unsigned

char

signed char short int long int int

-128..127 signed char signed char short int long int int

0..255 unsigned

char

unsigned

char

short int long int int

0..32767 unsigned

short

ERROR short int long int int

-32768..32767 short ERROR short int long int int

Chapter 4. Compiler Options 95

Table 20. ENUM constants for C and C++ (continued)

ENUM Constants small 1 2 4 8 * int

intlong *

(C++ only)

0..65535 unsigned

short

ERROR unsigned

short

int long int int

0..2147483647 unsigned

int

ERROR ERROR int long int int

-231..231-1 int ERROR ERROR int long int int

0..4294967295 unsigned

int

ERROR ERROR unsigned

int

long unsigned

int (C++

only)

ERROR for

C

unsigned

int

0..(263-1) * unsigned

long

ERROR ERROR ERROR long ERROR long

-263..(263-1) * long ERROR ERROR ERROR long ERROR long

0..264 * unsigned

long

ERROR ERROR ERROR unsigned

long

ERROR unsigned

long

Note: The rows and columns marked with asterisks above (*) are only valid when

the LP64 option is in effect.

You can use #pragma enum to change the ENUM option value used for individual

enum declaration in a source file. Refer to z/OS XL C/C++ Language Reference for

more information regarding the #pragma enum directive.

EVENTS | NOEVENTS

Default: NOEVENTS

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOEVENT

EVENT

(

Sequential filename

)

Partitioned data set

Partitioned data set (member)

Hierarchical filename

Hierarchical directory

��

The EVENTS option creates an events file that contains error information and source

file statistics. The compiler writes the events data to the DD:SYSEVENT ddname, if

you allocated one before you called the compiler. Otherwise, it allocates a data set,

and the name is the file name with SYSEVENT as the lowest-level qualifier.

If you specified a suboption, the compiler uses the data set that you specified, and

ignores the DD:SYSEVENT.

96 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

If the source file is an HFS file, and you do not specify the events file name as a

suboption, the compiler writes the events file in the current working directory. The

events file name is the name of the source file with the extension .err.

The compiler ignores #line directives when the EVENTS option is active, and issues

a warning message.

For a description of the layout of the event file, see Appendix F, “Layout of the

Events file,” on page 611.

EXECOPS | NOEXECOPS

Default: EXECOPS

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Program Execution

��
 EXEC

NOEXEC

��

The EXECOPS option allows you to control whether run-time options will be

recognized at run time without changing your source code. It is equivalent to

including a #pragma runopts (EXECOPS) directive in your source code.

If this option is specified on both the command line and in a #pragma runopts

directive, the option on the command line takes precedence.

Effect on IPA Compile step

If you specify EXECOPS for any compilation unit in the IPA Compile step, the compiler

generates information for the IPA Link step. This option also affects the regular

object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

If you specify the EXECOPS option for the IPA Compile step, you do not need to

specify it again on the IPA Link step. The IPA Link step uses the information

generated for the compilation unit that contains the main() function. If it cannot find

a compilation unit that contains main(), it uses information generated for the first

compilation unit that it finds.

If you specify this option on both the IPA Compile and the IPA Link steps, the

setting on the IPA Link step overrides the setting on the IPA Compile step. This

situation occurs whether you use EXECOPS and NOEXECOPS as compiler options, or

specify them by using the #pragma runopts directive on the IPA Compile step.

EXH | NOEXH

Default: EXH

 Option Scope

C Compile C++ Compile IPA Link

U

Chapter 4. Compiler Options 97

CATEGORY: Object Code Control

��
 EXH

NOEXH

COMPRESS

NOCOMPRESS

��

The EXH option controls the generation of C++ exception handling code.

The NOEXH option suppresses the generation of the exception handling code, which

results in code that runs faster, but will not be ANSI-compliant if the program uses

exception handling.

If you compile a source file with NOEXH, active objects on the stack are not

destroyed if the stack collapses in an abnormal fashion. For example, if a C++

object is thrown, or a Language Environment exception or signal is raised, objects

on the stack will not have their destructors run.

If NOEXH has been specified and the source file has try/catch blocks or throws

objects, the program may not execute as expected.

The program makes a higher demand on heap memory if exception handling is

used. The COMPRESS suboption allows the compiler to trade off heap memory

requirement with execution speed and load module size, if possible. This is only a

suggestion to the compiler. Whether space saving can be achieved or not, depends

on the actual code. The default is NOCOMPRESS.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the EXH option for that

step.

EXPMAC | NOEXPMAC

Default: NOEXPMAC

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c99, c89, cc or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOEXP

EXP

��

The EXPMAC option instructs the compiler to show all expanded macros in the source

listing. If you want to use the EXPMAC option, you must also specify the SOURCE

98 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

compiler option to generate a source listing. If you specify the EXPMAC option but

omit the SOURCE option, the compiler issues a warning message, and does not

produce a source listing.

EXPORTALL | NOEXPORTALL

Default: NOEXPORTALL

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOEXPO

EXPO

��

The EXPORTALL option instructs the compiler to export all external functions and

variables in the compilation unit so that a DLL application can use them. Use this

option if you are creating a DLL and want to export all external functions and

variables defined in the DLL. You may not export the main() function.

Notes:

1. If you only want to export some of the external functions and variables in the

DLL, use #pragma export, or the _Export keyword for C++. For more

information on #pragma export, see z/OS XL C/C++ Language Reference.

2. For C, you must use the LONGNAME and RENT options with the EXPORTALL option. If

you use the EXPORTALL option without RENT and LONGNAME, the z/OS XL C

compiler turns them on.

3. Unused extern inline functions will not be exported when the EXPORTALL option is

specified.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The EXPORTALL

option also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step accepts the EXPORTALL option, but ignores it.

If you use the EXPORTALL option during the IPA Compile step, you severely limit IPA

optimization. Refer to “DLL | NODLL” on page 92 for more information about the

effects of this option on IPA processing.

FASTTEMPINC | NOFASTTEMPINC

Default: NOFASTT

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: File Management

Chapter 4. Compiler Options 99

��
 NOFASTT

FASTT

��

The FASTTEMPINC option may improve template instantiation compilation time when

large numbers of recursive templates are used in an application.

The FASTTEMPINC option defers generating object code until the final version of all

template definitions have been determined. Then, a single compilation pass is made

to generate the final object code. This means that time is not wasted on generating

object code that will be discarded and generated again.

When NOFASTT is used, the compiler generates object code each time a tempinc

source file is compiled. If recursive template definitions in a subsequent tempinc

source file cause additional template definitions to be added to a previously

processed file, an additional recompilation pass is required.

Use FASTT if you have large numbers of recursive templates. If your application has

very few recursive template definitions, the time saved by not doing code

generation may be less than the time spent in source analysis on the additional

template compilation pass. In this case, it may be better to use NOFASTT.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the FASTT option for

that step.

FLAG | NOFLAG

Default: FLAG(I)

For the z/OS UNIX System Services utilities, the default for a regular compile is

FLAG(W).

To specify FLAG(I) using the c89 utility, you must specify -V.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��

 FL

(

severity

)

NOFL

��

The FLAG option specifies the minimum severity level for which you want notification.

You specify the minimum severity level by using the compiler option FLAG

(severity), where severity is one of the following:

I An informational message.

W A warning message that calls attention to a possible error, although the

statement to which it refers is syntactically valid.

E An error message that shows that the compiler has detected an error and

cannot produce an object deck.

100 z/OS V1R7.0 XL C/C++ User’s Guide

S A severe error message that describes an error that forces the compilation

to terminate.

U An unrecoverable error message that describes an error that forces the

compilation to terminate.

If you specified the options SOURCE or LIST, the messages generated by the

compiler appear immediately following the incorrect source line, and in the message

summary at the end of the compiler listing.

The NOFLAG option is the same as the FLAG(U) option.

Effect on IPA Link step

The FLAG option has the same effect on the IPA Link step that it does on a regular

compilation.

FLOAT

Default: FLOAT(HEX, FOLD, NOMAF, NORRM, NOAFP or AFP). For ARCH(2), the default

suboption is NOAFP. For ARCH(3) or higher, the default suboption is AFP. For LP64, the

default suboption is IEEE.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 HEX | IEEE

FLOAT

(

FOLD | NOFOLD

)

MAF | NOMAF

RRM | NORRM

AFP | NOAFP

��

The FLOAT option selects the format of floating-point numbers; the format can be

either base 2 IEEE-754 binary format, or base 16 S/390 hexadecimal format. In the

description below, the IEEE-754 binary format is referred to as the binary

floating-point format, and the S/390 hexadecimal format as the hexadecimal

floating-point format. FLOAT has the following suboptions:

HEX | IEEE

 DEFAULT (ILP32): HEX

 DEFAULT (LP64): IEEE

 Specifies the format of floating-point numbers and instructions:

v IEEE instructs the compiler to generate binary floating-point numbers and

instructions. The unabbreviated form of this suboption is IEEE754.

v HEX instructs the compiler to generate hexadecimal formatted

floating-point numbers and instructions. The unabbreviated form of this

suboption is HEXADECIMAL. In previous releases of z/OS XL C/C++ and

OS/390 C/C++, the floating-point format was always hexadecimal.

FOLD | NOFOLD

 DEFAULT: FOLD

Chapter 4. Compiler Options 101

|

|
|

|

|

Specifies that constant floating-point expressions in function scope are to

be evaluated at compile time rather than at run time. This is known as

folding.

 In binary floating-point mode, the folding logic uses the rounding mode set

by the ROUND option.

 In hexadecimal floating-point mode, the rounding is always towards zero. If

you specify NOFOLD in hexadecimal mode, the compiler issues a warning

and uses FOLD.

MAF | NOMAF

 DEFAULT:

v NOMAF

v If NOSTRICT and FLOAT(IEEE) are specified, MAF is the default.

 Uses floating-point Multiply and Add, and Multiply and Subtract instructions

where possible, instead of the separate Multiply Float, Add Float, or Multiply

Float, Subtract Float instruction pairs.

Note: The suboption MAF does not have any effect on extended

floating-point operations.

 MAF is not available for hexadecimal floating-point mode.

RRM | NORRM

 DEFAULT: NORRM

 RRM (run-time rounding mode) tells the compiler that the run-time rounding

mode may not be the default, round-to-nearest, and prevents compiler

optimizations that rely on round-to-nearest rounding mode. Use this option if

your program changes the rounding mode by any means. Otherwise, the

program may compute incorrect results.

 RRM is not available for hexadecimal floating-point mode.

AFP | NOAFP

 DEFAULT:

v If the level of the ARCH option is lower than 3, the default is NOAFP

v If the level of the ARCH option is 3 or higher, the default is AFP

 AFP instructs the compiler to generate code which makes use of the full

complement of 16 floating point registers. These include the four original

floating-point registers, numbered 0, 2, 4, and 6, and the Additional Floating

Point (AFP) registers, numbered 1, 3, 5, and 7 through 15.

 The AFP registers are physically available only on the newer zSeries

machine models, starting with the processors that are represented by the

ARCH(3) setting. However, when the application executes under OS/390

Version 2 Release 10 and higher releases on a processor that does not

have the AFP registers, the operating system is able to intercept the use of

an AFP register and emulate the operation such that the AFP register

appears to be available to the application.

Note: This emulation has a significant performance cost to the execution of

the application on the non-AFP processors. This is why the default is

NOAFP when ARCH(2) or lower is specified.

102 z/OS V1R7.0 XL C/C++ User’s Guide

NOAFP limits the compiler to generating code using only the original four

floating-point registers, 0, 2, 4, and 6, which are available on all S/390

machine models.

Using IEEE floating-point

You should use IEEE floating-point in the following situations:

v You deal with data that are already in IEEE floating-point format

v You need the increased exponent range (see z/OS XL C/C++ Language

Reference for information on exponent ranges with IEEE-754 floating-point)

v You want the changes in programming paradigm provided by infinities and NaN

(not a number)

For more information about the IEEE format, refer to the IEEE 754-1985 IEEE

Standard for Binary Floating-Point Arithmetic.

When you use IEEE floating-point, make sure that you are in the same rounding

mode at compile time (specified by the ROUND(mode) option), as at run time. Entire

compilation units will be compiled with the same rounding mode throughout the

compilation. If you switch run-time rounding modes inside a function, your results

may vary depending upon the optimization level used and other characteristics of

your code; switch rounding mode inside functions with caution.

If you have existing data in hexadecimal floating-point (the original base 16 S/390

hexadecimal floating-point format), and have no need to communicate these data to

platforms that do not support this format, there is no reason for you to change to

IEEE floating-point format.

Applications that mix the two formats are not supported.

The binary floating-point instruction set is physically available only on processors

that are part of the ARCH(3) group or higher. You can request FLOAT(IEEE) code

generation for an application that will run on an ARCH(2) or earlier processor, if that

processor runs on the OS/390 Version 2 Release 6 or higher operating system.

This operating system level is able to intercept the use of an ″illegal″ binary

floating-point instruction, and emulate the execution of that instruction such that the

application logic is unaware of the emulation. This emulation comes at a significant

cost to application performance, and should only be used under special

circumstances. For example, to run exactly the same executable object module on

backup processors within your organization, or because you make incidental use of

binary floating-point numbers.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. This option also

affects the regular object module if you request one by specifying the IPA(OBJECT)

option.

Effect on IPA Link step

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition. Compatible subprograms have the same floating-point mode, and

the same values for the FLOAT suboptions, and the ROUND and STRICT options:

v Floating-point mode (binary or hexadecimal)

Chapter 4. Compiler Options 103

The floating-point mode for a partition is set to the floating-point mode (binary or

hexadecimal) of the first subprogram that is placed in the partition. Subprograms

that follow are placed in partitions that have the same floating-point mode; a

binary floating-point mode subprogram is placed in a binary floating-point mode

partition, and a hexadecimal mode subprogram is placed in a hexadecimal mode

partition.

If you specify FLOAT(HEX) or FLOAT(IEEE) during the IPA Link step, the option is

accepted, but ignored. This is because it is not possible to change the

floating-point mode after source analysis has been performed.

The Prolog and Partition Map sections of the IPA Link step listing display the

setting of the floating-point mode.

v AFP | NOAFP

The value of AFP for a partition is set to the AFP value of the first subprogram that

is placed in the partition. Subprograms that have the same AFP value are then

placed in that partition.

You can override the setting of AFP by specifying the suboption on the IPA Link

step. If you do so, all partitions will contain that value, and the Prolog section of

the IPA Link step listing will display the value.

The Partition Map section of the IPA Link step listing and the END information in

the IPA object file display the current value of the AFP suboption.

v FOLD | NOFOLD

Hexadecimal floating-point mode partitions are always set to FOLD.

For binary floating-point partitions, the value of FOLD for a partition is set to the

FOLD value of the first subprogram that is placed in the partition. Subprograms

that have the same FOLD value are then placed in that partition. During IPA

inlining, subprograms with different FOLD settings may be combined in the same

partition. When this occurs, the resulting partition is always set to NOFOLD.

You can override the setting of FOLD | NOFOLD by specifying the suboption on the

IPA Link step. If you do so, all binary floating-point mode partitions will contain

that value, and the Prolog section of the IPA Link step listing will display the

value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link

step listing displays the current value of the FOLD suboption.

v MAF | NOMAF

For IPA object files generated with the FLOAT(IEEE) option, the value of MAF for a

partition is set to the MAF value of the first subprogram that is placed in the

partition. Subprograms that have the same MAF for this suboption are then placed

in that partition.

For IPA object files generated with the FLOAT(IEEE) option, you can override the

setting of MAF | NOMAF by specifying the suboption on the IPA Link step. If you do

so, all binary floating-point mode partitions will contain that value, and the Prolog

section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link

step listing displays the current value of the MAF suboption.

Hexadecimal mode partitions are always set to NOMAF. You cannot override this

setting.

v RRM | NORRM

For IPA object files generated with the FLOAT(IEEE) option, the value of RRM for a

partition is set to the RRM value of the first subprogram that is placed in the

104 z/OS V1R7.0 XL C/C++ User’s Guide

partition. During IPA inlining, subprograms with different RRM settings may be

combined in the same partition. When this occurs, the resulting partition is

always set to RRM.

For IPA object files generated with the FLOAT(IEEE) option, you can override the

setting of RRM | NORRM by specifying the suboption on the IPA Link step. If you do

so, all binary floating-point mode partitions will contain that value, and the Prolog

section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link

step listing displays the current value of the RRM suboption.

Hexadecimal mode partitions are always set to NORRM. You cannot override this

setting.

v ROUND option

For IPA object files generated with the FLOAT(IEEE) option, the value of the ROUND

option for a partition is set to the value of the first subprogram that is placed in

the partition.

You can override the setting of ROUND by specifying the option on the IPA Link

step. If you do so, all binary floating-point mode partitions will contain that value,

and the Prolog section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link

step listing displays the current value of the ROUND suboption.

Hexadecimal mode partitions are always set to round towards zero. You cannot

override this setting.

v STRICT option

The value of the STRICT option for a partition is set to the value of the first

subprogram that is placed in the partition. During IPA inlining, subprograms with

different STRICT settings may be combined in the same partition. When this

occurs, the resulting partition is always set to STRICT.

You can override the setting of STRICT by specifying the option on the IPA Link

step. If you do so, the Prolog section of the IPA Link step listing will display the

value.

If there are no Compilation Units with subprogram-specific STRICT options, all

partitions will have the same STRICT value.

If there are any Compilation Units with subprogram-specific STRICT options,

separate partitions will continue to be generated for those subprograms with a

STRICT option, which differs from the IPA Link option.

The Partition Map sections of the IPA Link step listing and the object module

display the value of the STRICT option.

Note: The inlining of subprograms (C functions, C++ functions and methods) is

inhibited if the FLOAT suboptions (including the floating-point mode), and the

ROUND and STRICT options are not all compatible between compilation units.

Calls between incompatible compilation units result in reduced performance.

For best performance, compile your applications with consistent options.

GOFF | NOGOFF

Default: NOGOFF

Chapter 4. Compiler Options 105

Note: When XPLINK or LP64 is used, the default is GOFF.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOGOFF

GOFF

��

The GOFF option instructs the compiler to produce an object file in the Generalized

Object File Format (GOFF). The GOFF format supersedes the S/370™ Object

Module and Extended Object Module formats. It removes various limitations of the

previous format (for example, 16 MB section size) and provides a number of useful

extensions, including native z/OS support for long names and attributes. GOFF

incorporates some aspects of industry standards such as XCOFF and ELF.

When you specify the GOFF option, the compiler uses LONGNAME and CSECT() by

default. You can override these default values by explicitly specifying the

NOLONGNAME or the NOCSECT option.

When you specify the GOFF option, you must use the binder to bind the output

object. You cannot use the prelinker to process GOFF objects.

Note: When using GOFF and source files with duplicate file names, the linker may

emit an error and discard one of the code sections. In this case, turn off the

CSECT option by specifying NOCSECT.

Effect on IPA Compile step

The GOFF option affects the regular object module if you request one by specifying

the IPA(OBJECT) option. This option affects the IPA-optimized object module

generated when you specify the IPA(OBJECT) option.

The IPA information in an IPA object file is always generated using the XOBJ

format.

Effect on IPA Link step

The IPA Link Step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition. The GOFF

option affects the object format of the code and data generated for each partition.

Information from non-IPA input files is processed and transformed based on the

original format. GOFF format information remains in GOFF format; all other formats

(OBJ, XOBJ, load module) are passed in XOBJ format.

GONUMBER | NOGONUMBER

Default: NOGONUMBER

In the z/OS UNIX System Services environment, this option is turned on by

specifying -g when using the c89, cc or c++ commands.

106 z/OS V1R7.0 XL C/C++ User’s Guide

|

Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOGONUM

GONUM

��

The GONUMBER option generates line number tables that correspond to the input

source file. These tables are for use by Debug Tool and for error trace back

information when an exception occurs. This option is available only with ILP32. If

you specify LP64 and GONUMBER, the compiler issues a warning message and ignores

the GONUMBER option.

The compiler turns on this option when you use the TEST and DEBUG options.

Note: When you specify the GONUMBER option, a comment that indicates its use is

generated in your object module to aid you in diagnosing your program.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the GONUMBER option on the IPA Compile step, the compiler saves

information about the source file line numbers in the IPA object file. The GONUMBER

and LIST options use this information during the IPA Link step.

If you do not specify the GONUMBER option on the IPA Compile step, the object file

produced contains the line number information for source files that contain function

begin, function end, function call, and function return statements. This is the

minimum line number information that the IPA Compile step produces. You can then

use the TEST option on the IPA Link step to generate corresponding test hooks.

Effect on IPA Link step

If you specify the GONUMBER option for the IPA Link step, the IPA Link step creates

GONUMBER tables during code generation. The level of detail in these tables

depends on the options that you used for the IPA Compile step:

v If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option on the

IPA Compile step, the GONUMBER tables contain complete information.

v If you did not specify any of these options on the IPA Compile step, the source

file and line number information in the IPA Link listing or GONUMBER tables

consists only of the following:

– Function entry, function exit, function call, and function call return source lines.

This is the minimum line number information that the IPA Compile step

produces.

– All other object code statements have the file and line number of the function

entry, function exit, function call, and function call return that was last

encountered. This is similar to the situation of encountering source statements

within a macro.

Refer to “Interactions between compiler options and IPA suboptions” on page 45

and “LIST | NOLIST” on page 138 for more information.

Chapter 4. Compiler Options 107

|

HALT(num)

Default: HALT(16)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Input Source File Processing Control

�� HALT (num) ��

The HALT option stops compilation, depending on the return code from the compiler.

This option applies to the compilation of all members of a PDS or an HFS directory.

If the return code from compiling a particular member is greater than or equal to the

value num specified in the HALT option, no more members are compiled.

Valid codes for num correspond to return codes from the compiler. See z/OS XL

C/C++ Messages for a list of return codes.

Effect on IPA Link step

The HALT option affects the IPA Link step in a way similar to the way it affects the

IPA Compile step, but the message severity levels may be different. Also, the

severity levels for the IPA Link step and a C++ compilation include the

″unrecoverable″ level.

HALTONMSG | NOHALTONMSG

Default: NOHALTON

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Input Source File Processing Control

��
 NOHALTON

HALTON

(n)

��

The HALTONMSG option instructs the C/C++ front end to stop after the compilation

phase when it encounters the specified msg_number. When the compilation stops as

a result of the HALTONMSG option, the compiler return code is nonzero.

Note: The HALTONMSG option for C allows you to specify more than one message

number by separating the message numbers with commas. The HALTONMSG

option for C++ can only accept one message number.

IGNERRNO | NOIGNERRNO

Default: For NOOPT and OPT(2), the default option is NOIGNERRNO. For OPT(3), the

default option is IGNERRNO.

108 z/OS V1R7.0 XL C/C++ User’s Guide

Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For NOOPT and OPT(2):

��
 NOIGNER

IGNER

��

For OPT(3):

��
 IGNER

NOIGNER

��

The IGNERRNO option informs the compiler that your application is not using errno.

Specifying this option allows the compiler to explore additional optimization

opportunities for library functions in LIBANSI. The input to the library functions is

assumed to be valid. Invalid input can lead to undefined behavior.

ANSI library functions use errno to return the error condition. If your program does

not use errno, the compiler has more freedom to explore optimization opportunities

for some of these functions (for example, sqrt()). You can control this optimization

by using the IGNERRNO option.

The IGNERRNO option is turned on by OPTIMIZE(3). Use NOIGNERRNO to turn it off if

necessary. NOIGNERRNO must appear after OPTIMIZE(3), otherwise it is ignored.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The IGNERRNO

option also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step accepts the IGNERRNO option, but ignores it. The IPA Link step

merges and optimizes the application’s code, and then divides it into sections for

code generation. Each of these sections is a partition. The IPA Link step uses

information from the IPA Compile step to determine if a subprogram can be placed

in a particular partition. Only compatible subprograms are included in a given

partition. Compatible subprograms have the same IGNERRNO option setting. For the

purpose of this compatibility checking, objects produced by compilers prior to

OS/390 Version 2 Release 9, where IGNERRNO is not supported, are considered

NOIGNERRNO.

The value of the IGNERRNO option for a partition is set to the value of the first

subprogram that is placed in the partition. The Partition Map sections of the IPA

Link step listing and the object module display the value of the IGNERRNO option.

Chapter 4. Compiler Options 109

|
|

|
|

INFO | NOINFO

Default: For C++, the default option is INFO(LAN). For C, the default option is

NOINFO.

For the z/OS UNIX System Services c99, c89, and cc utilities, the default for a

regular compile is NOINFO(ALL). For the z/OS UNIX System Services c++ utility, the

default for a regular compile is INFO(LAN).

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Debug/Diagnostic

For C:

��

�

 NOIN

IN

(

ALL

)

,

subopts

��

For C++:

��

�

 (LAN)

IN

(

ALL

)

,

subopts

NOIN

��

Note: The INFO option may not produce the same diagnostic messages as the

previous releases.

The INFO option instructs the compiler to generate warning messages. Use subopts

if you want to specify the type of warning messages.

If you specify INFO with no suboptions, it is the same as specifying INFO(ALL). The

following is a list of the subopts:

CLS Emits class informational warning messages (C++ only).

CMP Emits conditional expression check messages.

CND Emits messages on redundancies or problems in conditional expressions.

CNV Emits messages about conversions.

CNS Emits redundant operation on constants messages.

CPY Emits warnings about copy constructors (C++ only).

110 z/OS V1R7.0 XL C/C++ User’s Guide

EFF Emits information about statements with no effect.

ENU Emits information about ENUM checks.

EXT Emits warnings about unused variables that have external declarations (C

only).

GNR Emits information about the generation of temporary variables (C++ only).

GEN Emits message if compiler generates temporaries.

LAN Emits language level checks.

PAR Emits warning messages on unused parameters.

POR Emits warnings about non-portable constructs.

PPC Emits messages on possible problems with using the preprocessor.

PPT Emits trace of preprocessor actions.

REA Emits warnings about unreached statements.

RET Emits warnings about return statement consistency.

TRD Emits warnings about possible truncation of data.

UND Emits warnings about undefined classes (C++ only).

USE Emits information about usage of variables.

VFT Indicates where vftable is generated (C++ only).

ALL Emits all of the above

no suboptions

Same result as INFO(ALL).

In the z/OS UNIX System Services environment, if you use the c++ command, the

suboption is ALL. If you use the c99, c89 or cc commands, the suboptions are ALL,

NOEXT, NOPPC, and NOPPT.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the INFO option.

INITAUTO | NOINITAUTO

Default: NOINITAUTO

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOINITA

INITA

(

nnnnnnnn

)

, WORD

��

The INITAUTO option tells the compiler to generate code to initialize automatic

variables. Automatic variables require storage only while the block in which they are

declared is active. See z/OS XL C/C++ Language Reference for more information

on automatic variables.

Chapter 4. Compiler Options 111

|
|
|

Automatic variables without initializers are not implicitly initialized. The INITAUTO

option instructs the compiler to generate code to initialize these variables with a

user-defined value.

In the above syntax, the hexadecimal value you specify for nnnnnnnn represents

the initial value for automatic storage in bytes. It can be two to eight hexadecimal

digits in length. There is no default for this value.

The suboption Word is optional, and can be abbreviated to W. If you specify Word,

nnnnnnnnn is a word initializer; otherwise it is a byte initializer. Only one initializer

can be in effect for the compilation. If you specify INITAUTO more than once, the

compiler uses the last setting.

If you specify a byte initializer, and specify more than 2 digits for nnnnnnnn, the

compiler uses the last 2 digits. If you specify a word initializer, the compiler uses the

last 2 digits to initialize a byte, and all digits to initialize a word.

Note: The word initializer is useful in checking uninitialized pointers.

Since extra code is generated, this option can reduce the run-time performance of

the program.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The INITAUTO

option also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

Effect on IPA Link step

You can specify the INITAUTO option for an IPA Link step, and it will override the

setting in the compile step.

If you do not specify the INITAUTO option in the IPA Link step, the setting in the IPA

Compile step will be used. The IPA Link step merges and optimizes the

application’s code, and then divides it into sections for code generation. Each of

these sections is a partition. The IPA Link step uses information from the IPA

Compile step to determine if a subprogram can be placed in a particular partition.

Only compatible subprograms are included in a given partition. Compatible

subprograms have the same INITAUTO setting.

The IPA Link step sets the INITAUTO setting for a partition to the specification of the

first subprogram that is placed in the partition. It places subprograms that follow in

partitions that have the same INITAUTO setting.

You can override the setting of INITAUTO by specifying the option on the IPA Link

step. If you do so, all partitions will use that value, and the Prolog section of the IPA

Link step listing will display the value.

The Partition Map sections of the IPA Link step listing and the object module display

the value of the INITAUTO option.

INLINE | NOINLINE

Default:

For a C/C++ compile:

v If NOOPT is in effect:

112 z/OS V1R7.0 XL C/C++ User’s Guide

NOINLINE

 (AUTO,NOREPORT,

 100,1000)

v If OPT is in effect:

INLINE

 (AUTO,NOREPORT,

 100,1000)

NOOPT is the default for C/C++ compile.

For IPA Link:

v If NOOPT is in effect:

NOINLINE

 (AUTO,NOREPORT,

 1000,8000)

v If OPT is in effect:

INLINE

 (AUTO,NOREPORT,

 1000,8000)

OPT is the default for IPA Link.

For the c99, c89, cc, and c++ z/OS UNIX System Services utilities, the default is

NOINLINE(AUTO,NOREPORT,,).

For the z/OS UNIX System Services utilities, when NOOPT is specified, the default is

NOINLINE(AUTO,NOREPORT,100,1000). For the z/OS UNIX System Services utilities,

when OPT is specified, the default is INLINE(AUTO,NOREPORT,100,1000).

In the z/OS UNIX System Services environment, specifying -V, when using the c89

or cc commands, will turn on the REPORT suboption of INLINE. The INLINE option

itself is not touched (or changed) by -V.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control and Listing

��
 NOINL

INL

(

,

AUTO

REPORT

NOAUTO

NOREPORT

�

�
,

,

)

threshold

limit

 ��

The INLINE option instructs the compiler to place the code for selected

subprograms at the point of call; this is called inlining. It eliminates the linkage

overhead and exposes the entire inlined subprogram for optimization by the global

optimizer. It has the following effects:

Chapter 4. Compiler Options 113

|

|

|
|
|

|

|
|
|

|

|
|

v The compiler invokes the compilation unit inliner to perform inlining of functions

within the current compilation unit.

v If the compiler inlines all invocations of a static subprogram, it removes the

non-inlined instance of the subprogram.

v If the compiler inlines all invocations of an externally visible subprogram, it does

not remove the non-inlined instance of the subprogram. This allows callers who

are outside of the current compilation unit to invoke the non-inlined instance.

v If you specify INLINE(,REPORT,,) or INLRPT, the compiler generates the Inline

Report listing section.

For more information on optimization and the INLINE option, refer to the section

about optimizing code in the z/OS XL C/C++ Programming Guide.

You can specify INLINE without suboptions if you want to use the defaults. You must

include a comma between each suboption even if you want to use the default for

one of the suboptions. You must specify the suboptions in the following order:

AUTO | NOAUTO

The inliner runs in automatic mode and inlines subprograms within the

threshold and limit.

 For C only, if you specify NOAUTO the inliner only inlines those subprograms

specified with the #pragma inline directive. The #pragma inline and

#pragma noinline directives allow you to determine which subprograms are

to be inlined and which are not when the INLINE option is specified. These

#pragma directives have no effect if you specify NOINLINE. See z/OS XL

C/C++ Language Reference for more information on #pragma directives.

 The default is AUTO.

REPORT | NOREPORT

An inline report becomes part of the listing file. The inline report consists of

the following:

v An inline summary

v A detailed call structure

You can obtain the same report if you use the INLRPT and OPT options. For

more information on the inline report, see “Inline Report” on page 263,

“Inline Report” on page 243, and “Inline Report for IPA inliner” on page 273.

 The default is NOREPORT.

threshold

The maximum relative size of a subprogram to inline. For C/C++ compiles,

the default for threshold is 100 Abstract Code Units (ACUs). For the IPA

Link step, the default for threshold is 1000 ACUs. ACUs are proportional in

size to the executable code in the subprogram; the z/OS XL C compiler

translates your z/OS XL C code into ACUs. The maximum threshold is

INT_MAX, as defined in the header file limits.h. Specifying a threshold of 0

is the same as specifying NOAUTO.

limit The maximum relative size a subprogram can grow before auto-inlining

stops. For C/C++ compiles, the default for limit is 1000 ACUs for a

subprogram. For the IPA Link step, the default for limit is 8000 ACUs for

that subprogram. The maximum for limit is INT_MAX, as defined in the

header file limits.h. Specifying a limit of 0 is equivalent to specifying

NOAUTO.

114 z/OS V1R7.0 XL C/C++ User’s Guide

You can specify the INLINE | NOINLINE option on the invocation line and for C in the

#pragma options preprocessor directive. When you use both methods at the same

time, the compiler merges the options. If an option on the invocation line conflicts

with an option in the #pragma options directive, the one on the invocation line takes

precedence.

For example, because you typically do not want to inline your subprograms when

you are developing a program, you can specify the NOINLINE option on a #pragma

options preprocessor directive. When you want to inline your subprograms, you can

override the NOINLINE option by specifying INLINE on the invocation line rather than

by editing your source program. The following example illustrates these rules.

Source file:

#pragma options (NOINLINE(NOAUTO,NOREPORT,,2000))

Invocation line:

INLINE (AUTO,,,)

Result:

INLINE (AUTO,NOREPORT,100,2000)

Notes:

1. When you specify the INLINE compiler option, a comment, with the values of the

suboptions, is generated in your object module to aid you in diagnosing your

program.

2. If the compiler option OPT is specified, INLINE becomes the default.

3. Specify the INLRPT, LIST, or SOURCE compiler options to redirect the output from

the INLINE(,REPORT,,) option.

4. If you specify INLINE and TEST:

 at OPT(0), INLINE is ignored

 at OPT, inlining is done

5. If you specify NOINLINE, no subprograms will be inlined even if you have

#pragma inline directives in your code.

6. If you specify INLINE, subprograms may not be inlined or inline other

subprograms when COMPACT is specified (either directly or via #pragma

option_override). Generate and check the inline report to determine the final

status of inlining. The inlining may not occur when OPT(0) is specified via the

#pragma option_override.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

The INLINE option generates inlined code for the regular compiler object; therefore,

it affects the IPA Compile step only if you specify IPA(OBJECT). If you specify

IPA(NOOBJECT), INLINE has no effect, and there is no reason to use it.

Effect on IPA Link step

If you specify the INLINE option on the IPA Link step, it has the following effects:

v The IPA Link step invokes the IPA inliner, which inlines subprograms (functions

and C++ methods) in the entire program.

v The IPA Link step uses #pragma inline|noinline directive information and

inline subprogram specifier information from the IPA Compile step for source

program inlining control. Specifying the INLINE option on the IPA Compile step

has no effect on IPA Link step inlining processing.

Chapter 4. Compiler Options 115

You can use the IPA Link control file inline and noinline directives to explicitly

control the inlining of subprograms on the IPA Link step. These directives

override IPA Compile step #pragma inline | noinline directives and inline

subprogram specifiers.

v If the IPA Link step inlines all invocations of a subprogram, it removes the

non-inlined instance of the subprogram, unless the subprogram entry point was

exported using a #pragma export directive or the EXPORTALL compiler option, or

was retained using the IPA Link control file retain directive. IPA Link processes

static subprograms and externally visible subprograms in the same manner.

The IPA inliner has the inlining capabilities of the compilation unit inliner. In addition,

the IPA inliner detects complex recursion, and may inline it. If you specify the

INLRPT option, the IPA Link listing contains the IPA Inline Report section. This

section is similar to the report that the compilation unit inliner generates. If you

specify NOINLINE(,REPORT,,) or NOINLINE INLRPT, IPA generates an IPA Inline

Report section that specifies that nothing was inlined.

INLRPT | NOINLRPT

Default: NOINLRPT

In the z/OS UNIX System Services environment, the output of this option goes to

stdout. This option is turned on by specifying -V.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOINLR

INLR

(

Sequential filename

)

Partitioned data set

Partitioned data set (member)

Hierarchical filename

Hierarchical directory

��

If you use the OPTIMIZE option, you can also use INLRPT to specify that the compiler

generate a report as part of the compiler listing. This report provides the status of

subprograms that were inlined, specifies whether they were inlined or not and

displays the reasons for the action of the compiler.

You can specify filename for the inline report output file. If you do not specify

filename, the compiler uses the SYSCPRT ddname if you allocated one. If you did not

allocate SYSCPRT, the compiler uses the source file name to generate a file name.

The NOINLR option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the INLR option without filename, the

compiler uses the filename that you specified in the earlier specification or NOINLR.

For example,

CXX HELLO (NOINLR(/hello.lis) INLR OPT

is the same as specifying:

116 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

CXX HELLO (INLR(/hello.lis) OPT

Note: If you specify filename with any of the SOURCE, LIST, or INLRPT options, all the

listing sections are combined into the last filename specified.

If you specify this multiple times, the compiler uses the last specified option with the

last specified suboption. The following two specifications have the same result:

1. CXX HELLO (NOINLR(/hello.lis) INLR(/n1.lis) NOINLR(/test.lis) INLR

2. CXX HELLO (INLR(/test.lis)

Effect on IPA Link step

If you specify the INLRPT option on the IPA Link step, the IPA Link step listing

contains an IPA Inline Report section. Refer to “INLINE | NOINLINE” on page 112

for more information about generating an IPA Inline Report section.

IPA | NOIPA

Default: NOIPA

The default for the c99, c89, cc, and c++ z/OS UNIX System Services utilities is

NOIPA(NOCONTROL(ipa.ctl),DUP,NOER,NOMAP,NOUPCASE,NONCAL)IPA(LINK,LEVEL(1)).

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control, IPA Link Control, IPA Object Control, File

Management, Listing and Debug/Diagnostic

��
 NOIPA

IPA

�

,

(

NOLINK | LINK

OBJ | NOOBJ | OBJONLY

ATTR | NOATT

COM|NOCOM

GONUM | NOGONUM

LIS | NOLIS

OPT | NOPT

XR | NOXR

LEVEL

(0)

(1)

(2)

CONTROL | NOCONTROL

(

fileid

)

DUP | NODUP

ER | NOER

MAP | NOMAP

NCAL | NONCAL

UPCASE | NOUPCASE

PDF1 | NOPDF1

PDF2 | NOPDF2

PDFNAME | NOPDFNAME

(

//data set name

)

HFS filename

��

Chapter 4. Compiler Options 117

|
|

The IPA option instructs the compiler to perform Interprocedural Analysis across

compilation units.

The NOIPA option instructs the compiler to perform a regular compilation.

IPA Compile step suboptions

IPA(NOLINK) invokes the IPA Compile step. NOLINK is the default suboption of the

IPA option. Only the following IPA suboptions affect the IPA Compile step. You can

specify other IPA suboptions, but they do not affect the IPA Compile step.

ATTRIBUTE | NOATTRIBUTE Indicates whether the compiler saves information

about symbols in the IPA object file. The IPA Link

step uses this information if you specify the ATTR or

XREF option on that step.

 The difference between specifying IPA(ATTR) and

specifying ATTR or XREF is that IPA(ATTR) does not

generate a Cross Reference or Static Map listing

sections after IPA Compile step source analysis is

complete. It also does not generate a Storage

Offset, Static Map, or External Symbol Cross

Reference listing section during IPA Compile step

code generation.

 The default is IPA(NOATTRIBUTE). The abbreviations

are IPA(ATTR|NOATTR). If you specify the ATTR or

XREF option, it overrides the IPA(NOATTRIBUTE)

option.

COMPRESS | NOCOMPRESS Indicates that the IPA object information is

compressed to significantly reduce the size of the

IPA object file.

 The default is IPA(COMPRESS). The abbreviations are

IPA(COM|NOCOM).

GONUMBER |NOGONUMBER Indicates whether the compiler saves information

about source file line numbers in the IPA object file.

The difference between specifying IPA(GONUMBER)

and GONUMBER is that IPA(GONUMBER) does not cause

GONUMBER tables to be built during IPA Compile

step code generation. If the compiler does not build

GONUMBER tables, the size of the object module

is smaller.

 Refer to “GONUMBER | NOGONUMBER” on page

106 for information about the effect of this

suboption on the IPA Link step. Refer also to

“Interactions between compiler options and IPA

suboptions” on page 45.

 The default is IPA(NOGONUMBER). The abbreviations

are IPA(GONUM|NOGONUM). If you specify the GONUMBER

or LIST option, it overrides the IPA(NOGONUMBER)

option.

LIST | NOLIST Indicates whether the compiler saves information

about source line numbers in the IPA object file.

The difference between specifying IPA(LIST) and

118 z/OS V1R7.0 XL C/C++ User’s Guide

LIST is that IPA(LIST) does not cause the IPA

Compile step to generate a Pseudo Assembly

listing.

 Refer to “LIST | NOLIST” on page 138 for

information about the effect of this suboption on the

IPA Link step. Refer also to “Interactions between

compiler options and IPA suboptions” on page 45.

 The default is IPA(NOLIST). The abbreviations are

IPA(LIS|NOLIS). If you specify the GONUMBER or LIST

option, it overrides the IPA(NOLIST) option.

OBJECT | NOOBJECT | OBJONLY Controls the content of the object file.

v OBJECT

The options IPA(NOLINK,OBJECT) result in an IPA

Compile step.

The compiler performs IPA compile-time

optimizations and generates IPA object

information for the resulting program information.

In addition, the compiler generates non-IPA

object code and data that is based on the

original program information. Refer to z/OS XL

C/C++ Programming Guide for a list of

optimizations.

The object file may be used by an IPA Link step,

a prelink/link, or a bind.

v NOOBJECT

The options IPA(NOLINK,NOOBJECT) result in an

IPA compile step.

The compiler performs IPA compile-time

optimizations and generates IPA object

information for the resulting program information.

No non-IPA object code or data is generated.

The object file may be used by an IPA Link step

only.

v OBJONLY

The IPA(OBJONLY) compilation is an intermediate

level of optimization. This results in a modified

regular compile, not an IPA Compile step. Unlike

the IPA Compile step, no IPA information is

written to the object file.

During compilation, this step performs the same

IPA-specific compile-time optimizations as the

IPA Compile step, performs the requested

non-IPA optimizations, and then generates

optimized object code and data.

The object file may be used by an IPA Link step,

a prelink/link, or a bind. If it is used as input to

an IPA Link step, no IPA link-time optimizations

can be performed for this compilation unit

because no IPA information is available.

Chapter 4. Compiler Options 119

For all options in this mode, the Effect on IPA

Compile Step and Effect on IPA Link Step

considerations do not apply.

The default is IPA(OBJECT). The abbreviations are

IPA(OBJ|NOOBJ|OBJO).

OPTIMIZE | NOOPTIMIZE The default is IPA(OPTIMIZE). If you specify

IPA(NOOPTIMIZE), the compiler issues an

informational message and turns on

IPA(OPTIMIZE). The abbreviations are

IPA(OPT|NOOPT) .

 IPA(OPTIMIZE) generates information (in the IPA

object file) that will be needed by the OPT compiler

option during IPA Link processing.

 If you specify the IPA(OBJECT), the IPA(OPTIMIZE),

and the NOOPTIMIZE option during the IPA Compile

step, the compiler creates a non-optimized object

module for debugging. If you specify the OPT(1) or

OPT(2) option on a subsequent IPA Link step, you

can create an optimized object module without first

rerunning the IPA Compile step.

XREF | NOXREF Indicates whether the compiler saves information

about symbols in the IPA object file that will be

used in the IPA Link step if you specify ATTR or XREF

on that step.

 The difference between specifying IPA(XREF) and

specifying ATTR or XREF is that IPA(XREF) does not

cause the compiler to generate a Cross Reference

or Static Map listing sections after IPA Compile step

source analysis is complete. It also does not cause

the compiler to generate a Storage Offset, Static

Map, or External Symbol Cross Reference listing

section during IPA Compile step code generation.

 Refer to “XREF | NOXREF” on page 209 for

information about the effects of this suboption on

the IPA Link step.

 The default is IPA(NOXREF). The abbreviations are

IPA(XR|NOXR). If you specify the ATTR or XREF

option, it overrides the IPA(NOXREF) option.

IPA Link step suboptions

IPA(LINK) invokes the IPA Link step. Only the following IPA suboptions affect the

IPA Link step. If you specify other IPA suboptions, they do not affect the IPA Link

step.

CONTROL[(fileid)] | NOCONTROL[(fileid)]

Specifies whether a file that contains IPA directives is available for

processing. You can specify an optional fileid. If you specify both

IPA(NOCONTROL(fileid)) and IPA(CONTROL), in that order, the IPA Link step

resolves the option to IPA(CONTROL(fileid)).

 The default fileid is DD:IPACNTL if you specify the IPA(CONTROL) option.

The default is IPA(NOCONTROL).

120 z/OS V1R7.0 XL C/C++ User’s Guide

DUP | NODUP

Indicates whether the IPA Link step writes a message and a list of duplicate

symbols to the console.

 The default is IPA(DUP).

ER | NOER

Indicates whether the IPA Link step writes a message and a list of

unresolved symbols to the console.

 The default is IPA(NOER).

LEVEL(0|1|2)

Indicates the level of IPA optimization that the IPA Link step should perform

after it links the object files into the call graph.

 If you specify LEVEL(0), IPA performs subprogram pruning and program

partitioning only.

 If you specify LEVEL(1), IPA performs all of the optimizations that it does at

LEVEL(0), as well as subprogram inlining and global variable coalescing.

IPA performs more precise alias analysis for pointer dereferences and

subprogram calls.

 Under IPA Level 1, many optimizations such as constant propagation and

pointer analysis are performed at the intraprocedural (subprogram) level. If

you specify LEVEL(2), IPA performs specific optimizations across the entire

program, which can lead to significant improvement in the generated code.

 The compiler option OPTIMIZE that you specify on the IPA Link step controls

subsequent optimization for each partition during code generation.

Regardless of the optimization level you specified during the IPA Compile

step, you can request IPA optimization, regular code generation

optimization, both, or neither, on the IPA Link step.

 The default is IPA(LEVEL(1)).

MAP | NOMAP

Specifies that the IPA Link step will produce a listing. The listing contains a

Prolog and the following sections:

v Object File Map

v Compiler Options Map

v Global Symbols Map (which may or may not appear, depending on how

much global coalescence was done during optimization)

v Partition Map for each partition

v Source File Map

The default is IPA(NOMAP).

 See “Using the IPA Link step listing” on page 264 for more information.

NCAL | NONCAL

Indicates whether the IPA Link step performs an automatic library search to

resolve references in files that the IPA Compile step produces. Also

indicates whether the IPA Link step performs library searches to locate an

object file or files that satisfy unresolved symbol references within the

current set of object information.

 This suboption controls both explicit searches triggered by the LIBRARY IPA

Link control statement, and the implicit SYSLIB search that occurs at the end

of IPA Link input processing.

Chapter 4. Compiler Options 121

To help you remember the difference between NCAL and NONCAL, you may

wish to think of NCAL as "nocall" and NONCAL as "no nocall", (or "call").

 The default is IPA(NONCAL).

UPCASE | NOUPCASE

Determines whether the IPA Link step makes an additional automatic library

call pass for SYSLIB if unresolved references remain at the end of standard

IPA Link processing. Symbol matching is not case sensitive in this pass.

 This suboption provides support for linking assembler language object

routines, without forcing you to make source changes. The preferred

approach is to add #pragma map definitions for these symbols, so that the

correct symbols are found during normal IPA Link automatic library call

processing.

 The default is IPA(NOUPCASE). The abbreviations are IPA(UPC|NOUPC).

IPA(PDF) suboptions

The following section describes the IPA(PDF) suboptions.

PDF1 | NOPDF1, PDF2 | NOPDF2, PDFNAME | NOPDFNAME

The default is IPA(NOPDF1, NOPDF2, NOPDFNAME).

Note: IPA(PDF) applies to both the IPA Link and IPA Compile steps.

PDF (Profile-Directed Feedback) is a suboption of IPA that enables you to

use the results from sample program execution to improve optimization

near conditional branches and in frequently executed code sections. PDF

allows the user to gather information about the critical paths and the usage

of various parts of the application. PDF passes this information to the

compiler so that the optimizer can work to make these critical paths faster.

This is a three stage process that involves:

1. Performing a full IPA build with the PDF1 and PDFNAME suboptions

2. Running the trial application with representative data

3. Performing another full IPA build with the PDF2 suboption (the file

indicated by PDFNAME holds the profile generated when the code was run

in step 2)

Note: The trial application built from the IPA(PDF1) compiler option can

only be run on the current system.

The following list describes each of the IPA(PDF) suboptions:

PDF1 An IPA suboption specified during IPA Compile and Link steps. It

tells IPA to prepare the application to collect profile information.

PDF2 An IPA suboption specified during IPA Compile and Link steps. This

option tells IPA to use the profile information that is provided when

optimizing the application.

PDFNAME

This IPA suboption should be used with PDF1 and PDF2 to provide

the name of the file that will be used for the profile information.

PDFDIR

This environment variable can be used when using IPA(PDF) in the

z/OS UNIX System Services shell. It is used to specify the directory

for the profile file.

122 z/OS V1R7.0 XL C/C++ User’s Guide

|

Before you begin: IPA(PDF) requires that you compile the entire

application twice and is intended to be used after other debugging and

tuning is finished. IPA(PDF) compiles should be performed during one of the

last steps before putting the application into production. The following is a

list of restrictions that applies to the procedures that follow:

v You must compile the main program with PDF for profiling information to

be collected at runtime.

v Do not compile or run two different applications that use the same

PDFDIR directory at the same time, unless you have used the

PDFNAME(filename) option to distinguish the sets of profiling information.

v You must use the same set of compiler options at all compilation steps

for a particular program otherwise PDF cannot optimize your program

correctly and may even slow it down.

v You must ensure the profiling information that is provided to the compiler

during the PDF2 step is for the application you are tuning.

– If a non-qualified data set name is provided, the same userid that runs

the application to collect the profiling information must perform the

PDF2 step.

– If PDFDIR is set for the PDF2 step, it must name a directory where the

actual profiling information can be found.

v The profiling information is placed in the file specified by the

PDFNAME(filename) suboption, where filename can be an HFS file name

or a z/OS data set name (physical sequential data set or a member of a

partitioned data set). For a data set name, it can be fully qualified such

as PDFNAME="//’HLQ.PDF’" or non-qualified such as PDFNAME=//PDF, in

which case the actual data set name will be ’userid.PDF’, where the

userid identifies the user who is executing the application built with PDF1

and building the application with PDF2. The key DCB attributes are

RECFM=U and LRECL=0. In the z/OS UNIX System Services environment,

the profile is placed in the current working directory or in the directory

that the PDFDIR environment variable names, if that variable is set. If

PDFNAME(filename) is not specified, the default file name is

PDFNAME(@@PDF). This file is referred to as the PDF file.

v If PDFNAME is not provided, then you need to ensure that the same

environment (z/OS UNIX System Services, batch/TSO, POSIX mode) is

used to collect the profiling information and to perform the PDF1/PDF2

steps. This is because PDFNAME will default to @@PDF and thus the

actual location of the file is based on the environment. For example,

when the POSIX(ON) run-time option is used, the PDF file will be

./@@PDF and when the POSIX(OFF) run-time option is used, the PDF

file will be in data set userid.@@PDF. In order to eliminate unnecessary

confusion, it is recommended that an explicit PDF file name always be

provided.

v The compiler makes an attempt to delete the PDF file during PDF1

IPA(LINK) processing.

v If PDFNAME names a data set, it is strongly recommended that the data set

physically exist and be allocated with sufficient space before step 2 in the

process described below. Since the actual space required is based on

the complexity of the application and the amount of the test data, you

may run into a situation where the pre-allocated space is insufficient and

you need to re-allocate the data set with larger space. The recommended

attributes for the PDF data set are: RECFM=U LRECL=0.

Chapter 4. Compiler Options 123

v If you do compile a program with PDF1, it will generate profiling

information when it runs, which involves some performance overhead.

This overhead goes away when you recompile with PDF2 or with no PDF

(NOPDF1 and NOPDF2).

v The CCNXPD1B, CCNPD1B, and CCNQPD1B PROCs have been created to help

the batch user link with the libraries required for IPA(PDF1). Unlike our

default link PROCs, these PROCs will statically bind the libraries to

ensure correct operation of the information capture runs.

v Applications built with IPA(PDF1) should not be put into production

because the application will be slower due to the instrumented code. The

application will lose its natural reentrancy due to the sharing of the global

data between the application and the statically bound PDF run-time code.

Perform the following steps to use IPA(PDF):

1. Compile some or all of the source files in a program with the IPA(PDF1)

suboption on both the IPA Compile and IPA Link steps. You need to

specify the OPTIMIZE(2) option, or preferably the OPTIMIZE(3) option,

and the IPA(LEVEL(1|2)) option. Pay special attention to the compiler

options that you use to compile the files, because you will need to use

the same options later. In a large application, concentrate on those

areas of the code that can benefit most from optimization, which are the

paths that are executed most in a typical run of the program. Use

sample data for profiling that reflects the typical runs that end users

make and then the generated profiling information will show the most

used paths, and the optimizer will be able to make these paths as fast

as possible. You do not need to compile all of the application’s code

with the PDF1 suboption but you need to compile the main function with

the PDF1 suboption. Link the program using CCNPD1B, CCNXPD1B, or

CCNQPD1B in batch, or the -Wl,PDF option in the z/OS UNIX System

Services shell.

2. Run the program built from step 1 all the way through using a typical

data set. The program records profiling information when it finishes. You

can run the program multiple times with different input data sets, and

the profiling information is accumulated to provide an accurate count of

how often branches are taken and blocks of code are executed.

Note: Use data that is representative of the data that will be used

during a normal run of your finished program.

3. Re-build your program using the identical set of source files with the

identical compiler options that you used in step 1, but change PDF1 to

PDF2. This must be done with the same compiler you use in step 1. In

this second stage, the accumulated profiling information is used to

fine-tune the optimizations. The resulting program does not contain

profiling overhead and runs at full speed.

PDF1 at IPA Compile step causes IPA to place an indicator in the IPA object

so the functions in the compilation unit are instrumented during the IPA Link

step. PDF2 at IPA Compile step causes IPA to place an indicator in the IPA

object so the functions in the compilation unit are optimized based on the

profiling information.

 PDF1 at IPA Link step causes IPA to insert instrumentation in the application

code. PDF2 at IPA Link step causes IPA to optimize the application based on

the profiling information collected in the file specified by PDFNAME.

124 z/OS V1R7.0 XL C/C++ User’s Guide

Refer to ″Using the IPA option″ in z/OS XL C/C++ Programming Guide for an

overview, examples, and more details about Interprocedural Analysis.

KEYWORD | NOKEYWORD

Default: Recognizes all C++ keywords.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Programming Language Characteristics Control

��
 KEYWORD

NOKEYWORD

(name)

��

The KEYWORD option controls whether the specified name is created as a keyword or

an identifier whenever it appears in your C++ source. By default, all the built-in

keywords defined in the C++ standard are reserved as keywords. You cannot add

keywords to the C++ language with this option. However, you can use it to enable

built-in keywords that have been disabled using NOKEYWORD(string).

Note: The suboption is case-sensitive.

LANGLVL

Default: LANGLVL(EXTENDED)

For the z/OS UNIX System Services utilities, the defaults are as follows:

v For the c99 command:

– LANGLVL(STDC99)

v For the c89 command:

– LANGLVL(ANSI)

v For the cc command:

– LANGLVL(COMMONC)

v For the c++ command:

– LANGLVL(EXTENDED, NOLIBEXT, NOLONGLONG), NORTTI, TMPLPARSE(NO),

INFO(LAN)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Programming Language Characteristics Control for C

Chapter 4. Compiler Options 125

|

|

|

��
 EXTENDED

LANG

(

)

COMMONC

ANSI

EXTC89

EXTC99

SAA

SAAL2

STDC89

STDC99

LIBEXT

LONGLONG

��

The LANGLVL option defines a macro that specifies a language level. You must then

include this macro in your code to force conditional compilation; for example, with

the use of #ifdef directives. You can write portable code if you correctly code the

different parts of your program according to the language level. You use the macro

in preprocessor directives in header files.

The following suboptions are only available under z/OS XL C:

COMMONC

It indicates language constructs that are defined by XPG, many of which

LANGLVL(EXTENDED) already supports. LANGLVL(ANSI) and

LANGLVL(EXTENDED) do not support the following, but LANGLVL(COMMONC)

does:

v Unsignedness is preserved for standard integral promotions (that is,

unsigned char is promoted to unsigned int)

v Trigraphs within literals are not processed

v sizeof operator is permitted on bit fields

v Bit fields other than int are tolerated, and a warning message is issued

v Macro parameters within quotation marks are expanded

v Macros may be redefined without first being undefined

v The empty comment in a subprogram-like macro is equivalent to the

ANSI/ISO token concatenation operator

The macro __COMMONC__ is defined as 1 when you specify

LANGLVL(COMMONC).

 If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically

turned off. If you want ANSIALIAS turned on, you must explicitly specify it.

Note: The option ANSIALIAS assumes code that supports ANSI. Using

LANGLVL(COMMONC) and ANSIALIAS together may have undesirable

effects on your code at a high optimization level. See “ANSIALIAS |

NOANSIALIAS” on page 66 for more information.

EXTC89 Indicates language constructs that are defined by the ISO C89 standard,

plus additional orthogonal language extensions that do not alter the

behavior of this standard.

EXTC99 Indicates language constructs that are defined by the ISO C99 standard,

plus additional orthogonal language extensions that do not alter the

behavior of the standard.

SAA Indicates language constructs that are defined by SAA.

SAAL2 Indicates language constructs that are defined by SAA Level 2.

126 z/OS V1R7.0 XL C/C++ User’s Guide

||

|

|

||
|
|

||
|
|

STDC89 Indicates language constructs that are defined by the ISO C89 standard.

This suboption is synonymous with LANGLVL(ANSI).

STDC99 Indicates language constructs that are defined by the ISO C99 standard.

Note: The following list shows ISO C99 language constructs unavailable with

LANGLVL(EXTENDED) or LANGLVL(EXTC89):

v inline keyword

v restrict keyword

v long long

v C++ style comments

The following suboptions are available under z/OS XL C/C++:

EXTENDED

It indicates all language constructs are available with z/OS XL C. It enables

extensions to the ISO C standard. The macro __EXTENDED__is defined as 1.

ANSI Use it if you are compiling new or ported code that is ISO C/C++ compliant.

It indicates language constructs that are defined by ISO. Some non-ANSI

stub routines will exist even if you specify LANGLVL(ANSI), for compatibility

with previous releases. The macro __ANSI__ is defined as 1 for C only. It

ensures that the compilation conforms to the ISO C and C++ standards.

Note: When you specify LANGLVL(ANSI), the compiler can still read and

analyze the _Packed keyword in z/OS XL C/C++. If you want to make

your code purely ANSI, you should redefine _Packed in a header file

as follows:

#ifdef __ANSI__

 #define _Packed

#endif

The compiler will now see the _Packed attribute as a blank when

LANGLVL(ANSI) is specified at compile time, and the language level of

the code will be ANSI.

LIBEXT|NOLIBEXT

For C, specifying this option affects the C/C++ run-time provided headers,

which in turn control the availability of general ISO run-time extensions. In

addition, it also defines the following macro and sets its value to 1:

v _MI_BUILTIN (this macro controls the availability of machine built-in

instructions. Refer to the section on using built-in functions in z/OS XL

C/C++ Programming Guide)

For C++, this option controls the macro _EXT that is used to control the

availability of general ISO run-time extensions. LANG(LIBEXT) sets _EXT to 1.

The default for C is LANG(LIBEXT) and for C++ is LANG(NOLIBEXT).

LONGLONG|NOLONGLONG

This option controls the availability of long long integer types for your

compilation. The default for C is LANG(LONGLONG) and for C++ is

LANG(NOLONGLONG).

 CATEGORY: Programming Language Characteristics Control for C++

Chapter 4. Compiler Options 127

||
|

||

|
|

|

|

|

|

|
|

|

|

|

��
 EXTENDED

LANG

(

)

COMPAT92

ANSI

STRICT98

ANONSTRUCT

ANONUNION

ANSIFOR

ANSISINIT

DBCS

DOLLARINNAMES

EMPTYSTRUCT

ILLPTOM

IMPLICITINT

LIBEXT

LONGLONG

OFFSETNONPOD

OLDDIGRAPH

OLDFRIEND

OLDMATH

OLDSTR

OLDTEMPACC

OLDTMPLALIGN

OLDTMPLSPEC

TRAILENUM

TYPEDEFCLASS

UCS

ZEROEXTARRAY

��

Three predefined option groups are provided for commonly used settings for C++.

These groups are:

LANGLVL(COMPAT92)

Use this option group if your code compiles with z/OS V1R1 and you want

to move to z/OS V1R2 with minimal changes. This group is the closest you

can get to the old behavior of the previous compilers.

LANGLVL(STRICT98) or LANGLVL(ANSI)

These two option groups are identical. Use them if you are compiling new

or ported code that is ISO C++ compliant. They indicate language

constructs that are defined by ISO. Some non-ANSI stub routines will exist

even if you specify LANGLVL(ANSI), for compatibility with previous releases.

LANGLVL(EXTENDED)

This option group indicates all language constructs available with z/OS XL

C++. It enables extensions to the ISO C/C++ standard. The macro

__EXTENDED__is defined as 1.

 The options and settings included in the COMPAT92, STRICT98/ANSI, and EXTENDED

groups are listed in the table below. Except for TMPLPARSE, all settings have a value

of either On (meaning the suboption or option is enabled) or Off (meaning the

suboption or option is not enabled).

 Table 21. Compatibility options for z/OS XL C/C++ compiler

Options Group names

compat92 strict98/ ansi extended

KEYWORD(bool) |

NOKEYWORD(bool) Off On On

128 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|
|

Table 21. Compatibility options for z/OS XL C/C++ compiler (continued)

Options Group names

compat92 strict98/ ansi extended

KEYWORD(explicit) |

NOKEYWORD(explicit) Off On On

KEYWORD(export) |

NOKEYWORD(export) Off On On

KEYWORD(false) |

NOKEYWORD(false) Off On On

KEYWORD(mutable) |

NOKEYWORD(mutable) Off On On

KEYWORD(namespace) |

NOKEYWORD(namespace) Off On On

KEYWORD(true) |

NOKEYWORD(true) Off On On

KEYWORD(typename) |

NOKEYWORD(typename) Off On On

KEYWORD(using) |

NOKEYWORD(using) Off On On

LANGLVL(ANONSTRUCT |

NOANONSTRUCT) Off Off On

LANGLVL(ANONUNION |

NOANONUNION) On Off On

LANGLVL(ANSIFOR | NOANSIFOR) Off On On

LANGLVL(ANSISINIT |

NOANSISINIT) Off On On

LANGLVL(EMPTYSTRUCT |

NOEMPTYSTRUCT) On Off On

LANGLVL(ILLPTOM | NOILLPTOM) On Off On

LANGLVL(IMPLICITINT |

NOIMPLICITINT) On Off On

LANGLVL(LIBEXT | NOLIBEXT) On Off On

LANGLVL(LONGLONG |

NOLONGLONG) On Off On

LANGLVL(OFFSETNONPOD |

NOOFFSETNONPOD) On Off On

LANGLVL(OLDDIGRAPH |

NOOLDDIGRAPH) Off On Off

LANGLVL(OLDFRIEND |

NOOLDFRIEND) On Off On

LANGLVL(OLDMATH |

NOOLDMATH) On Off Off

LANGLVL(OLDSTR | NOOLDSTR) On Off Off

LANGLVL(OLDTEMPACC |

NOOLDTEMPACC) On Off On

LANGLVL(OLDTMPLALIGN |

NOOLDTMPLALIGN) On Off Off

Chapter 4. Compiler Options 129

|
|

Table 21. Compatibility options for z/OS XL C/C++ compiler (continued)

Options Group names

compat92 strict98/ ansi extended

LANGLVL(OLDTMPLSPEC |

NOOLDTMPLSPEC) On Off On

LANGLVL(TRAILENUM |

NOTRAILENUM) On Off On

LANGLVL(TYPEDEFCLASS |

TYPEDEFCLASS) On Off On

LANGLVL(ZEROEXTARRAY |

NOZEROEXTARRAY) Off Off On

RTTI | NORTTI Off On On

TMPLPARSE(NO | ERROR | WARN) NO WARN NO

You can control individual language features in the z/OS V1R2 C++ compiler by

using the LANGLVL and KEYWORD suboptions listed in Table 21 on page 128. In order

to conform to the ISO C++ standard, you may need to make a number of changes

to your existing source code. These suboptions can help by breaking up the

changes into smaller steps.

For C++, the following suboptions apply:

Note: The group options override the individual suboptions so if you want to

specify a suboption it should be after a group option. For example, if you

specify LANG(ANSIFOR,COMPAT92) you will get LANG(NOANSIFOR) because the

LANG(COMPAT92) specifies NOANSIFOR. Thus you should specify

LANG(COMPAT92,ANSIFOR) to get ANSIFOR.

ANONSTRUCT|NOANONSTRUCT

This option controls whether anonymous structs and anonymous classes

are allowed in your C++ source. When LANG(ANONSTRUCT) is specified, z/OS

XL C++ allows anonymous structs. This is an extension to the C++

standard.

 Example: Anonymous structs typically are used in unions, as in the

following code example:

union U {

 struct {

 int i:16;

 int j:16;

 };

 int k;

} u;

// ...

u.j=3;

When LANG(ANONSTRUCT) is in effect, you receive a warning if your code

declares an anonymous struct. You can suppress the warning with

SUPPRESS(CCN5017). When you build with LANG(NOANONSTRUCT) an

anonymous struct is flagged as an error. Specify LANG(NOANONSTRUCT) for

compliance with ISO standard C++. The default is LANG(ANONSTRUCT).

ANONUNION|NOANONUNION

This option controls what members are allowed in anonymous unions.

When LANG(ANONUNION) is in effect, anonymous unions can have members

130 z/OS V1R7.0 XL C/C++ User’s Guide

|

of all types that ISO standard C++ allows in non-anonymous unions. For

example, non-data members, such as structs, typedefs, and enumerations

are allowed. Member functions, virtual functions, or objects of classes that

have non-trivial default constructors, copy constructors, or destructors

cannot be members of a union, regardless of the setting of this option.

When LANG(ANONUNION) is in effect, z/OS XL C++ allows non-data members

in anonymous unions. This is an extension to ISO standard C++. When

LANG(ANONUNION) is in effect, you receive a warning if your code uses the

extension, unless you suppress the message with SUPPRESS(CCN6608).

Specify LANG(NOANONUNION) for compliance with ISO standard C++. The

default is LANG(ANONUNION).

ANSIFOR|NOANSIFOR

This option controls whether scope rules defined in the C++ standard apply

to names declared in for-init statements. By default, ISO standard C++ rules

are used.

 Example: The following code causes a name lookup error:

{

 //...

 for (int i=1; i<5; i++) {

 cout << i * 2 << endl;

 }

 i = 10; // error

 }

The reason for the error is that i, or any name declared within a

for-init-statement, is visible only within the for statement. To correct the

error, either declare i outside the loop or specify LANG(NOANSIFOR). Specify

LANG(NOANSIFOR) to allow old language behavior. The default is

LANG(ANSIFOR).

ANSISINIT|NOANSISINIT

This suboption can be used to select between the old (prior to z/OS V1R1)

and the current (z/OS V1R2 or later) compiler behaviors. It is useful for

building an application that includes an existing DLL originally built with a

z/OS V1R1 or earlier version of the C/C++ compilers. Specifying the

NOANSISINIT suboption, ensures that the behavior of global (including static

locals) objects with destructors in the newly-compiled objects is compatible

with objects built with earlier compilers.

 If you specify the LP64 option and the LANGLVL(NOANSISINIT) option, the

compiler issues a warning, ignores the LANGLVL(NOANSISINIT) option and

turns on the LANGLVL(ANSISINIT) option.

 The default setting is LANGLVL(ANSISINIT).

Note: LANGLVL(EXTENDED) and LANVLVL(ANSI) set LANGLVL(ANSISINIT).

LANGLVL(COMPAT92) sets LANGLVL(NOANSISINIT).

DBCS|NODBCS

This option controls whether multi-byte characters are accepted in string

literals and in comments. The default is LANG(NODBCS).

DOLLARINNAMES|NODOLLARINNAMES

This option controls whether the dollar-sign character ($) is allowed in

identifiers. If LANG(NODOLLARINNAMES) is in effect, dollar sign characters in

identifiers are treated as syntax errors. The default is

LANG(NODOLLARINNAMES).

Chapter 4. Compiler Options 131

|
|
|
|
|
|
|
|

|
|
|

|

|
|

EMPTYSTRUCT|NOEMPTYSTRUCT

This option instructs the compiler to tolerate empty member declarations in

structs. ISO C++ does not permit empty member declaration in structs.

 Example: When LANG(NOEMPTYSTRUCT) is in effect, the following example will

be rejected by the compiler:

struct S {

 ; // this line is ill-formed

};

The default is LANG(NOEMPTYSTRUCT).

ILLPTOM|NOILLPTOM

This controls what expressions can be used to form pointers to members.

The compiler accepts some forms that are in common use, but do not

conform to the C++ standard. When LANG(ILLPTOM) is in effect, the compiler

allows these forms. For example, the following code defines the pointer to a

function member, p, and initializes the address of C::foo, in the old style:

 Example: The following code defines the pointer to a function member, p,

and initializes the address of C::foo, in the old style:

struct C {

void foo(init);

};

void (C::*p) (int) = C::foo;

Specify LANG(NOILLPTOM) for compliance with the C++ standard.

 Example: The example must be modified to use the & operator:

struct C {

void foo(int);

};

void (C::*p) (int) = &C::foo;

The default fis LANG(ILLPTOM).

IMPLICITINT|NOIMPLICITINT

This option controls whether z/OS XL C++ will accept missing or partially

specified types as implicitly specifying int. This is no longer accepted in the

standard but may exist in legacy code. When LANG(NOIMPLICITINT) is

specified, all types must be fully specified. Also, when LANG(IMPLICITINT) is

specified, a function declaration at namespace scope or in a member list

will implicitly be declared to return int. Also, any declaration specifier

sequence that does not completely specify a type will implicitly specify an

integer type. Note that the effect is as if the int specifier were present. This

means that the specifier const, by itself, would specify a constant integer.

The following specifiers do not completely specify a type:

v auto

v const

v extern

v extern "<literal>"

v inline

v mutable

v friend

v register

132 z/OS V1R7.0 XL C/C++ User’s Guide

v static

v typedef

v virtual

v volatile

v platform specific types (for example, _cdecl, __declspec)

Note that any situation where a type is specified is affected by this option.

This includes, for example, template and parameter types, exception

specifications, types in expressions (eg, casts, dynamic_cast, new), and

types for conversion functions. By default, LANG(EXTENDED) sets

LANG(IMPLICITINT). This is an extension to the C++ standard.

 Example: The return type of function MyFunction is int because it was

omitted in the following code:

MyFunction()

{

 return 0;

}

Specify LANG(NOIMPLICITINT) for compliance with ISO standard C++.

 Example: The function declaration above must be modified to:

int MyFunction()

{

 return 0;

}

The default is LANG(IMPLICITINT).

OFFSETNONPOD|NOOFFSETNONPOD

This option controls whether the offsetof macro can be applied to classes

that are not data-only. C++ programmers often casually call data-only

classes ″Plain Old Data″ (POD) classes. By default, LANG(EXTENDED)allows

offsetof to be used with nonPOD classes. This is an extension to the C++

standard. When LANG(OFFSETNONPOD) is in effect , you receive a warning if

your code uses the extension, unless you suppress the message with

SUPPRESS(CCN6281). Specify LANG(NOOFFSETNONPOD) for compliance with ISO

standard C++. Specify LANG(OFFSETNONPOD) if your code applies offsetof to a

class that contains one of the following:

v User-declared constructors or destructors

v User-declared assignment operators

v Private or protected non-static data members

v Base classes

v Virtual functions

v Non-static data members of type pointer to member

v A struct or union that has non-data members

v References

The default is LANG(OFFSETNONPOD).

OLDDIGRAPH|NOOLDDIGRAPH

This option controls whether old-style digraphs are allowed in your C++

source. It applies only when DIGRAPH is also set. When LANG(NOOLDDIGRAPH)

is specified, z/OS XL C++ supports only the digraphs specified in the C++

standard. Set LANG(OLDDIGRAPH) if your code contains at least one of

following digraphs:

Chapter 4. Compiler Options 133

v %% digraph, which results in # (pound sign)

v %%%% digraph, which results in ## (double pound sign, used as the

preprocessor macro concatenation operator)

Specify LANG(NOOLDDIGRAPH) for compatibility with ISO standard C++ and

the extended C++ language level. The default is LANG(NOOLDDIGRAPH).

OLDFRIEND|NOOLDFRIEND

This option controls whether friend declarations that name classes without

elaborated class names are treated as C++ errors. When LANG(OLDFRIEND)

is in effect, you can declare a friend class without elaborating the name of

the class with the keyword class. This is an extension to the C++ standard.

For example, the statement below declares the class IFont to be a friend

class and is valid when LANG(OLDFRIEND) is in effect.

friend IFont;

The example declaration above causes a warning unless you modify it to

the statement below, or suppress the message with the SUPPRESS(CCN5070)

option. Specify LANG(NOOLDFRIEND) for compliance with ISO standard C++.

Specifying this option will cause an error condition and message to be

generated for the example declaration above.

friend class IFont;

The default for batch and TSO is LANG(OLDFRIEND).

OLDMATH|NOOLDMATH

This option controls which math function declarations are introduced by the

math.h header file. For conformance with the C++ standard, the math.h

header file declares several new functions that were not declared by math.h

in previous releases. These new function declarations may cause an

existing program to become invalid and, therefore, to fail to compile. This

occurs because the new function declarations introduce the possibility of

ambiguities in function overload resolution. The OLDMATH option specifies

that these new function declarations are not to be introduced by the math.h

header file, thereby eliminating the possibility of ambiguous overload

resolution. The default is LANG(NOOLDMATH).

OLDSTR|NOOLDSTR

This option provides backward compatibility with previous versions of z/OS

XL C++ and predecessor products, by controlling which string function

declarations are introduced by the string.h and wchar.h header files. For

conformance with the current C++ standard, string.h and the wchar.h

header files declare several C++ string functions differently for C++ source

files than they were declared in previous releases. These new function

declarations may cause an existing C++ program to become invalid and

therefore fail to compile. The LANG(OLDSTR) option specifies that the new

C++ string function declarations are not to be introduced by the string.h

and wchar.h header files, thereby causing only the C versions of these

functions to be declared, as in previous releases. Note that when a C

source file is compiled, these declarations remain unchanged from previous

releases.

 A number of the string function signatures that are defined in the 1989 C

International Standard and the C Amendment are not const-safe.

 Example: Consider the following standard C signature:

char * strchr(const char *s, int c);

134 z/OS V1R7.0 XL C/C++ User’s Guide

The behavior of this function is specified as follows:

v The strchr function locates the first occurrence of c (converted to a

char) in the string pointed to by s. The terminating null character is

considered to be part of the string.

v The strchr function returns a pointer to the located character, or a null

pointer if the character does not occur in the string.

Since the parameter s is of type const char *s, the string being searched

by the strchr function is potentially composed of characters whose type is

const char. The strchr function returns a pointer to one of the constituent

characters of the string, but this pointer is of type char * even though the

character that it points to is potentially of type const char. For this reason,

strchr can be used to implicitly (and unintentionally) defeat the

const-qualification of the string referenced by the pointer s.

 Example: To correct this problem, the C++ standard replaces the above

signature from the C standard with the following overloaded signatures:

const char * strchr(const char *s, int c);

 char * strchr(char *s, int c);

Both of these overloaded functions have the same behavior as the original

C version of strchr.

 In a similar manner, the signatures of several other standard C library

routines are replaced in the C++ standard. The affected routines are:

v strchr

v strpbrk

v strrchr

v strstr

v memchr

v wcschr

v wcspbrk

v wcsrchr

v wcsstr

v wmemchr

Example: Because of the changes mandated by the C++ standard, the

following unsafe example will not compile in C++:

 #include <string.h>

 const char s[] = "foobar";

 int main(void) {

 char * c = strchr(s, ’b’);

 }

To preserve backward compatibility with previous releases (and thus enable

the code example above), specify LANGLVL(OLDSTR).

OLDTEMPACC|NOOLDTEMPACC

This option controls whether access to a copy constructor to create a

temporary object is always checked, even if creation of the temporary

object is avoided. When LANG(NOOLDTEMPACC) is in effect, z/OS XL C++

suppresses the access checking. This is an extension to the C++ standard.

When LANG(OLDTEMPACC) is in effect, you receive a warning if your code

uses the extension, unless you disable the message. Disable the message

Chapter 4. Compiler Options 135

by building with SUPPRESS(CCN5306) when the copy constructor is a private

member, and SUPPRESS(CCN5307) when the copy constructor is a protected

member. Specify LANG(NOOLDTEMPACC) for compliance with ISO standard

C++.

 Example: The throw statement in the following code causes an error

because the copy constructor is a protected member of class C:

class C {

public:

 C(char *);

protected:

 C(const C&);

};

C foo() {return C("test");} // returns a copy of a C object

void f()

{

// catch and throw both make implicit copies of the thrown object

 throw C("error"); // throws a copy of a C object

 const C& r = foo(); // uses the copy of a C object created by foo()

}

The example code above contains three ill formed uses of the copy

constructor C(const C&). The default is LANG(OLDTEMPACC).

OLDTMPLALIGN|NOOLDTMPLALIGN

This option specifies the alignment rules implemented by the compiler for

nested templates. Previous versions of the compiler ignored alignment rules

specified for nested templates. By default, LANG(EXTENDED) sets

LANG(NOOLDTMPLALIGN) so the alignment rules are not ignored. The default

for is LANG(NOOLDTMPLALIGN).

OLDTMPLSPEC|NOOLDTMPLSPEC

This option controls whether template specializations that do not conform to

the C++ standard are allowed. When LANG(NOOLDTMPLSPEC) is in effect, z/OS

XL C++ allows these old specializations. This is an extension to ISO

standard C++. When LANGLVL(OLDTMPLSPEC) is set, you receive a warning if

your code uses the extension, unless you suppress the message with

SUPPRESS(CCN5080).

 Example: You can explicitly specialize the template class ribbon for type

char> with the following lines:

template<classT> class ribbon { /*...*/};

class ribbon<char> { /*...*/};

Specify LANG(NOOLDTMPLSPEC) for compliance with standard C++. In the

example above, the template specialization must be modified to:

template<class T> class ribbon { /*...*/};

template<> class ribbon<char> { /*...*/};

The default is LANG(OLDTMPLSPEC).

TRAILENUM|NOTRAILENUM

This option controls whether trailing commas are allowed in enum

declarations. When LANG(TRAILENUM) is in effect, z/OS XL C++ allows one

or more trailing commas at the end of the enumerator list. This is an

extension to the C++ standard. The following enum declaration uses this

extension:

enum grain { wheat, barley, rye,, };

136 z/OS V1R7.0 XL C/C++ User’s Guide

Specify LANG(NOTRAILENUM) for compliance with the ISO C and C++

standards. The default is LANG(TRAILENUM).

TYPEDEFCLASS|NOTYPEDEFCLASS

This option provides backwards compatibility with previous versions of z/OS

XL C++ and predecessor products. The current C++ standard does not

allow a typedef name to be specified where a class name is expected. This

option relaxes that restriction. Specify LANG(TYPEDEFCLASS) to allow the use

of typedef names in base specifiers and constructor initializer lists. When

LANG(NOTYPEDEFCLASS) is in effect, a typedef name cannot be specified

where a class name is expected. The default is LANG(TYPEDEFCLASS).

UCS|NOUCS

This option controls whether Unicode characters are allowed in identifiers,

string literals and character literals in C++ sources. The Unicode character

set is supported by the C++ standard. This character set contains the full

set of letters, digits and other characters used by a wide range of

languages, including all North American and Western European languages.

Unicode characters can be 16 or 32 bits. The ASCII one-byte characters

are a subset of the Unicode character set. When LANG(UCS) is in effect, you

can insert Unicode characters in your source files either directly or using a

notation that is similar to escape sequences. Because many Unicode

characters cannot be displayed on the screen or entered from the

keyboard, the latter approach is usually preferred. Notation forms for

Unicode characters are \uhhhhfor 16-bit characters, or \Uhhhhhhhh for 32-bit

characters, where h represents a hexadecimal digit. Short identifiers of

characters are specified by ISO/IEC 10646. The default is LANG(NOUCS).

ZEROEXTARRAY|NOZEROEXTARRAY

This option controls whether zero-extent arrays are allowed as the last

non-static data member in a class definition. When LANG(ZEROEXTARRAY) is

in effect, z/OS XL C++ allows arrays with zero elements. This is an

extension to the C++ standard.

 Example: The example declarations below define dimensionless arrays a

and b:

struct S1 { char a[0]; };

struct S2 { char b[]; };

Specify LANG(NOZEROEXTARRAY) for compliance with the ISO C++ standard.

When LANG(ZEROEXTARRAY) is set, you receive warnings about zero-extent

arrays in your code, unless you suppress the message with

SUPPRESS(CCN6607). The default is LANG(ZEROEXTARRAY).

LIBANSI | NOLIBANSI

Default: NOLIBANSI

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOLIB

LIB

��

Chapter 4. Compiler Options 137

The LIBANSI option indicates whether the functions with the name of an ISO C

library function are in fact ISO C library functions. If you specify LIBANSI, the

compiler generates code that is based on existing knowledge concerning the

behavior of the ISO C library function; for example, whether or not any side effects

are associated with a particular system function.

A comment that indicates the use of the LIBANSI option will be generated in your

object module to aid you in diagnosing your program.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the LIBANSI option for any compilation unit in the IPA Compile step,

the compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

The LIBANSI option will be in effect for the IPA Link step unless the NOLIBANSI

option is specified. The value of the LIBANSI option from the IPA Compile step is

ignored, but is shown in the IPA Link listing Compile Option Map for reference.

LIST | NOLIST

Default: NOLIST

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c89, cc or c++ commands. -V produces all reports for

the compiler, and binder, or prelinker, and directs them to stdout. To produce only

the listing (and no other reports), and write the listing to a user-specified file, use

the following command:

-Wc,"LIST(filename)"

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOLIS

LIS

(

Sequential filename

)

Partitioned data set

Partitioned data set (member)

Hierarchical filename

Hierarchical directory

��

The LIST option instructs the compiler to generate a listing of the machine

instructions in the object module (in a format similar to assembler language

instructions) in the compiler listing.

LIST(filename) places the compiler listing in the specified file. If you do not specify a

file name for the LIST option, the compiler uses the SYSCPRT ddname if you

allocated one. Otherwise, the compiler generates a file name as follows:

138 z/OS V1R7.0 XL C/C++ User’s Guide

v If you are compiling a data set, the compiler uses the source file name to form

the name of the listing data set. The high-level qualifier is replaced with the

userid under which the compiler is running, and .LIST is appended as the

low-level qualifier.

v If you are compiling an HFS file, the compiler stores the listing in a file that has

the name of the source file with .lst extension.

The NOLIST option optionally takes a filename suboption. This filename then

becomes the default. If you subsequently use the LIST option without a filename

suboption, the compiler uses the filename that you specified in the earlier NOLIST.

For example, the following specifications have the same effect:

CXX HELLO (NOLIST(/hello.lis) LIST

CXX HELLO (LIST(/hello.lis)

If you specify data set names in a C or C++ program, with the SOURCE, LIST or

INLRPT options, all the listing sections are combined into the last data set name

specified.

Notes:

1. Usage of information such as registers, pointers, data areas, and control blocks

that are shown in the object listing are not programming interface information.

2. If you use the following form of the command in a JES3 batch environment

where xxx is an unallocated data set, you may get undefined results.

LIST(xxx)

3. Statement line numbers exceeding 99999 will wrap back to 00000 for the

generated assembly listing for the C/C++ source file. This may occur when the

compiler LIST option is used.

Effect on IPA Compile step

If you specify the LIST option on the IPA Compile step, the compiler saves

information about the source file and line numbers in the IPA object file. This

information is available during the IPA Link step for use by the LIST or GONUMBER

options.

If you do not specify the GONUMBER option on the IPA Compile step, the object file

produced contains the line number information for source files that contain function

begin, function end, function call, and function return statements. This is the

minimum line number information that the IPA Compile step produces. You can then

use the TEST option on the IPA Link step to generate corresponding test hooks

Refer to “Interactions between compiler options and IPA suboptions” on page 45

and “GONUMBER | NOGONUMBER” on page 106 for more information.

Effect on IPA Link step

If you specify the LIST option, the IPA Link listing contains a Pseudo Assembly

section for each partition that contains executable code. Data-only partitions do not

generate a Pseudo Assembly listing section.

The source file and line number shown for each object code statement depend on

the amount of detail the IPA Compile step saves in the IPA object file, as follows:

v If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option for the

IPA Compile step, the IPA Link step accurately shows the source file and line

number information.

Chapter 4. Compiler Options 139

v If you did not specify any of these options on the IPA Compile step, the source

file and line number information in the IPA Link listing or GONUMBER tables

consists only of the following:

– function entry, function exit, function call, and function call return source lines.

This is the minimum line number information that the IPA Compile step

produces.

– All other object code statements have the file and line number of the function

entry, function exit, function call, and function call return that was last

encountered. This is similar to the situation of encountering source statements

within a macro.

Refer to “Interactions between compiler options and IPA suboptions” on page 45

and “GONUMBER | NOGONUMBER” on page 106 for more information.

LOCALE | NOLOCALE

Default: NOLOCALE

For the z/OS UNIX System Services utilities, the default for a regular compile is

LOCALE(POSIX). The utilities pick up the locale value of the environment using

setlocale(LC_ALL,NULL)). Because the compiler runs with the POSIX(OFF) option,

categories that are set to C are changed to POSIX.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

��
 NOLOC

LOC

(name)

��

The LOCALE option specifies the locale to be used by the compiler as the current

locale throughout the compilation unit. To specify a locale, use the following format:

LOCALE(name)

The suboption name indicates the name of the locale to be used by the compiler at

compile time. If you omit name, the compiler uses the current default locale in the

environment. If name does not represent a valid locale name, the compiler ignores

the LOCALE, and assumes NOLOCALE.

NOLOCALE indicates that the compiler only uses the default code page, which is

IBM-1047.

You can specify it on the command line or in the PARMS list in the JCL.

If you specify the LOCALE option, the locale name and the associated code set

appear in the header of the listing. A locale name is also generated in the object

module.

140 z/OS V1R7.0 XL C/C++ User’s Guide

The LC_TIME category of the current locale controls the format of the time and the

date in the compiler-generated listing file. The identifiers that appear in the tables in

the listing file are sorted as specified by the LC_COLLATE category of the locale

specified in the option.

Note: The formats of the predefined macros __DATE__ , __TIME__, and

__TIMESTAMP__ are not locale-sensitive.

For more information on locales, refer to z/OS XL C/C++ Programming Guide.

Effect on IPA Compile step

The LOCALE option controls processing only for the IPA step for which you specify it.

During the IPA Compile step, the compiler converts source code using the code

page that is associated with the locale specified by the LOCALE compile-time option.

As with non-IPA compilations, the conversion applies to identifiers, literals, and

listings. The locale that you specify on the IPA Compile step is recorded in the IPA

object file.

You should use the same code page for IPA Compile step processing for all of your

program source files. This code page should match the code page of the run-time

environment. Otherwise, your application may not run correctly.

Effect on IPA Link step

The locale that you specify on the IPA Compile step does not determine the locale

that the IPA Link step uses. The LOCALE option that you specify on the IPA Link step

is used for the following:

v The encoding of the message text and the listing text.

v Date and time formatting in the Source File Map section of the listing and in the

text in the object comment string that records the date and time of IPA Link step

processing.

v Sorting of identifiers in listings. The IPA Link step uses the sort order associated

with the locale for the lists of symbols in the Inline Report (Summary), Global

Symbols Map, and Partition Map listing sections.

If the code page you used for a compilation unit for the IPA Compile step does not

match the code page you used for the IPA Link step, the IPA Link step issues an

informational message.

If you specify the IPA(MAP) option, the IPA Link step displays information about the

LOCALE option, as follows:

v The Prolog section of the listing displays the LOCALE or NOLOCALE option. If you

specified the LOCALE option, the Prolog displays the locale and code set that are

in effect.

v The Compiler Options Map listing section displays the LOCALE option active on

the IPA Compile step for each IPA object. If you specified conflicting code sets

between the IPA Compile and IPA Link steps, the listing includes a warning

message after each Compiler Options Map entry that displays a conflict.

v The Partition Map listing section shows the current LOCALE option.

LONGNAME | NOLONGNAME

Default: For C, the default option is NOLONGNAME. For C++, the default option is

LONGNAME.

Chapter 4. Compiler Options 141

For the z/OS UNIX System Services utilities, the default for a regular compile is

LONGNAME.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For C:

��
 NOLO

LO

��

For C++:

��
 LO

NOLO

��

The LONGNAME option generates untruncated and mixed case external names in the

object module produced by the compiler for functions with non-C++ linkage.

Functions with C++ linkage are always untruncated and mixed-case external

names. These names may be up to 1024 characters in length. The system binder

recognizes the format of long external names in object modules, but the system

linkage editor does not.

For z/OS XL C, if you specify the ALIAS option with LONGNAME, the compiler

generates a NAME control statement, but no ALIAS control statements.

If you use #pragma map to associate an external name with an identifier, the

compiler generates the external name in the object module. That is, #pragma map

has the same behavior for the LONGNAME and NOLONGNAME compiler options. Also,

#pragma csect has the same behavior for the LONGNAME and NOLONGNAME compiler

options.

When you specify NOLONGNAME, only those functions that do not have C++ linkage

are given truncated and uppercase names.

A comment that indicates the setting of the LONGNAME option will be generated in

your object module to aid you in diagnosing your program.

Effect on IPA Compile step

You must specify either the LONGNAME compiler option or the #pragma longname

preprocessor directive for the IPA Compile step (unless you are using the c89

utility). Otherwise, the compiler issues an unrecoverable error diagnostic message.

Effect on IPA Link step

The IPA Link step ignores this option if you specify it, and uses the LONGNAME option

for all partitions it generates.

142 z/OS V1R7.0 XL C/C++ User’s Guide

LP64 | ILP32

Default: ILP32. For LP64, the FLOAT option default is IEEE.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 ILP32

LP64

��

The LP64 option instructs the compiler to generate AMODE 64 code utilizing the

z/Architecture 64-bit instructions. ILP32 instructs the compiler to generate AMODE

31 code. This is the default and is the same mode as in previous releases of the

compiler. LP64 and ILP32 are mutually exclusive. If they are specified multiple times,

the compiler will take the last one.

Note: AMODE is the addressing mode of the program code generated by the

compiler. In AMODE 64 and AMODE 31, 64 and 31 refer to the range of

addresses that can be accessed (in other words 64-bits and 31-bits are used

to form the address respectively). When there is no ambiguity, we will refer

to these as 64-bit mode and 31-bit mode. Refer to the information that

follows for further information on the data model.

If LP64 is specified with TARGET(zOSV1R5), no object will be generated.

LP64 and ILP32 refer to the data model used by the language. ″I″ is an abbreviation

that represents int type, ″L″ represents long type, and ″P″ represents the pointer

type. 64 and 32 refer to the size of the data types. When the ILP32 option is used,

int, long and pointers are 32-bit in size. When LP64 is used, long and pointer are

64-bit in size; int remains 32-bit. As explained in a note above, the addressing

mode used by LP64 is AMODE 64, and by ILP32 is AMODE 31. In the latter case,

only 31 bits within the pointer are taken to form the address. For the sake of

conciseness, the terms 31-bit mode and ILP32, will be used interchangeably in this

document when there is no ambiguity. The same applies to 64-bit mode and LP64.

The LP64 option requires the XPLINK and GOFF compiler options. It also requires

architecture level 5 or above (ARCH(5) or higher). ARCH(5), XPLINK, and GOFF are the

default settings for LP64 if you don’t explicitly override them. If you explicitly specify

NOXPLINK, or NOGOFF, or specify an architecture level lower than 5, the compiler will

issue a warning message, ignore NOXPLINK or NOGOFF, and raise the architecture

level to 5.

Notes:

1. The maximum size of a GOFF object is 1 gigabyte.

2. ARCH(5) specifies the 2064 hardware models.

The LP64 option cannot be used with the TARGET option to target OS releases prior

to z/OS V1R5. LP64 is ignored if it is used with the TARGET suboption prior to z/OS

V1R5. Also, TARGET(IMS) is not supported; a warning message will be issued.

The prelinker cannot be used with 64-bit object modules.

Chapter 4. Compiler Options 143

|

Note: The z/OS platform does not support mixing 64-bit and 31-bit object files. If

one compilation unit is compiled with LP64, all CUs within the program must

be compiled with LP64. The binder will issue a message if it encounters

mixed addressing modes during external name resolution.

In 31-bit mode, the size of long and pointers is 4 bytes and the size of wchar_t is 2

bytes. Under LP64, the size of long and pointer is 8 bytes and the size of wchar_t is

4 bytes. The size of other intrinsic datatypes remain the same between 31-bit mode

and LP64. Under LP64, the type definition for size_t changes to long, and the type

definition for ptrdiff_t changes to unsigned long. The following tables give the

size of the intrinsic types:

 Table 22. Size of intrinsic types in 64–bit mode

Type Size (in bits)

char, unsigned char, signed char 8

short, short int, unsigned short, unsigned

short int, signed short, signed short int

16

int, unsigned int, signed int 32

long, long int, unsigned long, unsigned long

int, signed long, signed long int

64

long long, long long int, unsigned long long,

unsigned long long int, signed long long,

signed long long int

64

pointer 64

 Table 23. Size of intrinsic types in 31–bit mode

Type Size (in bits)

char, unsigned char, signed char 8

short, short int, unsigned short, unsigned

short int, signed short, signed short int

16

int, unsigned int, signed int 32

long, long int, unsigned long, unsigned long

int, signed long, signed long int

32

long long, long long int, unsigned long long,

unsigned long long int, signed long long,

signed long long int

64

pointer 32

The __ptr32 pointer qualifier is intended to make the process of porting applications

from ILP32 to LP64 easier. Use this qualifier in structure members to minimize the

changes in the overall size of structures. Note that these pointers cannot refer to

objects above the 31-bit address line (also known as ″the bar″). In general, the

program has no control over the address of a variable; the address is assigned by

the implementation. It is up to the programmer to make sure that the use of __ptr32

is appropriate within the context of the program’s logic. For more information on the

__ptr32 pointer qualifer, refer to z/OS XL C/C++ Language Reference.

Notes:

1. The long and wchar_t data types also change in size.

2. LP64 only supports OBJECTMODEL(IBM).

144 z/OS V1R7.0 XL C/C++ User’s Guide

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step for ILP32. The

LP64 option affects the regular object module if you request one by specifying the

IPA(OBJECT) option, in which case, the object module generated will be in 64-bit.

Effect on IPA Link step

The IPA Link step accepts the LP64 option, but ignores it. The DLL side deck

generated by the binder has been enhanced. The side deck contains attribute flags

to mark symbols exported from 64-bit DLLs; the flags are CODE64 and DATA64 for

code and data respectively. IPA recognizes these flags.

The IPA Link step will check that all objects have a consistent data model, either

ILP32 or LP64. It checks both IPA object modules and non-IPA object modules. If the

IPA Link step finds a mixture of addressing modes among the object files, the

compiler issues a diagnostic message and ends the compilation.

LSEARCH | NOLSEARCH

Default: NOLSEARCH

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

��
 NOLSE

LSE

(path)

��

The LSEARCH option directs the preprocessor to look for the user include files in the

specified libraries.

The suboption path specifies one of the following:

v The name of a partitioned or sequential data set that contains user include files.

v An HFS path that contains user include files.

v A search path that is more complex. See “Additional syntax” on page 147 for

details.

The #include "filename" format of the #include C/C++ preprocessor directive

indicates user include files. See “Using include files” on page 310 for a description

of the #include preprocessor directive.

For further information on library search sequences, see “Search sequences for

include files” on page 318.

Searching for PDS or PDSE files

Example: You coded your include files as follows:

#include "sub/fred.h"

#include "fred.inl"

You specified LSEARCH as follows:

LSEARCH(USER.+,’USERID.GENERAL.+’)

Chapter 4. Compiler Options 145

The compiler uses the following search sequence to look for your include files:

1. First, the compiler looks for sub/fred.h in this data set:

USERID.USER.SUB.H(FRED)

2. If that PDS member does not exist, the compiler looks in the data set:

USERID.GENERAL.SUB.H(FRED)

3. If that PDS member does not exist, the compiler looks in DD:USERLIB, and then

checks the system header files.

4. Next, the compiler looks for fred.inl in the data set:

USERID.USER.INL(FRED)

5. If that PDS member does not exist, the compiler will look in the data set:

USERID.GENERAL.INL(FRED)

6. If that PDS member does not exist, the compiler looks in DD:USERLIB, and then

checks the system header files.

Searching for HFS files

The compiler forms the search path for HFS files by appending the path and name

of the #include file to the path that you specified in the LSEARCH option.

Example 1

You code #include "sub/fred.h" and specify:

LSEARCH(/u/mike)

The compiler looks for the include file /u/mike/sub/fred.h .

Example 2

You specify your header file as #include "fred.h" , and your LSEARCH option as:

LSEARCH(/u/mike, ./sub)

The compiler uses the following search sequence to look for your include files:

1. The compiler looks for fred.h in:

/u/mike/fred.h

2. If that HFS file does not exist, the compiler looks in:

 ./sub/fred.h

3. If that HFS file does not exist, the compiler looks in the libraries specified on the

USERLIB DD statement.

4. If USERLIB DD is not allocated, the compiler follows the search order for system

include files.

The NOLSEARCH option instructs the preprocessor to search only those libraries that

are specified on the USERLIB DD statement. A NOLSEARCH option cancels all previous

LSEARCH specifications, and the compiler uses any LSEARCH options that follow it.

When you specify more than one LSEARCH option, the compiler uses all the libraries

in these LSEARCH options to find the user include files.

Note: If the filename in the #include directive is in absolute form, the compiler

does not perform a search. See “Determining whether the file name is in

absolute form” on page 315 for more details on absolute #include filename.

146 z/OS V1R7.0 XL C/C++ User’s Guide

Additional syntax

��

�

 NOLSE

LSE

,

(

opt

)

//

��

You must use the double slashes (//) to specify data set library searches when you

specify the OE compiler option. (You may use them regardless of the OE option).

The USERLIB ddname is considered the last suboption for LSEARCH, so that

specifying LSEARCH (X) is equivalent to specifying LSEARCH (X,DD:USERLIB).

Parts of the #include filename are appended to each LSEARCH opt to search for the

include file. opt has the format:

��

�

�

�

 ,

qualifier

’

.+

’

.*

+

’

*

’

,

directory

./

../

/

DD:name

,

(fname.suffix)=LIB(

subopt

)

��

In the above syntax diagram, opt specifies one of the following:

v The name of a partitioned or sequential data set that contains user include files

v An HFS pathname that should be searched for the include file. You can also use

./ to specify the current directory and ../ to specify the parent directory for your

HFS file.

v A DD statement for a sequential data set or a partitioned data set. When you

specify a ddname in the search and the include file has a member name, the

member name of the include file is used as the name for the DD: name search

suboption, for example:

LSEARCH(DD:NEWLIB)

#include "a.b(c)"

The resulting file name is DD:NEWLIB(C).

v A specification of the form (fname.suffix) = (subopt,subopt,...) where:

– fname is the name of the include file, or *

– suffix is the suffix of the include file, or *

– subopt indicates a subpath to be used in the search for the include files that

match the pattern of fname.suffix. There should be at least one subopt. The

possible values are:

Chapter 4. Compiler Options 147

- LIB([pds,...]) where each pds is a partitioned data set name. They are

searched in the same order as they are specified.

There is no effect on the search path if no pds is specified, but a warning is

issued.

- LIBs are cumulative; for example, LIB(A),LIB(B) is equivalent to LIB(A,

B).

- NOLIB specifies that all LIB(...) previously specified for this pattern should

be ignored at this point.

When the #include filename matches the pattern of fname.suffix, the search

continues according to the subopts in the order specified. An asterisk (*) in fname

or suffix matches anything. If the compiler does not find the file, it attempts other

searches according to the remaining options in LSEARCH.

Specifying hierarchical file system files

When specifying Hierarchical File System (HFS) library searches, do not put double

slashes at the beginning of the LSEARCH opt . Use pathnames separated by slashes

(/) in the LSEARCH opt for an HFS library. When the LSEARCH opt does not start with

double slashes, any single slash in the name indicates an HFS library. If you do not

have path separators (/), then setting the OE compile option on indicates that this is

an HFS library; otherwise the library is interpreted as a data set. See “Using

SEARCH and LSEARCH” on page 317 for additional information on HFS files.

Example: The opt specified for LSEARCH is combined with the filename in #include

to form the include file name:

LSEARCH(/u/mike/myfiles)

#include "new/headers.h"

The resulting HFS file name is /u/mike/myfiles/new/headers.h.

Specifying sequential data sets and PDSs

Use an asterisk (*) or a plus sign (+) in the LSEARCH opt to specify whether the

library is a sequential or partitioned data set.

Partitioned Data Set (PDS): When you want to specify a set of PDSs as the

search path, you add a period followed by a plus sign (.+) at the end of the last

qualifier in the opt. If you do not have any qualifier, specify a single plus sign (+) as

the opt. The opt has the following syntax for specifying partitioned data set:

��

’

�

 +

,

qualifier

.+

’
 ��

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an

absolute data set specification. Single quotation marks around a single plus sign (+)

indicate that the filename that is specified in #include is an absolute partitioned

data set.

When you do not specify a member name with the #include directive, for example,

#include "PR1.MIKE.H", the PDS name for the search is formed by replacing the

plus sign with the following parts of the filename of the #include directive:

148 z/OS V1R7.0 XL C/C++ User’s Guide

v For the PDS file name:

1. All the paths and slashes (slashes are replaced by periods)

2. All the periods and qualifiers after the left-most qualifier

v For the PDS member name, the left-most qualifier is used as the member name

See the first example in Table 24.

However, if you specified a member name in the filename of the #include directive,

for example, #include "PR1.MIKE.H(M1)", the PDS name for the search is formed

by replacing the plus sign with the qualified name of the PDS. See the second

example in Table 24.

See “Forming data set names with LSEARCH | SEARCH options” on page 312 for

more information on forming PDS names.

Note: To specify a single PDS as the opt, do not specify a trailing asterisk (*) or

plus sign (+). The library is then treated as a PDS but the PDS name is

formed by just using the leftmost qualifier of the #include filename as the

member name. For example:

LSEARCH(AAAA.BBBB)

#include "sys/ff.gg.hh"

Resulting PDS name is

userid.AAAA.BBBB(FF)

Also see the third example in Table 24.

Examples: The following example shows you how to specify a PDS search path:

 Table 24. Partitioned data set examples

include Directive LSEARCH option Result

#include ″PR1.MIKE.H″ LSEARCH(’CC.+’) ’CC.MIKE.H(PR1)’

#include ″PR.KE.H(M1)″ LSEARCH(’CC.+’) ’CC.PR.KE.H(M1)’

#include ″A.B″ LSEARCH(CC) userid.CC(A)

#include ″A.B.D″ LSEARCH(CC.+) userid.CC.B.D(A)

#include ″a/b/dd.h″ LSEARCH(’CC.+’) ’CC.A.B.H(DD)’

#include ″a/dd.ee.h″ LSEARCH(’CC.+’) ’CC.A.EE.H(DD)’

#include ″a/b/dd.h″ LSEARCH(’+’) ’A.B.H(DD)’

#include ″a/b/dd.h″ LSEARCH(+) userid.A.B.H(DD)

#include ″A.B(C)″ LSEARCH(’D.+’) ’D.A.B(C)’

Sequential data set: When you want to specify a set of sequential data sets as

the search path, you add a period followed by an asterisk (.*) at the end of the last

qualifier in the opt. If you do not have any qualifiers, specify one asterisk (*) as the

opt. The opt has the following syntax for specifying a sequential data set:

��

//

’

�

 *

,

qualifier

. *

’
 ��

Chapter 4. Compiler Options 149

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an

absolute data set specification. Single quotation marks (') around a single asterisk

(*) means that the file name that is specified in #include is an absolute sequential

data set.

The asterisk is replaced by all of the qualifiers and periods in the #include filename

to form the complete name for the search (as shown in the following table).

Examples: The following example shows you how to specify a search path for a

sequential data set:

 Table 25. Sequential data set examples

include Directive LSEARCH option Result

#include ″A.B″ LSEARCH(CC.*) userid.CC.A.B

#include ″a/b/dd.h″ LSEARCH(’CC.*’) ’CC.DD.H’

#include ″a/b/dd.h″ LSEARCH(’*’) ’DD.H’

#include ″a/b/dd.h″ LSEARCH(*) userid.DD.H

Note: If the trailing asterisk is not used in the LSEARCH opt, then the specified library

is a PDS:

#include "A.B"

LSEARCH(’CC’)

Result is ’CC(A)’ which is a PDS.

MARGINS | NOMARGINS

Default: For C++ and C (variable record format), the default option is NOMARGINS. For

C (fixed record format), the default option is MARGINS(1,72).

For the z/OS UNIX System Services utilities, the default for a regular compile is

NOMARGINS.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Input Source File Processing Control

For C++ and C (variable record format):

��
 NOMAR

MAR

(m,n)

��

For C (fixed record format):

150 z/OS V1R7.0 XL C/C++ User’s Guide

��

 MAR

(m,n)

NOMAR

��

The MARGINS option specifies the columns in the input record that are to be scanned

for input to the compiler. The compiler ignores text in the source input that does not

fall within the range that is specified on the MARGINS option.

You can use the MARGINS and SEQUENCE options together. The MARGINS option is

applied first to determine which columns are to be scanned. The SEQUENCE option is

then applied to determine which of these columns are not to be scanned. If the

SEQUENCE settings do not fall within the MARGINS settings, the SEQUENCE option has no

effect.

When a source (or include) file is opened, it initially gets the margins and sequence

specified on the command line (or the defaults if none was specified). You can reset

these settings by using #pragma margins or #pragma sequence at any point in the

file. When an #include file returns, the previous file keeps the settings it had when

it encountered the #include directive.

The NOMARGINS option specifies that the entire input source record is to be scanned

for input to the compiler.

The MARGINS option has the following suboptions:

m specifies the first column of the source input that contains valid z/OS XL

C/C++ code. The value of m must be greater than 0 and less than 32761.

n specifies the last column of the source input that contains valid z/OS XL

C/C++ code. The value of n must be greater than m and less than 32761. An

asterisk (*) can be assigned to n to indicate the last column of the input

record. If you specify MARGINS (9,*), the compiler scans from column 9 to

the end of the record for input source statements.

If the MARGINS option is specified along with the SOURCE option in a C or C++

program, only the range specified on the MARGINS option is shown in the compiler

source listing.

Notes:

1. The MARGINS option does not reformat listings.

2. If your program uses the #include preprocessor directive to include z/OS XL C

library header files and you want to use the MARGINS option, you must ensure

that the specifications on the MARGINS option does not exclude columns 20

through 50. That is, the value of m must be less than 20, and the value of n must

be greater than 50. If your program does not include any z/OS XL C library

header files, you can specify any setting you want on the MARGINS option when

the setting is consistent with your own include files.

MAXMEM | NOMAXMEM

Default: MAXMEM(*)

For the z/OS UNIX System Services utilities, the default for a regular compile is

MAXMEM(*).

Chapter 4. Compiler Options 151

Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 MAXM (size)

NOMAXM

��

When compiling with OPT, the MAXMEM(size) option limits the amount of memory

used for local tables of specific, memory intensive optimizations to size kilobytes.

The valid range for size is 0 to 2097152. You can use asterisk as a value for size ,

MAXMEM(*), to indicate the highest possible value, which is also the default.

NOMAXMEM, MAXMEM(0), and MAXMEM(*) are equivalent. Use the MAXMEM option if you

want to specify a memory size of less value than the default.

If the memory specified by the MAXMEM option is insufficient for a particular

optimization, the compilation is completed in such a way that the quality of the

optimization is reduced, and a warning message is issued.

When a large size is specified for MAXMEM, compilation may be aborted because of

insufficient virtual storage, depending on the source file being compiled, the size of

the subprogram in the source, and the virtual storage available for the compilation.

The advantage of using the MAXMEM option is that, for large and complex

applications, the compiler produces a slightly less-optimized object module and

generates a warning message, instead of terminating the compilation with an error

message of “insufficient virtual storage”.

Notes:

1. The limit that is set by MAXMEM is the amount of memory for specific

optimizations, and not for the compiler as a whole. Tables that are required

during the entire compilation process are not affected by or included in this limit.

2. Setting a large limit has no negative effect on the compilation of source files

when the compiler needs less memory.

3. Limiting the scope of optimization does not necessarily mean that the resulting

program will be slower, only that the compiler may finish before finding all

opportunities to increase performance.

4. Increasing the limit does not necessarily mean that the resulting program will be

faster, only that the compiler may be able to find opportunities to increase

performance.

5. At OPT(3), the default for MAXMEM is set to (*).

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the MAXMEM option for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

The option value you specify on the IPA Compile step for each IPA object file

appears in the IPA Link step Compiler Options Map listing section.

152 z/OS V1R7.0 XL C/C++ User’s Guide

Effect on IPA Link step

If you specify the MAXMEM option on the IPA Link step, the value of the option is

used. The IPA Link step Prolog and Partition Map listing sections display the value

of the option.

If you do not specify the option on the IPA Link step, the value that it uses for a

partition is the maximum MAXMEM value you specified for the IPA Compile step for

any compilation unit that provided code for that partition. The IPA Link Step Prolog

listing section does not display the value of the MAXMEM option, but the Partition Map

listing section does.

MEMORY | NOMEMORY

Default: MEMORY

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

��
 MEM

NOMEM

��

The MEMORY option specifies that the compiler is to use a MEMORY file in place of a

work-file if possible. See the z/OS XL C/C++ Programming Guide for more

information on memory files.

This option increases compilation speed, but you may require additional memory to

use it. If you use this option and the compilation fails because of a storage error,

you must increase your storage size or recompile your program using the NOMEMORY

option.

Effect on IPA Link step

The MEMORY option has the same effect on the IPA Link step as it does on a regular

compilation. If the IPA Link step fails due to an out-of-memory condition, provide

additional virtual storage. If additional storage is unavailable, specify the NOMEMORY

option.

NAMEMANGLING

Default: NAMEMANGLING(zOSV1R2)

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Object Code Control

Chapter 4. Compiler Options 153

��
 zOSV1R2

NAMEMANGLING

(

)

ANSI

zOSV1R5_ANSI

zOSV1R5_DEFAULT

COMPAT

��

Name mangling is the encoding of variable names into unique names so that linkers

can separate common names in the language. With respect to the C++ language,

name mangling is commonly used to facilitate the overloading feature and visibility

within different scopes. The NAMEMANGLING compiler option enables you to choose

between the following two name mangling schemes:

ANSI This scheme complies with the C++ standard and is the default when the

LP64 compiler option is specified.

zOSV1R5_ANSI

This scheme is compatible with z/OS V1R5 link modules that were created

with NAMEMANGLING(ANSI).

zOSV1R5_DEFAULT

This scheme is compatible with z/OS V1R5 link modules that were created

with the default name mangling in V1R5, which is the same name mangling

scheme that is compatible with z/OS V1R2 link modules that were created

with NAMEMANGLING(ANSI). This name mangling scheme is the default when

the ILP32 compiler option is specified.

zOSV1R2

This scheme is compatible with z/OS V1R2 link modules that were created

with NAMEMANGLING(ANSI).

COMPAT This scheme is equivalent to the OSV2R10 scheme.

Notes:

1. If the NAMEMANGLING compiler option is not specified, LANGLVL(EXTENDED) and

LANGLVL(ANSI) set NAMEMANGLING to zOSV1R2. LANGLVL(COMPAT92) sets

NAMEMANGLING to COMPAT.

2. For information on the #pragma namemangling and #pragma namemanglingrule

directives, see z/OS XL C/C++ Language Reference.

The NAMEMANGLING compiler option takes precedence over the LP64 compiler option.

The LP64 compiler option takes precedence over the LANGLVL compiler option.

However, when the NAMEMANGLING and LANGLVL compiler options, or the

NAMEMANGLING, LANGLVL, and LP64 are specified, the last one specified between

NAMEMANGLING and LANGLVL takes effect. This is to preserve the V1R2 behavior so

that existing customer code is not broken.

The following table shows some examples of the NAMEMANGLING options that are in

effect when certain compiler options are specified:

 Table 26. Examples of NAMEMANGLING in effect

Compiler option(s) specified NAMEMANGLING in effect

NAMEMANGLING(zOSV1R2) zOSV1R2

LANGLVL(COMPAT92) COMPAT

LP64 ANSI

154 z/OS V1R7.0 XL C/C++ User’s Guide

Table 26. Examples of NAMEMANGLING in effect (continued)

Compiler option(s) specified NAMEMANGLING in effect

NAMEMANGLING(zOSV1R2)

LANGLVL(COMPAT92)

COMPAT

LANGLVL(COMPAT92)

NAMEMANGLING(zOSV1R2)

zOSV1R2

NAMEMANGLING(zOSV1R2) LP64 zOSV1R2

LP64 NAMEMANGLING(zOSV1R2) zOSV1R2

LANGLVL(COMPAT92) LP64 ANSI

LP64 LANGLVL(COMPAT92) ANSI

NAMEMANGLING(zOSV1R2)

LANGLVL(COMPAT92) LP64

COMPAT

NAMEMANGLING(zOSV1R2) LP64

LANGLVL(COMPAT92)

COMPAT

LP64 NAMEMANGLING(zOSV1R2)

LANGLVL(COMPAT92)

COMPAT

LP64 LANGLVL(COMPAT92)

NAMEMANGLING(zOSV1R2)

zOSV1R2

LANGLVL(COMPAT92) LP64

NAMEMANGLING(zOSV1R2)

zOSV1R2

LANGLVL(COMPAT92)

NAMEMANGLING(zOSV1R2) LP64

zOSV1R2

NESTINC | NONESTINC

Default: NESTINC(255)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Input Source File Processing Control

��

 NEST

(

num

)

NONEST

��

The NESTINC option specifies the number of nested include files to be allowed in

your source program. You can specify a limit of any integer from 0 to SHRT_MAX,

which indicates the maximum limit, as defined in the header file LIMITS.H. To

specify the maximum limit, use an asterisk (*). If you specify an invalid value, the

compiler issues a warning message, and uses the default limit, which is 255.

Specifying NONESTINC is equivalent to specifying NESTINC(255).

Note: If you use heavily nested include files, your program requires more storage

to compile.

Chapter 4. Compiler Options 155

OBJECT | NOOBJECT

Default: OBJECT

Note: When you use the c89 utility, the object is assigned to //DD:SYSLIPA and

should not be changed by specifying the OBJECT compiler option.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management and Object Code Control

��
 OBJ

NOOBJ

(

Sequential filename

)

Partitioned data set

Partitioned data set (member)

Hierarchical filename

Hierarchical directory

��

The OBJECT option specifies whether the compiler is to produce an object module.

The GOFF compiler option specifies the object format that will be used to encode the

object information.

You can specify OBJECT(filename) to place the object module in that file. If you do

not specify a file name for the OBJECT option, the compiler uses the SYSLIN ddname

if you allocated it. Otherwise, the compiler generates a file name as follows:

v If you are compiling a data set, the compiler uses the source file name to form

the name of the object module data set. The high-level qualifier is replaced with

the userid under which the compiler is running, and .OBJ is appended as the

low-level qualifier.

v If you are compiling an HFS file, the compiler stores the object module in a file

that has the name of the source file with an .o extension.

The NOOBJ option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the OBJ option without a filename

suboption, the compiler uses the filename that you specified in the earlier NOOBJ.

For example, the following specifications have the same result:

 CXX HELLO (NOOBJ(/hello.obj) OBJ

 CXX HELLO (OBJ(/hello.obj)

If you specify OBJ and NOOBJ multiple times, the compiler uses the last specified

option with the last specified suboption. For example, the following specifications

have the same result:

 CXX HELLO (NOOBJ(/hello.obj) OBJ(/n1.obj) NOOBJ(/test.obj) OBJ

 CXX HELLO (OBJ(/test.obj)

If you request a listing by using the SOURCE, INLRPT, or LIST option, and you also

specify OBJECT, the name of the object module is printed in the listing prolog.

You can specify this option using the #pragma options directive for C.

156 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

In the z/OS UNIX System Services environment, you can specify the object location

by using the -c -o objectname options when using the c89, cc, or c++ commands.

Note: If you use the following form of the command in a JES3 batch environment

where xxx is an unallocated data set, you may get undefined results.

OBJECT(xxx)

Effect on IPA Compile step

IPA Compile uses the same rules as the regular compile to determine the file name

or data set name of the object module it generates. If you specify NOOBJECT, the IPA

Compile step suppresses object output, but performs all analysis and code

generation processing (other than writing object records).

Note: You should not confuse the OBJECT compiler option with the IPA(OBJECT)

suboption. The OBJECT option controls file destination. The IPA(OBJECT)

suboption controls file content. Refer to “IPA | NOIPA” on page 117 for

information about the IPA(OBJECT) suboption.

Effect on IPA Link step

c89 does not normally keep the object file output from the IPA Link step, as the

output is an intermediate file in the link-edit phase processing. To find out how to

make the object file permanent, refer to the prefix_TMPS environment variable

information in the c89 section of z/OS UNIX System Services Command Reference.

Note: The OBJECT compiler option is not the same as the OBJECT suboption of the

IPA option. Refer to “IPA | NOIPA” on page 117 for information about the

IPA(OBJECT) option.

OBJECTMODEL

Default: OBJECTMODEL(COMPAT)

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Object Code Control

��
 COMPAT

OBJECTMODEL

IBM

��

The OBJECTMODEL compiler option sets the type of object model.

z/OS XL C++ includes two ways to compile your programs using different object

models. The two object models differ in the following areas:

v Layout for the virtual function table

v Name mangling scheme

The two object models are:

v COMPAT

v IBM

Chapter 4. Compiler Options 157

|

COMPAT is compatible with name mangling and the virtual function table that was

available with the previous releases of the C++ compiler.

Select IBM if you want improved performance. This is especially true for class

hierarchies with many virtual base classes. The size of the derived class is

considerably smaller and access to the virtual function table is faster.

Note: In order to use the OBJECTMODEL(IBM) option, the XPLINK option must be

specified. If XPLINK is not specified, the compiler will issue a warning and use

the default OBJECTMODEL(COMPAT) setting.

Object model usage can be mixed in a single program (and a single object file as

well). As described below, differing object models are not allowed in the same

inheritance hierarchy. The different object models have different name-mangling

schemes. Functions can take parameters of different object models. When using

pre-built libraries, you should wrap the library headers with #pragma

object_model(compat) and #pragma object_model(pop) (this is done in order to

ensure that name-mangling for items declared in these headers are set up using

the correct name-mangling scheme). When shipping library headers, you should

either provide multiple versions (different object models) or ensure correct object

model usage by placing #pragma object_model(compat[or ibm if your library is

using the ibm model]) and #pragma object_model(pop) appropriately.

All classes in the same inheritance hierarchy must have the same object model.

Classes implicitly inherit the object model of their parent, overriding any local object

model specification.

Example: An error is generated (CCN8200) if, through multiple inheritance, different

object models are mixed; for example:

#pragma object_model(ibm)

class A{}; // ibm model: pragma is used

#pragma object_model(compat)

class B: A{}; // ibm model: pragma is ignored because of inheritance

 // (A is "ibm", therefore B is "ibm")

#pragma object_model(ibm)

class C: B{}; // ibm model: pragma is ignored because of inheritance

 // (B is "ibm", therefore C is "ibm")

#pragma object_model(compat)

class D{}; // compat model: no inheritance, pragma is used

class E: A, D{}; // error CCN8200: A and D have differing object models.

Effect on IPA Link step

The IPA Link step does not accept the OBJECTMODEL option. The compiler issues a

warning message if you specify this option in the IPA Link step.

OE | NOOE

Default: NOOE

When compiling in the z/OS UNIX System Services Shell environment, the default

is OE.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

158 z/OS V1R7.0 XL C/C++ User’s Guide

��
 NOOE

OE

(

filename

)

��

Note: Diagnostics and listing information will refer to the file name that is specified

for the OE option (in addition to the search information).

The OE option specifies that the compiler use the POSIX.2 standard rules when

searching for files specified with #include directives. These rules state that the path

of the file currently being processed is the path used as the starting point for

searches of include files contained in that file.

The NOOE option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the OE option without a filename

suboption, the compiler uses the filename that you specified in the earlier NOOE.

Example: The following specifications have the same result:

CXX HELLO (NOOE(/hello.c) OE

CXX HELLO (OE(/hello.c)

If you specify OE and NOOE multiple times, the compiler uses the last specified option

with the last specified suboption.

Example:The following specifications have the same result:

CXX HELLO (NOOE(/hello.c) OE(/n1.c) NOOE(/test.c) OE

CXX HELLO (OE(/test.c)

When the OE option is in effect and the main input file is an HFS file, the path of

filename is used instead of the path of the main input file name. If the file names

indicated in other options appear ambiguous between z/OS and HFS, the presence

of the OE option tells the compiler to interpret the ambiguous names as HFS file

names. User include files that are specified in the main input file are searched

starting from the path of filename. If the main input file is not an HFS file, filename

is ignored.

For example, if the compiler is invoked to compile HFS file /a/b/hello.c it

searches directory /a/b/ for include files specified in /a/b/hello.c, in accordance

with POSIX.2 rules . If the compiler is invoked with the OE(/c/d/hello.c) option for

the same source file, the directory specified as the suboption for the OE option,

/c/d/, is used to locate include files specified in /a/b/hello.c.

Effect on IPA Link step

On the IPA Link step, the OE option controls the display of file names.

OFFSET | NOOFFSET

Default: NOOFFSET

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c89, cc or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

Chapter 4. Compiler Options 159

CATEGORY: Listing

��
 NOOF

OF

��

The OFFSET option instructs the compiler to display, in the pseudo-assembly listing

generated by the LIST option, the offset addresses relative to the entry point or start

of each function.

If you use the OFFSET option, you must also specify the LIST option to generate the

pseudo-assembly listing. If you specify the OFFSET option but omit the LIST option,

the compiler generates a warning message, and does not produce a

pseudo-assembly listing.

The NOOFFSET option specifies that the compiler is to display, in the

pseudo-assembly listing generated by the LIST option, the offset addresses relative

to the beginning of the generated code and not the entry point.

Effect on IPA Compile step

If you specify the IPA(OBJECT) option (that is, if you request code generation), the

OFFSET option has the same effect on the IPA Compile step as it does on a regular

compilation.

Effect on IPA Link step

If you specify the LIST option during IPA link, the IPA Link listing will be affected (in

the same way as a regular compilation) by the OFFSET option setting in effect at that

time.

The OFFSET option that you specified on the IPA Compile step has no effect on the

IPA Link step.

OPTFILE | NOOPTFILE

Default: NOOPTFILE

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

��
 NOOPTF

OPTF

(filename)

��

The OPTFILE option directs the compiler to look for compiler options in the file

specified by filename.

You can specify any valid filename, including a DD name such as (DD:MYOPTS). The

DD name may refer to instream data in your JCL. If you do not specify filename,

the compiler uses DD:SYSOPTF.

160 z/OS V1R7.0 XL C/C++ User’s Guide

The NOOPTF option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the OPTF option without a filename

suboption, the compiler uses the filename that you specified in the earlier NOOPTF.

Example: The following specifications have the same result:

CXX HELLO (NOOPTF(/hello.opt) OPTF

CXX HELLO (OPTF(/hello.opt)

The options are specified in a free format with the same syntax as they would have

on the command line or in JCL. The code points for the special characters \f, \v,

and \t are whitespace characters. Everything that is specified in the file is taken to

be part of a compiler option (except for the continuation character), and

unrecognized entries are flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than

72, columns 73 to the end-of-line are treated as sequence numbers and are

ignored.

Notes:

1. Comments are supported in an option file used in the OPTFILE option. When a

line begins with the # character, the entire line is ignored, including any

continuation character. The option files are encoded in the IBM-1047 codepage.

2. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the file

that is specified by another OPTFILE option, it is ignored.

3. If you specify NOOPTFILE after a valid OPTFILE, it does not undo the effect of the

previous OPTFILE. This is because the compiler has already processed the

options in the options file that you specified with OPTFILE. The only reason to

use NOOPTFILE is to specify an option file name that a later specification of

OPTFILE can use.

4. If the file cannot be opened or cannot be read, a warning message is issued

and the OPTFILE option is ignored.

5. The options file can be an empty file.

6. Example: You can use an option file only once in a compilation. If you use the

following options:

OPTFILE(DD:OF) OPTFILE

the compiler processes the option OPTFILE(DD:OF), but the second option

OPTFILE is not processed. A diagnostic message is produced, because the

second specification of OPTFILE uses the same option file as the first.

Example: You can specify OPTFILE more than once in a compilation, if you use

a different options file with each specification:

OPTFILE(DD:OF) OPTFILE(DD:OF1)

Examples

1. Suppose that you use the following JCL:

// CPARM=’SO OPTFILE(PROJ1OPT) EXPORTALL’

If the file PROJ1OPT contains OBJECT LONGNAME, the effect on the compiler is the

same as if you specified the following:

// CPARM=’SO OBJECT LONGNAME EXPORTALL’

2. Suppose that you include the following in the JCL:

// CPARM=’OBJECT OPTFILE(PROJ1OPT) LONGNAME OPTFILE(PROJ2OPT) LIST’

Chapter 4. Compiler Options 161

If the file PROJ1OPT contains SO LIST and the file PROJ2OPT contains GONUM, the

net effect to the compiler is the same as if you specified the following:

// CPARM=’OBJECT SO LIST LONGNAME GONUM LIST’

3. If an F80 format options file looks like this:

 | ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 LIST 00000010

 INLRPT 00000020

MARGINS 00000030

 OPT 00000040

 XREF 00000050

The compile has the same effect as if you specified the following options on the

command line or in a PARMS= statement in your JCL:

 LIST INLRPT MARGINS OPT XREF

4. The following example shows how to use the options file as an instream file in

JCL:

//COMP EXEC CBCC,

// INFILE=’<userid>.USER.CXX(LNKLST)’,

// OUTFILE=’<userid>.USER.OBJ(LNKLST),DISP=SHR ’,

// CPARM=’OPTFILE(DD:OPTION)’

//OPTION DD DATA,DLM=@@

 LIST

 INLRPT

MARGINS

 OPT

 XREF

@@

Effect on IPA Link step

The OPTFILE option has the same effect on the IPA Link step as it does on a regular

compilation.

OPTIMIZE | NOOPTIMIZE

Default: For C and C++, the default option is NOOPTIMIZE. For IPA Link, the default

option is OPTIMIZE(2).

For the z/OS UNIX System Services utilities, the default for a regular compile is

OPTIMIZE(0) for NOIPA.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOOPT

OPT

(level)

��

Note: When the compiler is invoked using the c89, cc, c++, xlc or xlC commands

under z/OS UNIX System Services, the optimization level is specified by the

compiler flag -O (the letter O). The OPTIMIZE option has no effect on these

commands.

162 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|

The OPTIMIZE option instructs the compiler to optimize the generated machine

instructions to produce a faster running object module. This type of optimization can

also reduce the amount of main storage that is required for the generated object

module. Using OPTIMIZE will increase compile time over NOOPTIMIZE and may have

greater storage requirements. During optimization, the compiler may move code to

increase run-time efficiency; as a result, statement numbers in the program listing

may not correspond to the statement numbers used in run-time messages.

A list of the valid suboptions for OPT and their descriptions follow. level can have the

following values:

0 Indicates that no optimization is to be done; this is equivalent to

NOOPTIMIZE. You should use this option in the early stages of your

application development since the compilation is efficient but the execution

is not. This option also allows you to take full advantage of the debugger.

1 OPTIMIZE(1) is an obsolete artifact of the OS/390 Version 2 Release 4

compiler. We suggest that you use OPTIMIZE(2), which ensures that you will

have compatibility with future compilers.

2 Indicates that global optimizations are to be performed. You should be

aware that the size of your functions, the complexity of your code, the

coding style, and support of the ISO standard may affect the global

optimization of your program. You may need significant additional memory

to compile at this optimization level.

3 Performs additional optimizations to those performed with OPTIMIZE(2).

OPTIMIZE(3) is recommended when the desire for runtime improvement

outweighs the concern for minimizing compilation resources. Increasing the

level of optimization may or may not result in additional performance

improvements, depending on whether additional analysis detects further

opportunities for optimization. Compilation may require more time and

machine resources.

 Use the STRICT option with OPTIMIZE(3) to turn off the aggressive

optimizations that might change the semantics of a program. STRICT

combined with OPTIMIZE(3) invokes all the optimizations performed at

OPTIMIZE(2) as well as further loop optimizations. The STRICT compiler

option must appear after the OPTIMIZE(3) option, otherwise it is ignored.

 The aggressive optimizations performed when you specify OPTIMIZE(3) are:

v Aggressive code motion, and scheduling on computations that have the

potential to raise an exception, are allowed.

v Conformance to IEEE rules are relaxed. With OPTIMIZE(2), certain

optimizations are not performed because they may produce an incorrect

sign in cases with a zero result, and because they remove an arithmetic

operation that may cause some type of floating-point exception. For

example, X + 0.0 is not folded to X because, under IEEE rules, -0.0 +

0.0 = 0.0, which is -X. In some other cases, some optimizations may

perform optimizations that yield a zero result with the wrong sign. For

example, X - Y * Z may result in a -0.0 where the original computation

would produce 0.0. In most cases, the difference in the results is not

important to an application and OPTIMIZE(3) allows these optimizations.

v Floating-point expressions may be rewritten. Computations such as a*b*c

may be rewritten as a*c*b if, for example, an opportunity exits to get a

common subexpressions by such rearrangement. Replacing a divide with

a multiply by the reciprocal is another example of reassociating

floating-point computations.

Chapter 4. Compiler Options 163

no level

OPTIMIZE specified with no level defaults, depending on the compilation

environment and IPA mode. See the Option Default table above for details.

You can specify this option using the #pragma options directive for C.

You can specify this option for a specific subprogram using the #pragma

option_override(subprogram_name, "OPT(LEVEL,n)") directive.

The OPTIMIZE option will control the overall optimization value. Any

subprogram-specific optimization levels specified at compile time by #pragma

option_override(subprogram_name, "OPT(LEVEL,n)") directives will be retained.

Subprograms with an OPT(LEVEL,0) value will receive minimal code generation

optimization. Subprograms may not be inlined or inline other subprograms.

Generate and check the inline report to determine the final status of inlining.

Inlining of functions in conjunction with other optimizations provides optimal run-time

performance. See “INLINE | NOINLINE” on page 112 for more information about the

INLINE option and the optimization information in z/OS XL C/C++ Programming

Guide.

If you specify OPTIMIZE with TEST or DEBUG, you can only set breakpoints at function

call, function entry, function exit, and function return points.

The option INLINE is automatically turned on when you specify OPTIMIZE, unless

you have explicitly specified the NOINLINE option.

A comment that notes the level of optimization will be generated in your object

module to aid you in diagnosing your program.

Effect of ANSIALIAS: When the ANSIALIAS option is specified, the optimizer

assumes that pointers can point only to objects of the same

type, and performs more aggressive optimization. However,

if this assumption is not true and ANSIALIAS is specified,

wrong program code could be generated. If you are not

sure, use NOANSIALIAS. For more information, see

“ANSIALIAS | NOANSIALIAS” on page 66.

Effect on IPA(OBJONLY) compilation

During a compilation with IPA Compile-time optimizations active, any

subprogram-specific optimization levels specified by #pragma

option_override(subprogram_name, "OPT(LEVEL,n)") directives will be retained.

Subprograms with an OPT(LEVEL,0) value will receive minimal IPA and code

generation optimization. Subprograms may not be inlined or inline other

subprograms. Generate and check the inline report to determine the final status of

inlining.

Effect on IPA Compile step

On the IPA Compile step, all values (except for (0)) of the OPTIMIZE compiler option

and the OPT suboption of the IPA option have an equivalent effect.

Refer to the descriptions of the OPTIMIZE and LEVEL suboptions of the IPA option in

“IPA | NOIPA” on page 117 for information about using the OPTIMIZE option under

IPA.

164 z/OS V1R7.0 XL C/C++ User’s Guide

Effect on IPA Link step

OPTIMIZE(2) is the default for the IPA Link step, but you can specify any level of

optimization. The IPA Link step Prolog listing section will display the value of this

option.

This optimization level will control the overall optimization value. Any

subprogram-specific optimization levels specified at IPA Compile time by #pragma

option_override(subprogram_name, ″OPT(LEVEL,n)″) directives will be retained.

Subprograms with an OPT(LEVEL,0)) value will receive minimal IPA and code

generation optimization, and will not participate in IPA Inlining.

The IPA Link step merges and optimizes your application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition. Compatible subprograms have the same OPTIMIZE setting.

The OPTIMIZE setting for a partition is set to that of the first subprogram that is

placed in the partition. Subprograms that follow are placed in partitions that have

the same OPTIMIZE setting. An OPTIMIZE(0) mode is placed in an OPTIMIZE(0)

partition, and an OPTIMIZE(2) is placed in an OPTIMIZE(2) partition.

The option value that you specified for each IPA object file on the IPA Compile step

appears in the IPA Link step Compiler Options Map listing section.

The Partition Map sections of the IPA Link step listing and the object module END

information section display the value of the OPTIMIZE option. The Partition Map also

displays any subprogram-specific OPTIMIZE values.

If you specify OPTIMIZE(2) for the IPA Link step, but only OPTIMIZE(0) for the IPA

Compile step, your program may be slower or larger than if you specified

OPTIMIZE(2) for the IPA Compile step. This situation occurs because the IPA

Compile step does not perform as many optimizations if you specify OPTIMIZE(0).

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA option in

“IPA | NOIPA” on page 117 for information about using the OPTIMIZE option under

IPA.

PHASEID | NOPHASEID

Default: NOPHASEID

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOPHASEID

PHASEID

��

If you specify the PHASEID option, it causes each compiler component (phase) to

issue an informational message as the phase begins execution. This message

Chapter 4. Compiler Options 165

identifies compiler phase module name, product identification, and build level. Use

the PHASEID option to assist you with determining the maintenance level of each

compiler component (phase).

The compiler issues a separate CCN0000(I) message each time compiler execution

causes a given compiler component (phase) to be entered. This could happen

many times for a given compilation.

The FLAG option has no effect on the PHASEID informational message.

PLIST

Default: PLIST(HOST)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Program Execution

��
 HOST

PLIST

(

)

OS

��

When compiling main() programs, use the PLIST option to direct how the

parameters from the caller are passed to main().

If you specify PLIST(HOST), the parameters are presented to main() as an argument

list (argc, argv).

If you specify PLIST(OS), the parameters are passed without restructuring, and the

standard calling conventions of the operating system are used. See z/OS Language

Environment Programming Guide for details on how to access these parameters.

If you are compiling a main() program to run under IMS, you must specify the

PLIST(OS) and TARGET(IMS) options together.

Effect on IPA Compile step

If you specified PLIST for any compilation unit in the IPA Compile step, it generates

information for the IPA Link step. This option also affects the regular object module

if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

If you specify PLIST for the IPA Compile step, you do not need to specify it again on

the IPA Link step. The IPA Link step uses the information generated for the

compilation unit that contains the main() function, or for the first compilation unit it

finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the

setting on the IPA Link step overrides the setting on the IPA Compile step. This

situation occurs whether you use PLIST as a compiler option or specify it using the

#pragma runopts directive (on the IPA Compile step).

166 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

PORT | NOPORT

Default: NOPORT(NOPPS)

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: Portability

��
 NOPORT

PORT

(

PPS

)

NOPPS

��

The PORT option allows you to adjust the error recovery action that the compiler

takes when it encounters an ill-formed #pragma pack directive. When you specify

PORT(PPS), the compiler uses the strict error recovery mode. When you specify any

other value for either PORT or NOPORT, the compiler uses the default error recovery

mode. When you specify PORT without a suboption, the suboption setting is inherited

from the default setting or from previous PORT specifications.

Default error recovery

When the default error recovery mode is active, the compiler recovers from errors in

the #pragma pack directive as follows:

v #pragma pack(first_value

– If first_value is a valid S/390 value for #pragma pack, packing is done as

specified by first_value. The compiler detects the missing closing parentheses

and issues a warning message.

– If first_value is not a valid S/390 value for #pragma pack, no packing changes

are made. The compiler ignores the #pragma pack directive and issues a

warning message.

v #pragma pack(first_value bad_tokens)

– If first_value is a valid S/390 value for #pragma pack, packing is done as

specified by first_value. If bad_tokens is invalid, the compiler detects it and

issues a warning message.

– If first_value is not a valid S/390 value for #pragma pack, no packing changes

will be performed. The compiler will ignore the #pragma pack directive and

issue a warning message.

v #pragma pack(valid_value) extra_trailing_tokens

The compiler ignores the extra text and does not issue a message.

Strict error recovery

To use the strict error recovery mode of the compiler, you must explicitly request it

by specifying PORT(PPS).

When the strict error recovery mode is active, and the compiler detects errors in the

#pragma pack directive, it ignores the pragma and does not make any packing

changes.

Example: For example, for any of the following specifications of the #pragma pack

directive:

Chapter 4. Compiler Options 167

#pragma pack(first_value

#pragma pack(first_value bad_tokens

#pragma pack(valid_value) extra_trailing_tokens

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the PORT option for

that step.

PPONLY | NOPPONLY

Default: NOPPONLY

For the z/OS UNIX System Services utilities, the default for a regular compile is

NOPPONLY(NOCOMMENTS, NOLINES, /dev/fd1, 2048).

In the z/OS UNIX System Services environment, this option is turned on by

specifying -E when using the c89, cc or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

��
 NOPP

PP

�

,

(

filename

)

COMMENTS

NOCOMMENTS

LINES

NOLINES

n

*

��

The PPONLY option specifies that only the preprocessor is to be run against the

source file. This output of the preprocessor consists of the original source file with

all the macros expanded and all the include files inserted. It is in a format that can

be compiled. PPONLY also removes conditional compilation constructs like #if, and

#ifdef.

The suboptions are:

COMMENTS | NOCOMMENTS The COMMENTS suboption preserves comments in the

preprocessed output. The default is NOCOMMENTS.

LINES | NOLINES The LINES suboption issues #line directives at

include file boundaries, block boundaries and where

there are more than 3 blank lines. The default is

NOLINES.

filename The name for the preprocessed output file. The

filename may be a data set or an HFS file. If you

do not specify a file name for the PPONLY option, the

168 z/OS V1R7.0 XL C/C++ User’s Guide

SYSUT10 ddname is used if it has been allocated. If

SYSUT10 has not been allocated, the file name is

generated as follows:

v If a data set is being compiled, the name of the

preprocessed output data set is formed using the

source file name. The high-level qualifier is

replaced with the userid under which the

compiler is running, and .EXPAND is appended as

the low-level qualifier.

v If the source file is an HFS file, the preprocessed

output is written to an HFS file that has the

source file name with .i extension.

Note: If you are using the xlc utility and you do not

specify the file name, the preprocessed

output goes to stdout. If you also specify the

-E or -P flag option, the output file is

determined by the flag option specified. If

both -E and -P are specified, the output file

is determined by the -E option. -E flag option

maps to PP(stdout). -P maps to

PP(default_name). default_name is

constructed using the source file name as

the base and the suffix is replaced with the

appropriate suffix, as defined by the isuffix,

isuffix_host, ixxsuffix, and

ixxsuffix_host configuration file attributes.

See Chapter 19, “xlc — Compiler invocation

using a customizable configuration file,” on

page 505 for further information on the xlc

utility.

n If a parameter n, which is an integer between 2 and

32760 inclusive, is specified, all lines are folded at

column n.

* If an asterisk (*) is specified, the lines are folded at

the maximum record length of 32760. Otherwise, all

lines are folded to fit into the output file, based on

the record length of the output file.

The PPONLY suboptions are cumulative. If you specify suboptions in multiple

instances of PPONLY and NOPPONLY, all the suboptions are combined and used for the

last occurrence of the option.

Example: The following three specifications have the same result:

CXX HELLO (NOPPONLY(/aa.exp) PPONLY(LINES) PPONLY(NOLINES)

CXX HELLO (PPONLY(/aa.exp,LINES,NOLINES)

CXX HELLO (PPONLY(/aa.exp,NOLINES)

All #line and #pragma preprocessor directives (except for margins and sequence

directives) remain. When you specify PPONLY(*), #line directives are generated to

keep the line numbers generated for the output file from the preprocessor similar to

the line numbers generated for the source file. All consecutive blank lines are

suppressed.

Chapter 4. Compiler Options 169

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If you

specify the SHOWINC, XREF, AGGREGATE, or EXPMAC options with the PPONLY option, the

compiler issues a warning, and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag directives in

the source file are suppressed. The compiler generates its #pragma filetag

directive at the first line in the preprocessed output file in the following format:

??=pragma filetag ("locale code page")

In the above, ??= is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE option.

For more information on locales, refer to z/OS XL C/C++ Programming Guide.

The NOPPONLY option specifies that both the preprocessor and the compiler are to be

run against the source file.

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.

In the z/OS UNIX System Services environment, to turn on the COMMENTS suboption,

specify -C. The user cannot specify PPONLY, they must use -E and -C. The

{_ELINES} envar is also relevant (for further information on prefix_ELINES, refer to

“Environment variables” on page 480). The output always goes to stdout.

REDIR | NOREDIR

Default: REDIR

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Program Execution

��
 RED

NORED

��

The REDIR option directs the compiler to create an object module that, when linked

and run, allows you to redirect stdin, stdout, and stderr for your program from the

command line when invoked from TSO or batch. REDIR does not apply to programs

invoked by the exec or spawn family of functions (in other words, redirection does

not apply to programs invoked from the UNIX shell).

Effect on IPA Compile step

If you specify the REDIR option for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

If you specify the REDIR option for the IPA Compile step, you do not need to specify

it again on the IPA Link step. The IPA Link step uses the information generated for

the compilation unit that contains the main() function, or for the first compilation unit

it finds if it cannot find a compilation unit containing main().

170 z/OS V1R7.0 XL C/C++ User’s Guide

|

If you specify this option on both the IPA Compile and the IPA Link steps, the

setting on the IPA Link step overrides the setting on the IPA Compile step. This

situation occurs whether you use REDIR and NOREDIR as compiler options or specify

them using the #pragma runopts directive (on the IPA Compile step).

RENT | NORENT

Default: NORENT for C and RENT for C++

For the z/OS UNIX System Services utilities, the default for a regular compile is

RENT.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Object Code Control

For C:

��
 NORENT

RENT

��

For C++:

��
 RENT

NORENT

��

The RENT option specifies that the compiler is to take code that is not naturally

reentrant and make it reentrant. Refer to z/OS Language Environment Programming

Guide for a detailed description of reentrancy.

If you use the RENT option, the linkage editor cannot directly process the object

module that is produced. You must use either the binder, which is described in

Chapter 9, “Binding z/OS XL C/C++ programs,” on page 351, or the prelinker, which

is described in Appendix A, “Prelinking and linking z/OS XL C/C++ programs,” on

page 527.

Notes:

1. Whenever you specify the RENT compiler option, a comment that indicates its

use is generated in your object module to aid you in diagnosing your program.

2. z/OS XL C++ code always uses constructed reentrancy.

3. RENT variables reside in the modifiable writable static area for both z/OS XL C

and z/OS XL C++ programs.

4. NORENT variables reside in the code area (which may be write protected) for both

z/OS XL C and z/OS XL C++ programs.

The NORENT option specifies that the compiler is not to specifically generate

reentrant code from non-reentrant code. Any naturally reentrant code remains

reentrant.

You can specify this option using the #pragma options directive for C.

Chapter 4. Compiler Options 171

Note: The RENT compiler option has implications on how the binder processes

objects. See z/OS MVS Program Management: User’s Guide and Reference

for further information.

Effect on IPA Compile step

If you specify RENT or use #pragma strings(readonly) or #pragma

variable(RENT|NORENT) during the IPA Compile step, the information in the IPA

object file reflects the state of each symbol.

Effect on IPA Link step

If you specify the RENT option on the IPA Link step, it ignores the option. The

reentrant/nonreentrant state of each symbol is maintained during IPA optimization

and code generation. If any symbols within a partition are reentrant, the option

section of the Partition Map displays the RENT compiler option.

If you generate an IPA Link listing by using the LIST or MAP compiler option, the IPA

Link step generates a Partition Map listing section for each partition. If any symbols

within a partition are reentrant, the options section of the Partition Map displays the

RENT compiler option.

ROCONST | NOROCONST

Default: For C, the default option is NOROCONST. For C++, the default option is

ROCONST.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For C:

��
 NOROC

ROC

��

For C++:

��
 ROC

NOROC

��

The ROCONST option informs the compiler that the const qualifier is respected by the

program. Variables defined with the const keyword will not be overridden by a

casting operation.

When the ROCONST option is specified, const qualified variables are not placed into

the Writeable Static Area (WSA), even if the RENT option is in effect. This reduces

the memory requirement for DLLs. This option has the same effect for all const

variables as the #pragma variable(var_name, NORENT) directive. See z/OS XL

C/C++ Language Reference for more information on pragma directives.

Note that such const variables cannot be exported.

172 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

|
|

Interaction with #pragma variable

If the specification for a const variable in a #pragma variable directive is in conflict

with the option, the #pragma variable takes precedence. The compiler issues an

informational message.

Interaction with #pragma export

If you set the ROCONST option, and if there is a #pragma export for a const variable,

the pragma directive takes precedence. The compiler issues an informational

message. The variable will still be exported and the variable will be reentrant.

Effect on IPA Compile step

If you specify the ROCONST option during the IPA Compile step, the information in the

IPA object file reflects the state of each symbol.

Effect on IPA Link step

If you specify the ROCONST option on the IPA Link step, it ignores the option. The

reentrant/nonreentrant and const/nonconst state of each symbol is maintained

during IPA optimization and code generation.

The IPA Link step merges and optimizes your application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition. Compatible subprograms have the same ROCONST setting.

The ROCONST setting for a partition is set to the specification of the first subprogram

that is placed in the partition.

The option value that you specified for each IPA object file on the IPA Compile step

appears in the IPA Link step Compiler Options Map listing section.

The RENT, ROCONST, and ROSTRING options all contribute to the reentrant/nonreentrant

state for each symbol.

The Partition Map sections of the IPA Link step listing and the object module END

information section display the value of the ROCONST option.

ROSTRING | NOROSTRING

Default: ROSTRING

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 ROS

NOROS

��

The ROSTRING option informs the compiler that string literals are read-only. This

option has the same effect as the #pragma strings(readonly) directive. See z/OS

XL C/C++ Language Reference for more information on pragma directives.

Chapter 4. Compiler Options 173

|

Specifying the ROSTRING option allows the compiler to place string literals into

read-only memory. When you compile the program with the RENT option, such string

literals are not placed into the Writeable Static Area (WSA). This reduces the

memory requirement for DLLs.

Effect on IPA Compile step

If you specify the ROSTRING option during the IPA Compile step, the information in

the IPA object file reflects the state of each symbol.

Effect on IPA Link step

If you specify the ROSTRING option on the IPA Link step, it ignores the option. The

reentrant or nonreentrant state of each symbol is maintained during IPA optimization

and code generation.

The Partition Map section of the IPA Link step listing and the object module do not

display information about the ROSTRING option for that partition. The RENT, ROCONST,

and ROSTRING options all contribute to the reentrant or nonreentrant state for each

symbol. If any symbols within a partition are reentrant, the option section of the

Partition Map displays the RENT compiler option.

ROUND

Default: For FLOAT(IEEE), the default option is ROUND(N). For FLOAT(HEX), the default

option is ROUND(Z).

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For FLOAT(IEEE):

��
 N

ROUND

(

M

)

P

Z

��

For FLOAT(HEX):

�� ROUND (Z) ��

The ROUND(mode) option sets the rounding mode for floating-point compilations at

compile time where mode can be one of the following:

N round to the nearest representable number

M round towards minus infinity

P round towards plus infinity

Z round towards zero

ROUND() is the same as ROUND(N)

174 z/OS V1R7.0 XL C/C++ User’s Guide

The ROUND(mode) option only applies to IEEE floating-point mode. In hexadecimal

mode, the rounding is always towards zero. If you specify ROUND(mode) in

hexadecimal floating-point mode, where mode is not Z, the compiler ignores

ROUND(mode) and issues a warning.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The ROUND option

also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these section is a partition. The IPA Link

step uses information from the IPA Compile step to ensure that an object is

included in a compatible partition. Refer to the “FLOAT” on page 101 for further

information.

RTTI | NORTTI

Default: NORTTI

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Program Execution

��
 NORTTI

RTTI

(

ALL

)

DYNAMICCAST

��

Use the RTTI option to generate run-time type identification (RTTI) information for

the typeid operator and the dynamic_cast operator. For best run-time performance,

suppress RTTI information generation with the default NORTTI setting.

The C++ language offers a (RTTI) mechanism for determining the class of an object

at run time. It consists of two operators:

v One for determining the run-time type of an object (typeid), and

v One for doing type conversions that are checked at run time (dynamic_cast)

The suboptions are:

ALL The compiler generates the information needed for

the RTTI typeid and dynamic_cast operators. If you

specify just RTTI, this is the default suboption.

DYNAMICCAST The compiler generates the information needed for

the RTTI dynamic_cast operator, but the information

needed for typeid operator is not generated.

Note: Even though the default is NORTTI, if you specify LANGLVL(EXTENDED) you will

also implicitly select RTTI.

Chapter 4. Compiler Options 175

Effect on IPA Link step

The IPA Link step does not accept the RTTI option. The compiler issues a warning

message if you specify this option in the IPA Link step.

SEARCH | NOSEARCH

Default: For C++, the default option is SE(//’CEE.SCEEH.+, //’CBC.SCLBH.+’). For

C, the default option is SE(//’CEE.SCEEH.+’).

Note: The c99, c89, cc, and c++ utilities explicitly specify this option in the z/OS

UNIX System Services shell. The suboptions are determined by the

following:

v Additional include search directories identified by the c89 -I options.

Refer to Chapter 18, “c89 — Compiler invocation using host environment

variables,” on page 465 for more information.

v z/OS UNIX System Services environment variable settings:

prefix_INCDIRS, prefix_INCLIBS, and prefix_CSYSLIB. They are normally

set during compiler installation to reflect the compiler and run-time include

libraries. Refer to “Environment variables” on page 480 for more

information.

This option is specified as NOSEARCH, SEARCH by the c89 utility, so it resets

the SEARCH parameters you specify. While the c89 utility forces NOSEARCH so

that any defaults that are set by the customizable defaults module

CCNEDFLT are cleared, the xlc utility relies on the entry in the configuration

file for that purpose. If you do not specify -qnosearch in the configuration file,

xlc will append the search libraries specified via the -I flags to the libraries

set by the CCNEDFLT customizable defaults module. This essentially allows

xlc users to take advantage of the customization module, which is not the

case with the c89 utility.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: File Management

��

�

 SE

,

(

opt

)

//

NOSE

��

The SEARCH option directs the preprocessor to look for system include files in the

specified libraries. System include files are those files that are associated with the

#include <filename> form of the #include preprocessor directive. See “Using

include files” on page 310 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search sequences for

include files” on page 318.

The suboptions for the SEARCH option are identical to those for the LSEARCH option,

as described on page “LSEARCH | NOLSEARCH” on page 145.

176 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|

||

|||

|||
|

|

||||||||||||||||||||||||||||||||||

|

|
|
|
|

|
|

|
|

The SYSLIB ddname is considered the last suboption for SEARCH, so that specifying

SEARCH (X) is equivalent to specifying SEARCH(X,DD:SYSLIB).

Any NOSEARCH option cancels all previous SEARCH specifications, and any SEARCH

options that follow it are used. When more than one SEARCH compile option is

specified, all libraries in the SEARCH options are used to find the system include files.

The NOSEARCH option instructs the preprocessor to search only those libraries that

are specified on the SYSLIB DD statement.

Notes:

1. SEARCH allows the compiler to distinguish between header files that have the

same name but reside in different data sets. If NOSEARCH is in effect, the compiler

searches for header files only in the data sets concatenated under the SYSLIB

DD statement. As the compiler includes the header files, it uses the first file it

finds, which may not be the correct one. Thus the build may encounter

unpredictable errors in the subsequent link-edit or bind, or may result in a

malfunctioning application.

2. If the filename in the #include directive is in absolute form, searching is not

performed. See “Determining whether the file name is in absolute form” on page

315 for more details on absolute #include filename.

Effect on IPA Compile step

The SEARCH option is used for source code searching, and has the same effect on

an IPA Compile step as it does on a regular compilation.

Effect on IPA Link step

The IPA Link step accepts the SEARCH option, but ignores it.

SEQUENCE | NOSEQUENCE

Default: For C++ and C (variable record format and HFS), the default option is

NOSEQUENCE. For C (fixed record format), the default option is SEQUENCE(73,80).

For the z/OS UNIX System Services utilities, the default for a regular compile is

NOSEQUENCE.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Input Source File Processing Control

For C and C++ (variable record format and HFS):

��
 NOSEQ

SEQ

(m,n)

��

For C (fixed record format):

Chapter 4. Compiler Options 177

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

||

|||

|||
|

|

|

|||||||||||||||||||

|

|

��

 SEQ

(m,n)

NOSEQ

��

The SEQUENCE option defines the section of the input record that is to contain

sequence numbers. No attempt is made to sort the input lines or records into the

specified sequence or to report records out of sequence.

You can use the MARGINS and SEQUENCE options together. The MARGINS option is

applied first to determine which columns are to be scanned. The SEQUENCE option is

then applied to determine which of these columns are not to be scanned. If the

SEQUENCE settings do not fall within the MARGINS settings, the SEQUENCE option has no

effect.

The SEQUENCE option has the following suboptions:

m Specifies the column number of the left-hand margin. The value of m must

be greater than 0 and less than 32767.

n Specifies the column number of the right-hand margin. The value of n must

be greater than m and less than 32767. An asterisk (*) can be assigned to n

to indicate the last column of the input record. Thus, SEQUENCE (74,*)

shows that sequence numbers are between column 74 and the end of the

input record.

Note: If your program uses the #include preprocessor directive to include z/OS XL

C library header files and you want to use the SEQUENCE option, you must

ensure that the specifications on the SEQUENCE option do not include any

columns from 20 through 50. That is, both m and n must be less than 20, or

both must be greater than 50. If your program does not include any z/OS XL

C/C++ library header files, you can specify any setting you want on the

SEQUENCE option when the setting is consistent with your own include files.

SERVICE | NOSERVICE

Default: NOSERVICE

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOSERV

SERV

(

string

)

��

The SERVICE option places a string in the object module. The string is loaded into

memory when the program is executing. If the application fails abnormally, the

string is displayed in the traceback.

For z/OS XL C, you can also specify this option in the source file by using the

#pragma options directive. If the SERVICE option is specified both on a #pragma

options directive and on the command line, the option that is specified on the

command line will be used.

178 z/OS V1R7.0 XL C/C++ User’s Guide

|||||||||||||||||||

|

|
|
|

|
|
|
|
|

|

||
|

||
|
|
|
|

|
|
|
|
|
|
|

|

|

||

|||

|||
|

|

||||||||||||||||||||

|

|
|
|

|
|
|
|

You must enclose your string within opening and closing parentheses. You do not

need to include the string in quotes.

The following restrictions apply to the string specified:

v The string cannot exceed 64 characters in length. If it does, excess characters

are removed, and the string is truncated to 64 characters. Leading and trailing

blanks are also truncated.

Note: Leading and trailing spaces are removed first and then the excess

characters are truncated.

v All quotes that are specified in the string are removed.

v All characters, including DBCS characters, are valid as part of the string provided

they are within the opening and closing parentheses.

v Parentheses that are specified as part of the string must be balanced. That is, for

each opening parentheses, there must be a closing one. The parentheses must

match after truncation.

v When using the #pragma options directive (C only), the text is converted

according to the locale in effect.

v Only characters which belong to the invariant character set should be used, to

ensure that the signature within the object module remains readable across

locales.

You can specify this option using the #pragma options directive for C.

Effect on IPA Link step

If you specify the SERVICE option on the IPA Compile step, or specify #pragma

options(SERVICE) in your code, it has no effect on the IPA Link step. Only the

SERVICE option you specify on the IPA Link step affects the generation of the service

string for that step.

SHOWINC | NOSHOWINC

Default: NOSHOWINC

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c89, cc or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOSHOW

SHOW

��

The SHOWINC option instructs the compiler to show, in both the compiler listing and

the Pseudo-Assembly listing, all include files processed. In the listing, the compiler

replaces all #include preprocessor directives with the source that is contained in

the include file. This option only applies if you also specify the SOURCE option.

Chapter 4. Compiler Options 179

|
|

|

|
|
|

|
|

|

|
|

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|

|

|
|

||

|||

|||
|

|

||||||||||||||

|

|
|
|
|

SOURCE | NOSOURCE

Default: NOSOURCE

For the z/OS UNIX System Services utilities, the default for a regular compile is

NOSOURCE(/dev/fd1).

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c89, cc or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOSO

SO

(

Sequential filename

)

Partitioned data set

Partitioned data set (member)

Hierarchical filename

Hierarchical directory

��

The SOURCE option generates a listing that shows the original source input

statements plus any diagnostic messages.

If you specify SOURCE(filename), the compiler places the listing in the file that you

specified. If you do not specify a file name for the SOURCE option, the compiler uses

the SYSCPRT ddname if you allocated one. Otherwise, the compiler constructs the file

name as follows:

v If you are compiling a data set, the compiler uses the source file name to form

the name of the listing data set. The high-level qualifier is replaced with the

userid under which the compiler is running, and .LIST is appended as the

low-level qualifier.

v If the source file is an HFS file, the listing is written to a file that has the name of

the source file with a .lst extension in the current working directory.

The NOSOURCE option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the SOURCE option without a filename

suboption, the compiler uses the filename that you specified in the earlier NOSOURCE.

Example: The following specifications have the same result:

CXX HELLO (NOSO(/hello.lis) SO

CXX HELLO (SO(/hello.lis)

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last

specified option with the last specified suboption. For example, the following

specifications have the same result:

CXX HELLO (NOSO(/hello.lis) SO(/n1.lis) NOSO(/test.lis) SO

CXX HELLO (SO(/test.lis)

180 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|
|

|
|

||

|||

|||
|

|

|||||||||||||||||||||||||||||||||||||||

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

Notes:

1. If you specify data set names with the SOURCE, LIST, or INLRPT option, the

compiler combines all the listing sections into the last data set name specified.

2. If you use the following form of the command in a JES3 batch environment

where xxx is an unallocated data set, you may get undefined results.

SOURCE(xxx)

SPILL | NOSPILL

Default: SPILL(128)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��

 SP

(

size

)

NOSP

��

The SPILL option specifies the size of the spill area to be used for the compilation.

When too many registers are in use at once, the compiler saves the contents of

some registers in temporary storage, called the spill area.

If you have to expand the spill area, you will receive a compiler message telling you

the size to which you should increase it. Once you know the spill area that your

source program requires, you can specify the required size (in bytes) as shown in

the syntax diagram above. The maximum spill area size is 1073741823 bytes or

230–1 bytes. Typically, you will only need to specify this option when compiling very

large programs with OPTIMIZE.

Notes:

1. There is an upper limit for the combined area for your spill area, local variables,

and arguments passed to called functions at OPT. For best use of the stack, do

not pass large arguments, such as structures, by value.

2. If you specify NOSPILL, the compiler defaults to SPILL(128).

You can specify the SPILL option using the #pragma options directive for C.

You can specify this option for a specific subprogram using the #pragma

option_override(subprogram_name, "OPT(SPILL,size)") directive.

Effect on IPA Compile step

If you specify the SPILL option for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

If you specify the SPILL option for the IPA Link step, the compiler sets the

Compilation Unit values of the SPILL option that you specify. The IPA Link step

Prolog listing section will display the value of this option.

Chapter 4. Compiler Options 181

|

|
|

|
|

|

|

|

||

|||

|||
|

|

|||||||||||||||||||||||

|

|
|
|

|
|
|
|
|
|

|

|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

If you do not specify the SPILL option in the IPA Link step, the setting from the IPA

Compile step for each Compilation Unit will be used.

In either case, subprogram-specific SPILL options will be retained.

The IPA Link step merges and optimizes your application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition.

The initial overall SPILL value for a compilation unit is set to the IPA Link SPILL

option value, if specified. Otherwise, it is the SPILL option that you specified during

the IPA Compile step for the compilation unit.

The SPILL value for each subprogram in a partition is determined as follows:

v The SPILL value is set to the compilation unit SPILL value, unless a

subprogram-specific SPILL option is present.

v During inlining, the caller subprogram SPILL value will be set to the maximum of

the caller and callee SPILL values.

The overall SPILL value for a partition is set to the maximum SPILL value of any

subprogram contained within that partition.

The option value that you specified for each IPA object file on the IPA Compile step

appears in the IPA Link step Compiler Options Map listing section.

The Partition Map sections of the IPA Link step listing and the object module END

information section display the value of the SPILL option. The Partition Map also

displays any subprogram-specific SPILL values.

SQL | NOSQL

Default: NOSQL

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOSQL

SQL

��

The SQL compiler option enables the C/C++ compiler to process embedded SQL

statements. Use the SQL compiler option to enable the SQL statement coprocessor

capability and to specify SQL statement coprocessor options. The SQL coprocessor

options are only passed to the SQL statement coprocessor; the C/C++ compiler

does not act on any of the options. Refer to DB2 Application Programming and SQL

Guide for further information.

You may use this option to compile C and C++ programs containing embedded

SQL statements, that have not been pre-compiled by the DB2 Precompiler. When

you specify this option, the compiler writes the database request module (DBRM

Bind file) to the ddname DBRMLIB.

182 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

||

|||

|||
|

|

||||||||||||||

|

|
|
|
|
|
|

|
|
|
|

Note: To use this option, the C/C++ compiler requires access to DB2 Version 7 or

later. Ensure you specify the DB2 load module data set in your compile step

STEPLIB.

To use this option with the supplied proc, specify the following items in your JCL:

//SQLCOMP EXEC EDCC,

// CPARM=’SQL’,

// INFILE=PAYROLL.SOURCE(MASTER)’

//STEPLIB DD

// DD

// DD

// DD DSN=DSN710.SDNSLOAD,DISP=SHR

//DBRMLIB DD DSN=PAYROLL.DBRMLIB.DATA(MASTER),DISP=SHR

An SQL INCLUDE statement is treated identically to an #include directive. The

following two lines are processed the same way by the compiler:

EXEC SQL INCLUDE name;

#include "name"

The library search order for SQL INCLUDE statements is the same as specified in the

LSEARCH option or the USERLIB ddname. Nested SQL INCLUDE statements, that are

not supported with the DB2 Precompiler, are supported by the SQL compiler option.

For C++, host variable names do not need to be unique, as they are previously

required to be by the DB2 Precompiler. You may declare host variables, using the

SQL BEGIN DECLARE SECTION and SQL END DECLARE SECTION statements, of the same

name but in different lexical scopes.

Example: The same lexical scoping rules for C/C++ variables apply when they are

used as host variables in SQL statements:

EXEC SQL BEGIN DECLARE SECTION;

int salary;

EXEC SQL END DECLARE SECTION;

main() {

 EXEC SQL BEGIN DECLARE SECTION; /* (1) */

 int salary;

 EXEC SQL END DECLARE SECTION; /* (2) */

 /* The local variable salary will be used here */

 EXEC SQL SELECT SALARY INTO :salary FROM ctab WHERE EMPNO = 12345;

}

If the local variable has not been declared as host variable, that is, the SQL BEGIN

DECLARE SECTION statement (1) and SQL END DECLARE SECTION statement (2) are

missing, you will get a compiler error.

SSCOMM | NOSSCOMM

Default: NOSSCOMM

For LANGLVL(STDC99) and LANGLVL(EXTC99), the default is SSCOMM.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Programming Language Characteristics Control

Chapter 4. Compiler Options 183

|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

��
 NOSS

SS

��

The SSCOMM option instructs the C compiler to recognize two slashes (//) as the

beginning of a comment, which terminates at the end of the line. It will continue to

recognize /* */ as comments.

Example: If you include your z/OS XL C program in your JCL stream, be sure to

change the delimiters so that your comments are recognized as z/OS XL C

comments and not as JCL statements:

//COMPILE.SYSIN DD DATA,DLM=@@

#include <stdio.h>

void main(){

// z/OS XL C comment

printf("hello world\n");

// A nested z/OS XL C /* */ comment

}

@@

//* JCL comment

NOSSCOMM indicates that /* */ is the only valid comment format.

C++ Note: You can include the same delimiter in your JCL for C++ source code,

however you do not need to use the SSCOMM option.

START | NOSTART

Default: START

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 STA

NOSTA

��

The START option specifies that CEESTART is to be generated whenever necessary.

NOSTART indicates that CEESTART is never to be generated.

Whenever you specify the START compiler option, a comment that indicates its use

will be generated in your object module to aid you in diagnosing your program.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the START option for any compilation unit in the IPA Compile step, the

compiler generates information for the IPA Link step. This option also affects the

regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step uses the value of the START option that you specify for that step.

It does not use the value that you specify for the IPA Compile step.

184 z/OS V1R7.0 XL C/C++ User’s Guide

STATICINLINE | NOSTATICINLINE

Default: NOSTATICINLINE

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Programming Language Characteristics Control

��
 NOSTATICI

STATICI

��

The STATICINLINE option treats an inline function as static instead of extern. (As of

z/OS V1R2, the C/C++ compiler treats inline functions as extern. The z/OS V1R1

C/C++ compiler and previous versions of the OS/390 C/C++ compiler treated the

inline functions as static.)

Specify the STATICINLINE option for compatibility with previous versions of the C++

compiler.

For example, using the STATICINLINE compiler option causes function f in the

following declaration to be treated as static, even though it is not explicitly declared

as such.

inline void f() {/*...*/};

Using the NOSTATICINLINE compiler option gives f external linkage.

STRICT | NOSTRICT

Default: For NOOPT and OPT(2), the default option is STRICT. For OPT(3), the default

option is NOSTRICT.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

For NOOPT and OPT(2):

��
 STRICT

NOSTRICT

��

For OPT(3):

��
 NOSTRICT

STRICT

��

The STRICT option instructs the compiler to perform computational operations in a

rigidly-defined order such that the results are always determinable and recreatable.

Chapter 4. Compiler Options 185

NOSTRICT allows the compiler to reorder certain computations for better

performance. However, the end result may differ from the result obtained when

STRICT is specified.

In IEEE floating-point mode, NOSTRICT sets FLOAT(MAF). To avoid this behavior,

explicitly specify FLOAT(NOMAF).

You can specify this option for a specific subprogram using the #pragma

option_override(subprogram_name, "OPT(STRICT)") directive.

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. This option also

affects the regular object module if you request one by specifying the IPA(OBJECT)

option.

Effect on IPA Link step

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to ensure that an object is

included in a compatible partition. See “FLOAT” on page 101 for more information

on the effect of the STRICT option on the IPA Link step.

STRICT_INDUCTION | NOSTRICT_INDUCTION

Default: NOSTRICT_INDUCTION

Note: The c99 compiler invocation command for a regular compile in the z/OS

UNIX System Services environment uses STRICT_INDUCTION as the default

option.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOSTRICT_INDUC

STRICT_INDUC

��

The STRICT_INDUCTION option instructs the compiler to disable loop induction

variable optimizations. These optimizations have the potential to alter the semantics

of your program. Such optimizations can change the result of a program if

truncation or sign extension of a loop induction variable occurs as a result of

variable overflow or wrap-around.

The STRICT_INDUCTION option only affects loops which have an induction (loop

counter) variable declared as a different size than a register. Unless you intend

such variables to overflow or wrap-around, use NOSTRICT_INDUCTION.

Effect on IPA Compile step

If you specify the STRICT_INDUCTION option for any compilation unit in the IPA

Compile step, the compiler generates information for the IPA Link step. This option

also affects the regular object module if you request one by specifying the

IPA(OBJECT) option.

186 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

Effect on IPA Link step

The IPA Link step merges and optimizes your application’s code, and then divides it

into sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to ensure that an object is

included in a compatible partition.

The compiler sets the value of the STRICT_INDUCTION option for a partition to the

value of the first subprogram that is placed in the partition. During IPA inlining,

subprograms with different STRICT_INDUCTION settings may be combined in the

same partition. When this occurs, the resulting partition is always set to

STRICT_INDUCTION.

You can override the setting of STRICT_INDUCTION by specifying the option on the

IPA Link step. If you do so, all partitions will contain that value, and the prolog

section of the IPA Link step listing will display the value.

SUPPRESS | NOSUPPRESS

Default: NOSUPPRESS

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOSUPP

SUPP

(

n

)

��

Note: n is a comma separated list of messages IDs.

The SUPPRESS option prevents certain compiler informational or warning messages

from being printed to the listing file and to the terminal. For C, the message ID

range that is affected is CCN3000 through CCN4399. For C++, the message ID

range that is affected is CCN5000 to CCN6999, and CCN7500 to CCN8999. Note

that this option has no effect on linker or operating system messages. Compiler

messages that cause compilation to stop, such as (S) and (U) level messages

cannot be suppressed.

Effect on IPA Link step

The SUPPRESS option has the same effect on the IPA Link step that it does on a

regular compilation.

TARGET

Default: TARGET(LE, CURRENT)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Program Execution and Object Code Control

Chapter 4. Compiler Options 187

|
|
|

|
|

��

�

 ,

TARG

(

)

LE

IMS

CURRENT

zOSV1R4

zOSV1R5

zOSV1R6

zOSV1R7

0xnnnnnnnn

��

Note: Suboptions are not case-sensitive.

With the TARGET option, you can specify the run-time environment and release for

your program’s object module that z/OS XL C/C++ generates. This enables you to

generate code that is downward compatible with earlier levels of the operating

system while at the same time disallowing you from using library functions not

available on the targeted release. With the TARGET option, you can compile and link

an application on a higher level system, and run the application on a lower level

system.

To use the TARGET option, select a run-time environment of either LE or IMS. Then

select the desired release, for example, zOSV1R4. If you do not select a run-time

environment or release, the compiler uses a default of TARGET(LE, CURRENT).

TARGET() Generates object code to run under z/OS Language Environment. It

is the same as TARGET(LE,CURRENT).

The following suboptions target the run-time environment:

TARGET(LE) Generates object code to run under z/OS Language Environment.

This is the default.

TARGET(IMS) Generates object code to run under the Information Management

System (IMS) subsystem. If you are compiling the main program,

you must also specify the PLIST(OS) option. TARGET(IMS) is not

supported with LP64.

 For more information about these suboptions refer to “TARGET run-time

environment suboptions (LE,IMS)” on page 192.

The following suboptions target the release at program run time:

TARGET(CURRENT) Generates object code to run under the same

version of z/OS with which the compiler is included.

As the compiler is included with z/OS V1R7,

TARGET(CURRENT) is the same as TARGET(zOSV1R7).

This is the default.

2

Note: The binder has an option called COMPAT that

must be used when generating code to be

2. Note that for some releases of z/OS, z/OS XL C/C++ might not include a new version of the compiler. The same version of the

compiler is then included with more than one z/OS release. The compiler is designed to run on all these z/OS releases. In this

case, the compiler sets CURRENT to the z/OS release on which it is running. (It does so by querying the Language Environment

Library version of the system.) You can specify an zOSVxRy suboption that corresponds to a release that is earlier or the same as

CURRENT. You cannot specify an zOSVxRy suboption that corresponds to a release later than CURRENT.

188 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|
|

run on an earlier version of the operating

system. The C/C++ cataloged procedures

and the z/OS UNIX System Services utilities

c99/c89/c++/cc set the COMPAT option to

CURR. As of z/OS V1R3, the binder output

defaults to PM4.

TARGET(zOSV1R4) Generates object code to run under z/OS Version 1

Release 4 and subsequent releases.

TARGET(zOSV1R5) Generates object code to run under z/OS Version 1

Release 5 and subsequent releases.

TARGET(zOSV1R6) Generates object code to run under z/OS Version 1

Release 6 and subsequent releases.

TARGET(zOSV1R7) Generates object code to run under z/OS Version 1

Release 7 and subsequent releases.

TARGET(0xnnnnnnnn) An eight-digit hexadecimal literal string that

specifies an operating system level. This string is

intended for library providers and vendors to test

header files on future releases and is an advanced

feature. Most applications should use the other

release suboptions. The layout of this literal is the

same as the __TARGET_LIB__ macro. For more

information on using this literal, please see “Using

the hexadecimal string literal suboption” on page

190.

 For more information about these suboptions refer to “TARGET release suboptions.”

The compiler generates a comment that indicates the value of TARGET in your object

module to aid you in diagnosing problems in your program.

If you specify more than one suboption from each group of suboptions (that is, the

run-time environment, or the release) the compiler uses the last specified suboption

for each group.

The compiler applies and resolves defaults after it views all the entered suboptions.

For example, TARGET(LE,0x41050000, IMS, zOSV1R6, LE) resolves to TARGET(LE,

zOSV1R6). TARGET(LE, 0x41050000, IMS, zOSV1R6) resolves to TARGET(IMS,

zOSV1R6). TARGET(LE, 0x41050000, IMS) resolves to TARGET(IMS, 0x41050000).

The default value of the ARCHITECTURE compiler option depends on the value of the

TARGET release suboption. For TARGET(zOSV1R6) and above, the default is ARCH(5).

For TARGET(zOSV1R5) and below, the default is ARCH(2).

TARGET release suboptions

The TARGET release suboptions (CURRENT, zOSV1R4, zOSV1R5, zOSV1R6 and zOSV1R7)

help you to generate code that can be executed on a particular release of a z/OS

system, and on subsequent releases.

In order to use these suboptions, you must:

v Use the z/OS V1R7 class library header files (found in the CBC.SCLBH.* data

sets) during compilation

Chapter 4. Compiler Options 189

|

||
|

|
|
|

|
|

|

|

For example, to generate code that will execute on an z/OS V1R4 system, using a

z/OS V1R7 application development system:

v Use the z/OS V1R7 Language Environment data sets (CEE.SCEE*) during the

assembly, compilation, pre-link, link-edit, and bind phases.

v Use the z/OS V1R4 class library data sets (SCLBCPP, SCLBOBC, SCLBOXL, SCLBSID,

SCLBXL) during pre-link, link-edit, and bind. Use the z/OS V1R7 class library

header data sets (CBC.SCLBH.*) during compilation.

v Specify the compiler option TARGET(zOSV1R4) on the C/C++ compiles. Note: The

programmer is responsible for ensuring that they are not exploiting any Language

Environment functions that are unavailable on z/OS V1R4.

See Appendix A, “Prelinking and linking z/OS XL C/C++ programs,” on page 527 for

details on prelinking and linking applications.

These compiler suboptions will not allow you to exploit new functions provided on

the newer release. Rather, they allow you to build an application on a newer

release and run it on an older release.

When you invoke the TARGET(OSVxRy) release suboptions, the compiler sets the

__TARGET_LIB__ macro. See z/OS XL C/C++ Language Reference for more

information about this macro.

Using the hexadecimal string literal suboption: This hexadecimal literal string

enables you to specify an operating system level. It is an advanced feature that is

intended for library providers and vendors to test header files on future releases.

Most applications should use the other release suboptions instead of this string

literal. The layout of this literal is the same as the __TARGET_LIB__ macro.

The compiler checks to ensure that there are exactly 8 hexadecimal digits. The

compiler performs no further validation checks.

The compiler uses a two step process to specify the operating system level:

v The hexadecimal value will be used, as specified, to set the __TARGET_LIB__

macro.

v The compiler determines the operating system level implied by this literal.

If the level corresponds to a valid suboption name, the compiler behaves as though

that suboption is specified. Otherwise, the compiler uses the next lower operating

system suboption name. If there is no lower suboption name, the compiler behaves

as though you have specified an unsupported release. Note that the compiler sets

the __TARGET_LIB__ macro to the value that you specify, even if it does not

correspond to a valid operating system level. Following are some examples:

TARGET(0x41070000)

Equivalent to TARGET(zOSV1R7).

TARGET(0xA3120000)

This does not match any existing operating system release

suboption name. The next lower operating system level implied by

this literal, which the compiler considers valid, is CURRENT. Thus, the

compiler sets the __TARGET_LIB__ macro to 0xA3120000, and

behaves as though you have specified TARGET(CURRENT).

TARGET(0x41060001)

This does not match any existing operating system release

suboption name because of the 1 in the last digit. The next lower

190 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|
|

|

|

|
|

|
|

|
|
|

operating system level implied by this literal which the compiler

considers valid is z/OS V1R6. Thus, the compiler sets the

__TARGET_LIB__ macro to 0x41060001, and behaves as though you

have specified TARGET(zOSV1R6).

TARGET(0x21010000)

This does not match any existing operating system release

suboption name, and specifies a release earlier than the earliest

supported release. In this instance, the compiler sets the

__TARGET_LIB__ macro to 0x21010000, and behaves as though you

have specified an unsupported release.

Restrictions for C/C++: All input libraries used during the application build

process must be the appropriate level for the target release.

v The current level of the Language Environment data sets can be used to target

to previous releases. Use these Language Environment data sets during the

assembly, compilation, pre-link, link-edit, and bind phases.

v For C++ class libraries, use the current release class library header files during

compilation; use the class library data sets for the targeted release during

pre-link, link-edit, and bind.

v Ensure that any other libraries incorporated in the application, are compatible

with the target release.

While there are no restrictions on the use of ARCH and TUNE with TARGET, ensure that

the level specified is consistent with the target hardware.

 TARGET Release

Suboption Restrictions

v CURRENT

v zOSV1R7

v zOSV1R6

v TARGET(IMS) is not supported for LP64. The compiler will issue a

message and ignore the option.

v ARCH(5) is the default.

v zOSV1R5 v The compiler will issue a message and ignore the option.

v The application built from the IPA(PDF1) compiler option can only

be run on the current system.

v LP64, WARN64, ENUM(8), and ENUM(INTLONG) (C++ only) are not

supported.

v ARCH(2) is the default.

Only options or features that cannot be supported on that operating system level

are disabled. For example, STRICT_INDUCTION is allowed on all operating system

levels. An option or feature that is disabled by one operating system level is also

disabled by all earlier operating system levels.

Restrictions for C: TARGET(zOSVxRy) is not permitted in a #pragma target()

directive.

If you specify TARGET(zOSVxRy) on the command line, and one or more of the

disallowed options is specified, the compiler issues a warning message and

disables the option.

Effect on IPA Compile step: If you specify the TARGET option for any compilation

unit in the IPA Compile step, the compiler generates information for the IPA Link

step. This option also affects the regular object module if you request one by

specifying the IPA(OBJECT) option.

Chapter 4. Compiler Options 191

|
|
|
|

|

|
|

When you are performing the IPA Compile to generate IPA Object files, ensure that

you are using the appropriate header library files.

Effect on IPA Link step: If you specify TARGET on the IPA Link step, it overrides

the TARGET value that you specified for the IPA Compile step.

The IPA Link step accepts the release suboptions, for example, CURRENT or zOSV1R7.

However, when using TARGET suboptions ensure that:

v All IPA Object files are compiled with the appropriate TARGET suboption and

header files

v All non-IPA object files are compiled with the appropriate TARGET suboption and

header files

v All other input libraries are compatible with the specified run-time release

TARGET run-time environment suboptions (LE,IMS)

The TARGET Run-time Environment suboption allows you to select a run-time

environment of either Language Environment or IMS.

Effect on IPA Compile step: If you specify the TARGET option for any compilation

unit in the IPA Compile step, the compiler generates information for the IPA Link

step. This option also affects the regular object module if you request one by

specifying the IPA(OBJECT) option.

Effect on IPA Link step: If you specify TARGET on the IPA Link step, it has the

following effects:

v It overrides the TARGET value that you specified for the IPA Compile step.

v It overrides the value that you specified for #pragma runopts(ENV). If you specify

TARGET(LE) or TARGET(), the IPA Link step specifies #pragma runopts(ENV(MVS)).

If you specify TARGET(IMS), the IPA Link step specifies #pragma

runopts(ENV(IMS)).

v It may override the value that you specified for #pragma runopts(PLIST), which

specifies the run-time option during program execution. If you specify TARGET(LE)

or TARGET(), and you set the value set for the PLIST option to something other

than HOST, the IPA Link step sets the values of #pragma runopts(PLIST) and the

PLIST compiler option to IMS. If you specify TARGET(IMS), the IPA Link step

unconditionally sets the value of #pragma runopts(PLIST) to IMS.

TEMPINC | NOTEMPINC

Default: For a PDS directory, the default option is TEMPINC(TEMPINC). For an HFS

directory, the default option is TEMPINC(./tempinc).

Note: The c++ compiler invocation command for a regular compile in the z/OS

UNIX System Services environment uses TEMPINC(tempinc) as the default

option.

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: File Management

192 z/OS V1R7.0 XL C/C++ User’s Guide

|

��
 TEMPINC

NOTEMPINC

(

location

)

��

TEMPINC(location) places all template instantiation files into location, which may be a

PDS or an HFS directory. If you do not specify a location, the compiler places all

template instantiation files in a default location. If the source resides in a data set,

the default location is a PDS with a low-level qualifier of TEMPINC. The high-level

qualifier is the userid under which the compiler is running. If the source resides in

an HFS file, the default location is the HFS directory ./tempinc.

The NOTEMPINC option can optionally take a filename suboption. This filename then

becomes the default. If you subsequently use the TEMPINC option without a filename

suboption, then the compiler uses the filename that you specified in the earlier

NOTEMPINC. For example, the following specifications have the same result:

CXX HELLO (NOTEMPINC(/hello) TEMPINC

CXX HELLO (TEMPINC(/hello)

If you specify TEMPINC and NOTEMPINC multiple times, the compiler uses the last

specified option with the last specified suboption. For example, the following

specifications have the same result:

CXX HELLO (NOTEMPINC(/hello) TEMPINC(/n1) NOTEMPINC(/test) TEMPINC

CXX HELLO (TEMPINC(/test)

If you have large numbers of recursive templates, consider using FASTT. See

“FASTTEMPINC | NOFASTTEMPINC” on page 99 for details.

Note: If you use the following form of the command in a JES3 batch environment

where xxx is an unallocated data set, you may get undefined results.

TEMPINC(xxx)

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the TEMPINC option for

that step.

TEMPLATERECOMPILE | NOTEMPLATERECOMPILE

Default: TEMPLATERECOMPILE

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: File Management

��
 TEMPLATEREC

NOTEMPLATEREC

��

The TEMPLATERECOMPILE option helps to manage dependencies between compilation

units that have been compiled using the TEMPLATEREGISTRY option. Given a program

in which multiple compilation units reference the same template instantiation, the

TEMPLATEREGISTRY option nominates a single compilation unit to contain the

instantiation. No other compilation units will contain this instantiation. Duplication of

Chapter 4. Compiler Options 193

object code is thereby avoided. If a source file that has been compiled previously is

compiled again, the TEMPLATERECOMPILE option consults the template registry to

determine whether changes to this source file have necessitated the recompile of

other compilation units. This can occur when the source file has changed in such a

way that it no longer references a given instantiation and the corresponding object

file previously contained the instantiation. If so, affected compilation units will be

recompiled automatically.

The TEMPLATERECOMPILE option requires that object files generated by the compiler

remain in the PDS or subdirectory to which they were originally written. If your

automated build process moves object files from their original PDS or subdirectory,

use the NOTEMPLATERECOMPILE option whenever TEMPLATEREGISTRY is enabled.

Effect on IPA Link step

The IPA Link step does not accept the TEMPLATERECOMPILE option. The compiler

issues a warning message if you specify this option in the IPA Link step.

TEMPLATEREGISTRY | NOTEMPLATEREGISTRY

Default: NOTEMPLATEREGISTRY

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: File Management

��
 NOTEMPL

TEMPL

(registryFile)

��

The TEMPLATEREGISTRY option maintains records of all templates as they are

encountered in the source and ensures that only one instantiation of each template

is made. The first time that the compiler encounters a reference to a template

instantiation, that instantiation is generated and the related object code is placed in

the current object file. Any further references to identical instantiations of the same

template in different compilation units are recorded but the redundant instantiations

are not generated. No special file organization is required to use the

TEMPLATEREGISTRY option. If you do not specify a location, the compiler places all

template registry information in a default location. If the source resides in a data

set, the default location is a sequential data set, whose high-level qualifier is the

userid under which the compiler is running, with .TEMPLREG appended as the

low-level qualifier. If the source resides in an HFS file, the default location is the

HFS file ./templreg. If a file currently exists with the name of the file name used for

TEMPLATEREGISTRY, then that file will be overwritten. For more information on using

the TEMPLATEREGISTRY option, see z/OS XL C/C++ Programming Guide.

Note: TEMPINC and TEMPLATEREGISTRY cannot be used together because they are

mutually exclusive. If you specify TEMPLATEREGISTRY, then you set NOTEMPINC.

If you use the following form of the command in a JES3 batch environment

where xxx is an unallocated data set, you may get undefined results.

TEMPLREG(xxx)

194 z/OS V1R7.0 XL C/C++ User’s Guide

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the TEMPLATEREGISTRY

option for that step.

TERMINAL | NOTERMINAL

Default: TERMINAL

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 TERM

NOTERM

��

The TERMINAL option directs all of the diagnostic messages of the compiler to

stderr.

If you specify NOTERMINAL, then no diagnostic messages are sent to stderr. Under

z/OS batch, the default for stderr is SYSPRINT.

If you specify the PPONLY option, the compiler turns on TERM.

Effect on IPA Link step

The TERMINAL compiler option has the same effect on the IPA Link step as it does

on a regular compile step.

TEST | NOTEST

Default: For C++, the default option is NOTEST(HOOK). For C, the default option is:

NOTEST(HOOK,SYM,BLOCK,LINE,PATH).

The default for the z/OS UNIX System Services utilities is NOTEST.

Note: In the z/OS UNIX System Services environment, -g turns on TEST.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

The TEST suboptions that are common to C compile, C++ compile, and IPA Link

steps are:

��
 NOTEST

TEST

(

HOOK

NOHOOK

)

��

Chapter 4. Compiler Options 195

HOOK | NOHOOK When NOOPT is in effect When OPT is in effect

HOOK v For C++ compile, generates all

possible hooks.

For C compile, generates all

possible hooks based on current

settings of BLOCK, LINE, and PATH

suboptions.

For IPA link, generates Function

Entry, Function Exit, Function

Call, and Function Return hooks.

v For C++ compile, generates

symbol information.

For C compile, generates

symbol information unless NOSYM

is specified.

For IPA link, does not generate

symbol information.

v Generates Function Entry,

Function Exit, Function Call and

Function Return hooks.

v Does not generate symbol

information.

NOHOOK v Does not generate any hooks.

v For C++ compile, generates

symbol information.

For C compile, generates

symbol information based on the

current settings of SYM and

BLOCK.

For IPA link, does not generate

any symbol information.

v Does not generate any hooks.

v Does not generate symbol

information.

The TEST suboptions generate symbol tables and program hooks. Debug Tool uses

these tables and hooks to debug your program. The Performance Analyzer uses

these hooks to trace your program. The choices you make when compiling your

program affect the amount of Debug Tool function available during your debugging

session. These choices also impact the ability of the Performance Analyzer to trace

your program.

To look at the flow of your code with Debug Tool, or to trace the flow of your code

with the Performance Analyzer, use the HOOK suboption with OPT in effect. These

suboptions generate function entry, function exit, function call, and function return

hooks. They do not generate symbol information.

When NOOPT is in effect, and you use the HOOK suboption, the debugger runs slower,

but all Debug Tool commands such as AT ENTRY * are available. You must specify

the HOOK suboption in order to trace your program with the Performance Analyzer.

If you specify the NOTEST option, debugging information is not generated and you

cannot trace your program with the Performance Analyzer.

In order for the debugger to access the source lines, the primary source file of a

compilation unit should come from one file (or sequential data set or PDS member),

and not be the result of concatenated DD statements. This is because only the

name of the first data set is known to the compiler reading the concatenation; the

debug information generated in this case would contain only the first data set name.

All the source files, including header files, should not be temporary files, and should

be available to the debugger under the same name as used during compilation.

196 z/OS V1R7.0 XL C/C++ User’s Guide

You can use the CSECT option with the TEST option to place your debug information

in a named CSECT. This enables the compiler and linker to collect the debug

information in your module together, which may improve the run-time performance

of your program.

If you specify the INLINE and TEST compiler options when NOOPTIMIZE is in effect,

INLINE is ignored.

If you specify the TEST option, the compiler turns on GONUMBER.

You can specify this option using the #pragma options directive for C.

Note: If your code uses any of the following, you cannot debug it with the MFI

Debug Tool:

v IEEE code

v Code that uses the long long data type

v Code that runs in a POSIX environment

You must use either the C/C++ Productivity Tools for OS/390 or dbx.

Additional z/OS XL C compile suboptions

��

�

 NOTEST

,

TEST

(

)

BLOCK

NOBLOCK

HOOK

NOHOOK

LINE

NOLINE

PATH

NOPATH

SYM

NOSYM

ALL

NONE

��

The TEST suboptions BLOCK, LINE, and PATH regulate the points where the compiler

inserts program hooks. When you set breakpoints, they are associated with the

hooks which are used to instruct Debug Tool where to gain control of your program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the

object output of the compiler. Debug Tool uses the symbol tables to obtain

information about the variables in the program.

SYM Generates symbol tables in the object output of the program that give you

access to variables and other symbol information.

v You can reference all program variables by name, allowing you to

examine them or use them in expressions.

v You can use the Debug Tool command GOTO to branch to a label

(paragraph or section name).

v The Performance Analyzer does not use symbol information. Specify

NOSYM if you want to trace the program with the Performance Analyzer.

Chapter 4. Compiler Options 197

BLOCK Inserts only block entry and exit hooks into the object output of the

program. A block is any number of data definitions, declarations, or

statements that are enclosed within a single set of braces. BLOCK also

creates entry hooks and exit hooks for nested blocks. If SYM is enabled,

symbol tables are generated for variables local to these nested blocks.

v You can only gain control at entry and exit of blocks.

v Issuing a command such as STEP causes your program to run, until it

reaches the exit point.

v The Performance Analyzer does not use block entry and exit hooks.

Specify NOBLOCK if you want to trace the program with the Performance

Analyzer.

LINE Generates hooks at most executable statements. Hooks are not generated

for the following:

v Lines that identify blocks (lines that contain braces)

v Null statements

v Labels

v Statements that begin in an #include file

v The Performance Analyzer does not use statement hooks. Specify

NOLINE if you want to trace the program with the Performance Analyzer.

PATH Generates hooks at all path points; for example, hooks are inserted at

if-then-else points.

v This option does not influence the generation of entry and exit hooks for

nested blocks. You must specify the BLOCK suboption if you desire such

hooks.

v Debug Tool can gain control only at path points and block entry and exit

points. If you attempt to STEP through your program, Debug Tool gains

control only at statements that coincide with path points, giving the

appearance that not all statements are executed.

v The Debug Tool command GOTO is valid only for statements and labels

that coincide with path points.

v The Performance Analyzer uses function call and function return hooks.

Specify PATH if you want to trace the program with the Performance

Analyzer.

ALL Inserts block and line hooks, and generates symbol table. Hooks are

generated at all statements, all path points (if-then-else, calls, and so on),

and all function entry and exit points.

 ALL is equivalent to TEST(HOOK, BLOCK, LINE, PATH, SYM).

NONE Generates all compiled-in hooks only at function entry and exit points. Block

hooks and line hooks are not inserted, and the symbol tables are

suppressed.

 TEST(NONE) is equivalent to TEST(HOOK, NOBLOCK, NOLINE, NOPATH, NOSYM).

Note: When the OPTIMIZE and TEST options are both specified, the TEST suboptions

are set by the compiler to TEST(HOOK, NOBLOCK, NOLINE, NOPATH, NOSYM)

regardless of what the user has specified. The behavior of the TEST option in

this case is as described in the table in the z/OS XL C/C++ section of the

TEST | NOTEST option for the HOOK suboption.

For z/OS XL C compile, you can specify the TEST | NOTEST option on the command

line and in the #pragma options preprocessor directive. When you use both

methods, the option on the command line takes precedence. For example, if you

198 z/OS V1R7.0 XL C/C++ User’s Guide

usually do not want to generate debugging information when you compile a

program, you can specify the NOTEST option on a #pragma options preprocessor

directive. When you do want to generate debugging information, you can then

override the NOTEST option by specifying TEST on the command line rather than

editing your source program. Suboptions that you specified in a #pragma

options(NOTEST) directive, or with the NOTEST compiler option, are used if TEST is

subsequently specified on the command line.

Effect on IPA Compile step

On the IPA Compile step, you can specify all of the TEST suboptions that are

appropriate for the language of the code that you are compiling. However, they

affect processing only if you requested code generation, and only the conventional

object file is affected. If you specify the NOOBJECT suboption of the IPA compiler

option on the IPA Compile step, the IPA Compile step ignores the TEST option.

Effect on IPA Link step

The IPA Link step supports only the TEST, TEST(HOOK), TEST(NOHOOK), and NOTEST

options. If you specify TEST(HOOK) or TEST, the IPA Link step generates function call,

entry, exit, and return hooks. It does not generate symbol table information. If you

specify TEST(NOHOOK), the IPA Link step generates limited debug information without

any hooks. If you specify any other TEST suboptions for the IPA Link step, it turns

them off and issues a warning message.

Note: See “DEBUG | NODEBUG” on page 86 for more information on debugging

applications linked with IPA.

TMPLPARSE

Default: TMPLPARSE(NO)

 Option Scope

C Compile C++ Compile IPA Link

U

CATEGORY: Programming Language Characteristics Control

��
 NO

TMPLPARSE

(

)

WARNING

ERROR

��

The TMPLPARSE option controls whether parsing and semantic checking are applied

to template definitions or only to template instantiations. The TMPLPARSE option

applies to class template definitions as well, for example, the class member list is

skipped when the template is seen and is only parsed if the class template is

instantiated.

The TMPLPARSE option supports the following suboptions:

no Do not parse the template implementations until they are instantiated. This

is the default.

warning

Parses template implementations and issues warning messages for

semantic errors.

Chapter 4. Compiler Options 199

|
|

error Treats problems in template implementations as errors, even if the template

is not instantiated.

This option applies to template definitions but not their instantiations. Regardless of

the setting of this option, error messages are produced for problems that appear

outside definitions. For example, errors found during the parsing or semantic

checking of constructs always cause error messages. Function template parameter

lists must always be parsed so that the function can be identified. Errors in a

function template parameter list always cause error messages.

Effect on IPA Link step

The IPA Link step issues a diagnostic message if you specify the TMPLPARSE option

for that step.

TUNE

Default: TUNE(5)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

�� TUN(n) ��

The TUNE option specifies the architecture for which the executable program will be

optimized. The TUNE level controls how the compiler selects and orders the available

machine instructions, while staying within the restrictions of the ARCH level in effect.

It does so in order to provide the highest performance possible on the given TUNE

architecture from those that are allowed in the generated code. It also controls

instruction scheduling (the order in which instructions are generated to perform a

particular operation). Note that TUNE impacts performance only; it does not impact

the processor model on which you will be able to run your application.

Select TUNE to match the architecture of the machine where your application will run

most often. Use TUNE in cooperation with ARCH. TUNE must always be greater or

equal to ARCH because you will want to tune an application for a machine on which

it can run. The compiler enforces this by adjusting TUNE up rather than ARCH down.

TUNE does not specify where an application can run. It is primarily an optimization

option. For many models, the best TUNE level is not the best ARCH level. For

example, the correct choices for model 9672-Rx5 (G4) are ARCH(2) and TUNE(3).

For more information on the interaction between TUNE and ARCH see

“ARCHITECTURE” on page 69.

Note: If the TUNE level is lower than the specified ARCH level, the compiler forces

TUNE to match the ARCH level or uses the default TUNE level, whichever is

greater.

Specify the group to which a model number belongs as a sub-parameter. If you

specify a model which does not exist or is not supported, a warning message is

issued stating that the suboption is invalid and that the default will be used.

Current models that are supported:

200 z/OS V1R7.0 XL C/C++ User’s Guide

0 This option generates code that is executable on all models, but it will not

be able to take advantage of architectural differences on the models

specified below.

1 This option generates code that is executable on all models but that is

optimized for the following models:

v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and

9021-900

v 9021-xx1, 9021-xx2, and 9672-Rx2 (G1)

2 This option generates code that is executable on all models but that is

optimized for the following models:

v 9672-Rx3 (G2), 9672-Rx4 (G3), and 2003

v 9672-Rx1, 9672-Exx, and 9672-Pxx

3 This option generates code that is executable on all models but that is

optimized for the following and follow-on models: 9672-Rx5 (G4), 9672-xx6

(G5), and 9672-xx7 (G6).

4 This option generates code that is executable on all models but that is

optimized for the model 2064-100 (z/900).

5 This option is the default. This option generates code that is executable on

all models but that is optimized for the model 2064-100 (z/900) in

z/Architecture mode.

6 This option generates code that is executable on all models, but is

optimized for the 2084-xxx models.

7 This option generates code that is executable on all models, but is

optimized for the 2094-xxx models.

Note: For the above system machine models, x indicates any value. For example,

9672-Rx4 means 9672-RA4 through to 9672-RY4 and 9672-R14 through to

9672-R94 (the entire range of G3 processors), not just 9672-RX4.

A comment that indicates the level of the TUNE option will be generated in your

object module to aid you in diagnosing your program.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

If you specify the TUNE option for any compilation unit in the IPA Compile step, the

compiler saves information for the IPA Link step. This option also affects the regular

object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link step

The IPA Link step merges and optimizes the application code, and then divides it

into sections for code generation. Each of these sections is a partition.

If you specify the TUNE option for the IPA Link step, it uses the value of the option

you specify. The value you specify appears in the IPA Link step Prolog listing

section and all Partition Map listing sections.

If you do not specify the option on the IPA Link step, the value it uses for a partition

depends upon the TUNE option you specified during the IPA Compile step for any

compilation unit that provided code for that partition. If you specified the same TUNE

value for all compilation units, the IPA Link step uses that value. If you specified

different TUNE values, the IPA Link step uses the highest value of TUNE.

Chapter 4. Compiler Options 201

||
|

If the resulting level of TUNE is lower than the level of ARCH, TUNE is set to the level of

ARCH.

The Partition Map section of the IPA Link step listing, and the object module display

the final option value for each partition. If you override this option on the IPA Link

step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the value of

the TUNE option that you specified on the IPA Compile step for each object file.

UNDEFINE

Default: not applicable

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Preprocessor

��

�

 ,

UNDEF

(

name

)

��

UNDEFINE(name) removes any value that name may have and makes its value

undefined. For example, if you set OS2 to 1 with DEF(OS2=1), you can use

UNDEF(OS2) option to remove that value.

In the z/OS UNIX System Services environment, you can unset variables by

specifying -U when using the c89, cc, or c++ commands.

Note: c89 preprocesses -D and -U flags before passing them to the compiler. xlc

just passes -D and -U to the compiler, which interprets them as DEFINE and

UNDEFINE. For more information, see Chapter 18, “c89 — Compiler invocation

using host environment variables,” on page 465 or Chapter 19, “xlc —

Compiler invocation using a customizable configuration file,” on page 505.

UNROLL

Default: UNROLL(AUTO)

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 AUTO

UNROLL

YES

NO

��

202 z/OS V1R7.0 XL C/C++ User’s Guide

The UNROLL compiler option instructs the compiler to perform loop unrolling, which is

an optimization that replicates a loop body multiple times, and adjusts the loop

control code accordingly. Loop unrolling exposes instruction level parallelism for

instruction scheduling and software pipelining and thus can improve a program’s

performance. It also increases code size in the new loop body, which may increase

pressure on register allocation, cause register spilling, and therefore cause a loss in

performance. Before applying unrolling to a loop, you must evaluate these tradeoffs.

In order to check if the unroll option improves performance of a particular

application, you should compile your program with the usual options, run it with a

representative workload, recompile it with the UNROLL option and/or unroll pragmas,

and rerun it under the same conditions to see if the UNROLL option leads to a

performance improvement.

The UNROLL compiler option provides the following suboptions:

YES Allows the compiler to do unrolling, but compiler is not required to do so.

NO Means that the compiler is not permitted to unroll loops in the compilation

unit, unless unroll or unroll(n) pragmas are specified for particular loops.

AUTO This option is the default. It tells the compiler that unrolling is allowed on

any loop in the specified program, unless a loop is marked with #pragma

unroll.

UPCONV | NOUPCONV

Default: NOUPCONV

Note: The cc compiler invocation command for a regular compile in the z/OS UNIX

System Services environment uses UPCONV as the default option.

 Option Scope

C Compile C++ Compile IPA Link

U U

CATEGORY: Programming Language Characteristics Control

��
 NOUPC

UPC

��

The UPCONV option causes the z/OS XL C compiler to follow unsignedness

preserving rules when doing z/OS XL C type conversions; that is, when widening all

integral types (char, short, int, long). Use this option when compiling older z/OS

XL C programs that depend on the K&R C conversion rules.

Note: This document uses the term K&R C to refer to the C language plus the

generally accepted extensions produced by Brian Kernighan and Dennis

Ritchie that were in use prior to the ISO standardization of C.

Whenever you specify the UPCONV compiler option, a comment noting its use will be

generated in your object module to aid you in diagnosing your program.

You can specify this option using the #pragma options directive for C.

Chapter 4. Compiler Options 203

|
|

|

|
|
|

WARN64 | NOWARN64

Default: NOWARN64

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Debug/Diagnostic

��
 NOWARN64

WARN64

��

The WARN64 option generates informational messages for situations where compiling

the source code with ILP32 and LP64 may produce different behavior. This option is

designed to help migrate a program to 64-bit mode. Use the FLAG(I)option to

display all informational messages.

WARN64 warns you about any code fragments that have the following types of

portability errors:

v A constant that selected an unsigned long int data type in 31-bit mode may fit

within a long int data type in 64-bit mode

v A constant larger than UINT_MAX, but smaller than ULONGLONG_MAX will overflow in

31-bit mode, but will be acceptable in an unsigned long or signed long in 64-bit

mode

It also warns you about the following types of possible portability errors:

v Loss of digits when you assign a long type to an int type

v Change in the result when you assign an int to a long type

v Loss of high-order bytes of a pointer when a pointer type is assigned to an int

type

v Incorrect pointer when an int type is assigned to a pointer type

v Change of a constant value when the constant is assigned to a long type

WSIZEOF | NOWSIZEOF

Default: NOWSIZEOF

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control

��
 NOWSIZEOF

WSIZEOF

��

When you use the WSIZEOF option, sizeof returns the size of the widened type for

function return types instead of the size of the original return type. For example, if

you compile the following program with the WSIZEOF option, the value of i is 4.

204 z/OS V1R7.0 XL C/C++ User’s Guide

char foo();

i = sizeof foo();

C/C++ compilers prior to and including C/C++ MVS/ESA™ Version 3 Release 1

returned the size of the widened type instead of the original type for function return

types.

The z/OS XL C/C++ compiler now gives i the value 1, which is the size of the

original type char.

If your source code depends on the behavior of the old compilers, use the WSIZEOF

option to return the size of widened type for function return types.

The WSIZEOF option has exactly the same effect as putting a #pragma wsizeof(on)

at the beginning of your source file. For more information on #pragma wsizeof(on),

see z/OS XL C/C++ Language Reference.

XPLINK | NOXPLINK

Default: NOXPLINK

For LP64, the default is XPLINK.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Object Code Control, Debug/Diagnostic

��
 NOXPL

XPL

�

,

(

BACK | NOBACK

)

CALLBACK | NOCALLBACK

GUARD | NOGUARD

OSCALL

N

U

D

STOR|NOSTOR

��

The XPLINK (Extra Performance Linkage) option instructs the compiler to generate

extra performance linkage for subroutine calls. Use this option to increase the

performance of your applications.

Using the XPLINK option increases the performance of C/C++ routines by reducing

linkage overhead and by passing function call parameters in registers. It supports

both reentrant and non-reentrant code, as well as calls to functions exported from

DLLs.

The extra performance linkage resulting from XPLINK is a common linkage

convention for C and C++. Therefore, it is possible for a C function pointer to

reference a non-″extern C″ C++ function. It is also possible for a non-″extern C″

C++ function to reference a C function pointer. With this linkage, casting integers to

Chapter 4. Compiler Options 205

|

function pointers is the same as on other platforms such as AIX, making it easier to

port applications to z/OS using the C/C++ compiler.

You can not bind XPLINK object decks together with non-XPLINK object decks, with

the exception of object decks using OS_UPSTACK or OS_NOSTACK. XPLINK parts of an

application can work with non-XPLINK parts across DLL and fetch()boundaries.

When compiling using the XPLINK option, the compiler uses the following options as

defaults:

v CSECT()

v GOFF

v LONGNAME

v RENT

You may override these options. However, the XPLINK option requires the GOFF

option. If you specify the NOGOFF option, the compiler issues a warning message and

promotes the option to GOFF.

In addition, the XPLINK option requires that the value of ARCH must be 2 or greater.

The compiler issues a message if you specify ARCH(0) or ARCH(1) with XPLINK and

forces ARCH to 2.

Note: When using XPLINK and source files with duplicate file names, the linker may

emit an error and discard one of the code sections. In this case, turn off the

CSECT option by specifying NOCSECT.

The XPLINK option accepts the following suboptions:

BACKCHAIN | NOBACKCHAIN

 DEFAULT: NOBACKCHAIN

 If you specify BACKCHAIN, the compiler generates a prolog that saves

information about the calling function in the stack frame of the called

function. This facilitates debugging using storage dumps. Use this suboption

in conjunction with STOREARGS to make storage dumps more useful.

CALLBACK | NOCALLBACK

 DEFAULT: NOCALLBACK

 XPLINK(CALLBACK) is primarily intended to enable function pointer calls

across XPLINK DLLs and non-XPLINK programs. With XPLINK, function calls

are supported across a DLL boundary with certain restrictions. In particular,

if a function pointer is created by a non-XPLINK caller pointing to an XPLINK

function, it can be passed as an argument via an exported function into the

DLL, which can then use it as callback. This is because the compiler knows

about the function pointer argument and is able to insert code to fix-up the

function pointer. However, non-XPLINK function pointers passed into the DLL

by other means are not supported. If you specify CALLBACK, all calls via

function pointers will be considered potentially incompatible, and fix-up code

will be inserted by the compiler at the locations of the incompatible DLL

callbacks through function pointers to assist the call. The application will be

impacted by a performance penalty. In an XPLINK(NOCALLBACK) compilation,

if a function pointer is declared using the__callback qualifier keyword, the

compiler will insert fix-up code to assist the call. For more information on

this keyword, see z/OS XL C/C++ Language Reference.

206 z/OS V1R7.0 XL C/C++ User’s Guide

Note: In LP64 mode, the only linkage supported is XPLINK. Do not use

XPLINK(CALLBACK) in LP64 mode.

GUARD | NOGUARD

 DEFAULT: GUARD

 If you specify NOGUARD, the compiler generates an explicit check for stack

overflow, which enables the storage run-time option. Using NOGUARD causes

a performance degradation at run time, even if you do not use the

Language Environment run-time STORAGE option.

OSCALL(NOSTACK| UPSTACK| DOWNSTACK)

 DEFAULT: NOSTACK

 This suboption directs the compiler to use the linkage (OS_NOSTACK,

OS_UPSTACK, or OS_DOWNSTACK) as specified in this suboption for any #pragma

linkage(identifier, OS) calls in your application.

 This value causes the compiler to use the following linkage wherever

linkage OS is specified by #pragma linkage in C, or extern "linkage" in

C++:

Linkage Used Linkage Specified

NOSTACK OS_NOSTACK or OS31_NOSTACK (equivalent)

UPSTACK OS_UPSTACK

DOWNSTACK OS_DOWNSTACK

 For example, since the default of this option is NOSTACK, any #pragma

linkage(identifier,OS) in C code, works just as if #pragma

linkage(identifier,OS31_NOSTACK) had been specified.

 The abbreviated form of this suboption is OSCALL(N | U | D).

 This suboption only applies to routines that are referenced but not defined

in the compilation unit.

STOREARGS| NOSTOREARGS

 DEFAULT: NOSTOREARGS

 If you specify the STOREARGS suboption, the compiler generates code to

store arguments that are normally only passed in registers, into the caller’s

argument area. This facilitates debugging using storage dumps. Use this

suboption in conjunction with the BACKCHAIN suboption to make storage

dumps more useful.

 Note that the values in the argument area may be modified by the called

function.

 The abbreviated form of this suboption is STOR.

 You can build a non-XPLINK application by ensuring that there are no references to

the C++ Standard Library header files and by using the Standard Template Library

(STL) which is freely available on the web at www.stlport.org/product.html. The

Standard C++ library header files do not have suffixes, so to find the references to

the C++ Standard Library header files look for include statements that reference

header file names without a suffix. For iostream classes, you can either statically

link the USL iostream Class Library objects from the CBC.SCLBCPP or use the

side-deck from the CBC.SCLBSID(IOSTREAM) for the DLL version. For all other

Chapter 4. Compiler Options 207

http://www.stlport.org/product.html

classes, you can use the STLport package. The following URL has useful

information about the STLport on z/OS:

www.ibm.com/software/awdtools/c390/features/cmvsstlp.html. Once you make the

necessary source code changes, you need to recompile the code with the NOXPLINK

compiler option. To ensure that you are not referencing Standard C++ Library

header files, you should make sure that the CBC.SCLBH.* header file data sets are

concatenated in front of the following Language Environment system header file

data sets: CEE.SCEEH.H, CEE.SCEEH.SYS.H, CEE.SCEEH.NET.H, CEE.SCEEH.NETINET.H,

and CEE.SCEEH.ARPA.H, which should be the only Language Environment header file

data sets used. To get the proper data set allocation at prelink/link time, the

following c++ or cxx environment variables, if exported, should include the

concatenations listed below. If they are unset, these variables take the default

values which already include the required concatenations.

For static binding with USL iostream objects:

v _CXX_PSYSLIB="{_CXX_PLIB_PREFIX}.SCEEOBJ:{_CXX_PLIB_PREFIX}.SCEECPP:

 {_CXX_CLIB_PREFIX}.SCLBCPP"

v _CXX_LSYSLIB="{_CXX_PLIB_PREFIX}.SCEELKEX:{_CXX_PLIB_PREFIX}.SCEELKED"

For USL iostream DLL:

v _CXX_PSYSIX="{_CXX_PLIB_PREFIX}.SCLBSID(IOSTREAM)"

v _CXX_PSYSLIB="{_CXX_PLIB_PREFIX}.SCEEOBJ:{_CXX_PLIB_PREFIX}.SCEECPP"

v _CXX_LSYSLIB="{_CXX_PLIB_PREFIX}.SCEELKEX:{_CXX_PLIB_PREFIX}.SCEELKED"

Effect on IPA Compile step

The IPA Compile step generates information for the IPA Link step. The IPA

information in an IPA object file is always generated using the XOBJ format.

This option affects the IPA optimized object module that is generated by specifying

the IPA(OBJONLY) option. The object format used to encode this object depends on

the GOFF option.

The XPLINK option also affects the regular object module if you request one by

specifying the IPA(OBJECT) option. The object format used to encode the regular

object depends on the GOFF option.

Effect on IPA Link step

The IPA Link step accepts the XPLINK option, but ignores it. This is because the

linkage convention for a particular subprogram is set during source analysis based

on the compile options and #pragmas. It is not possible to change this during the

IPA Link step.

The IPA Link step links and merges the application code. All symbol definition and

references are checked for compatible attributes, and subprogram calls are checked

for compatible linkage conventions. If incompatibilities are found, a diagnostic

message is issued and processing is terminated.

The IPA Link step next optimizes the application code, and then divides it into

sections for code generation. Each of these sections is a partition. The IPA Link

step uses information from the IPA Compile step to determine if a subprogram can

be placed in a particular partition. Only compatible subprograms are included in a

given partition.

The value of the XPLINK option for a partition is set to the value of the first

subprogram that is placed in the partition. The partition map sections of the IPA Link

step listing and the object module display the value of the XPLINK option.

208 z/OS V1R7.0 XL C/C++ User’s Guide

http://www.ibm.com/software/awdtools/c390/features/cmvsstlp.html

Partitions with the XPLINK option are always generated with the GOFF option.

XREF | NOXREF

Default: NOXREF

In the z/OS UNIX System Services environment, this option is turned on by

specifying -V when using the c89, cc, or c++ commands.

 Option Scope

C Compile C++ Compile IPA Link

U U U

CATEGORY: Listing

��
 NOXR

XR

(FULL)

��

The XREF option generates a cross reference listing that shows file definition, line

definition, reference, and modification information for each symbol. It also generates

the External Symbol Cross Reference and Static Map.

For C, a separate offset listing of the variables will appear after the cross reference

table. XREF and XREF(FULL) will generate the same output.

You can specify this option using the #pragma options directive for C.

Effect on IPA Compile step

During the IPA Compile step, the compiler saves symbol storage offset information

in the IPA object file as follows:

v For C, if you specify the XREF, IPA(ATTRIBUTE), or IPA(XREF) options or the

#pragma options(XREF)

v For C++, if you specify the ATTR, XREF, IPA(ATTRIBUTE), or IPA(XREF) options

If regular object code/data is produced using the IPA(OBJECT) option, the cross

reference sections of the compile listing will be controlled by the ATTR and XREF

options.

Effect on IPA Link step

If you specify the ATTR or XREF options for the IPA Link step, it generates External

Symbol Cross Reference and Static Map listing sections for each partition.

The IPA Link step creates a Storage Offset listing section if during the IPA Compile

step you requested the additional symbol storage offset information for your IPA

objects.

Chapter 4. Compiler Options 209

Using the z/OS XL C compiler listing

If you select the SOURCE or LIST option, the compiler creates a listing that contains

information about the source program and the compilation. If the compilation

terminates before reaching a particular stage of processing, the compiler does not

generate corresponding parts of the listing. The listing contains standard information

that always appears, together with optional information that is supplied by default or

specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all

compiler diagnostic messages to your terminal. The TERMINAL option directs only the

diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming interface

and is subject to change.

IPA considerations

The listings that the IPA Compile step produces are basically the same as those

that a regular compilation produces. Any differences are noted throughout this

section.

The IPA Link step listing has a separate format from the listings mentioned above.

Many listing sections are similar to those that are produced by a regular compilation

or the IPA Compile step with the IPA(OBJECT) option specified. Refer to “Using the

IPA Link step listing” on page 264 for information about IPA Link step listings.

Example of a C compiler listing

Figure 12 on page 211 shows an example of a C compiler listing.

210 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 1

 * * * * * P R O L O G * * * * *

 Compile Time Library : 41070000

 Command options:

 Program name. : ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’

 Compiler options. : *NOGONUMBER *NOALIAS *NORENT *TERMINAL *NOUPCONV *SOURCE *LIST

 : *XREF *AGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM

 : *NOLONGNAME *START *EXECOPS *ARGPARSE *NOEXPORTALL*NODLL(NOCALLBACKANY)

 : *NOLIBANSI *NOWSIZEOF *REDIR *ANSIALIAS *DIGRAPH *NOROCONST *ROSTRING

 : *TUNE(5) *ARCH(5) *SPILL(128) *MAXMEM(2097152) *NOCOMPACT

 : *TARGET(LE,CURRENT) *FLAG(I) *NOTEST(SYM,BLOCK,LINE,PATH,HOOK) *NOOPTIMIZE

 : *INLINE(AUTO,REPORT,100,1000) *NESTINC(255) *BITFIELD(UNSIGNED)

 : *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,

 : NOEXTERN,TRUNC,INIT,NOPORT,GENERAL,CAST)

 : *FLOAT(HEX,FOLD,AFP) *STRICT *NOIGNERRNO *NOINITAUTO

 : *NOCOMPRESS *NOSTRICT_INDUCTION *AGGRCOPY(NOOVERLAP) *CHARS(UNSIGNED)

 : *NOCSECT

 : *NOEVENTS

 : *OBJECT

 : *NOOPTFILE

 : *NOSERVICE

 : *NOOE

 : *NOIPA

 : *SEARCH(//’TSCTEST.CEEZ170.SCEEH.+’)

 : *NOLSEARCH

 : *NOLOCALE *HALT(16) *PLIST(HOST)

 : *NOCONVLIT

 : *NOASCII

 : *NOGOFF *ILP32 *NOWARN64

 : *NOXPLINK(NOBACKCHAIN,NOSTOREARGS,NOCALLBACK,GUARD,OSCALL(NOSTACK))

 : *ENUMSIZE(SMALL)

 : *NOHALTONMSG

 : *NOSUPPRESS

 : *NODEBUG

 : *NOSQL

 : *UNROLL(AUTO)

 Version Macros. : __COMPILER_VER__=0x41070000 __LIBREL__=0x41070000 __TARGET_LIB__=0x41070000

 Language level. : *EXTENDED

 Source margins. :

 Varying length. : 1 - 32760

 Fixed length. : 1 - 32760

 Sequence columns. :

 Varying length. : none

 Fixed length. : none

 * * * * * E N D O F P R O L O G * * * * *

Figure 12. Example of a C listing (Part 1 of 31)

Chapter 4. Compiler Options 211

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 2

 * * * * * S O U R C E * * * * *

 LINE STMT SEQNBR INCNO

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

 1 |#include <stdio.h> | 1

 2 | | 2

 3 |#include "ccnuaan.h" | 3

 4 | | 4

 5 |void convert(double); | 5

 6 | | 6

 7 |int main(int argc, char **argv) | 7

 8 |{ | 8

 9 | double c_temp; | 9

 10 | | 10

 11 1 | if (argc == 1) { /* get Celsius value from stdin */ | 11

 12 | int ch; | 12

 13 | | 13

 14 2 | printf("Enter Celsius temperature: \n"); | 14

 15 | | 15

 16 3 | if (scanf("%f", &c_temp) != 1) { | 16

 17 4 | printf("You must enter a valid temperature\n"); | 17

 18 | } | 18

 19 | else { | 19

 20 5 | convert(c_temp); | 20

 21 | } | 21

 22 | } | 22

 23 | else { /* convert the command-line arguments to Fahrenheit */ | 23

 24 | int i; | 24

 25 | | 25

 26 6 | for (i = 1; i < argc; ++i) { | 26

 27 7 | if (sscanf(argv[i], "%f", &c_temp) != 1) | 27

 28 8 | printf("%s is not a valid temperature\n",argv[i]); | 28

 29 | else | 29

 30 9 | convert(c_temp); | 30

 31 | } | 31

 32 | } | 32

 33 10 | return 0; | 33

 34 |} | 34

 35 | | 35

 36 |void convert(double c_temp) { | 36

 37 11 | double f_temp = (c_temp * CONV + OFFSET); | 37

 38 12 | printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp); | 38

 39 |} | 39

 * * * * * E N D O F S O U R C E * * * * *

Figure 12. Example of a C listing (Part 2 of 31)

212 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 3

 * * * * * I N C L U D E S * * * * *

INCLUDE FILES --- FILE# NAME

 1 TSCTEST.CEEZ170.SCEEH.H(STDIO)

 2 TSCTEST.CEEZ170.SCEEH.H(FEATURES)

 3 TSCTEST.CEEZ170.SCEEH.SYS.H(TYPES)

 4 TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAN)

 * * * * * E N D O F I N C L U D E S * * * * *

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 4

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

___valist 1-1:134 Class = typedef, Length = 8

 Type = array[2] of pointer to unsigned char

 1-1:137, 1-1:448, 1-1:449, 1-1:451

__abend 1-1:829 Type = struct with no tag in union at offset 0

__alloc 1-1:839 Type = struct with no tag in union at offset 0

__amrc_ptr 1-1:867 Class = typedef, Length = 4

 Type = pointer to struct __amrctype

__amrc_type 1-1:863 Class = typedef, Length = 224

 Type = struct __amrctype

 1-1:867

__amrctype 1-1:811 Class = struct tag

__amrc2_ptr 1-1:881 Class = typedef, Length = 4

 Type = pointer to struct __amrc2type

__amrc2_type 1-1:877 Class = typedef, Length = 32

 Type = struct __amrc2type

 1-1:881

__amrc2type 1-1:872 Class = struct tag

__blksize 1-1:709 Type = unsigned long in struct __fileData at offset 8

__bufPtr 1-1:70 Type = pointer to unsigned char in struct __file at offset 0

__cntlinterpret 1-1:75 Type = unsigned int:1 in struct __file at offset 20(0)

__code 1-1:840 Type = union with no tag in struct __amrctype at offset 0

__countIn 1-1:71 Type = long in struct __file at offset 4

__countOut 1-1:72 Type = long in struct __file at offset 8

__cusp 1-1:193 Class = typedef, Length = 4

 Type = pointer to const unsigned short

__device 1-1:708 Type = enum with no tag in struct __fileData at offset 4

__device_t 1-1:650 Class = typedef, Length = 1

 Type = enum with no tag

 1-1:708

__disk 1-1:635 Class = enumeration constant: 0, Length = 4

 Type = int

__dsname 1-1:714 Type = pointer to unsigned char in struct __fileData at offset 28

Figure 12. Example of a C listing (Part 3 of 31)

Chapter 4. Compiler Options 213

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 5

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

__dsorgConcat 1-1:685 Type = unsigned int:1 in struct __fileData at offset 1(3)

__dsorgHiper 1-1:687 Type = unsigned int:1 in struct __fileData at offset 1(5)

__dsorgHFS 1-1:692 Type = unsigned int:1 in struct __fileData at offset 2(0)

__dsorgMem 1-1:686 Type = unsigned int:1 in struct __fileData at offset 1(4)

__dsorgPDSdir 1-1:683 Type = unsigned int:1 in struct __fileData at offset 1(1)

__dsorgPDSmem 1-1:682 Type = unsigned int:1 in struct __fileData at offset 1(0)

__dsorgPDSE 1-1:699 Type = unsigned int:1 in struct __fileData at offset 2(7)

__dsorgPO 1-1:681 Type = unsigned int:1 in struct __fileData at offset 0(7)

__dsorgPS 1-1:684 Type = unsigned int:1 in struct __fileData at offset 1(2)

__dsorgTemp 1-1:688 Type = unsigned int:1 in struct __fileData at offset 1(6)

__dsorgVSAM 1-1:689 Type = unsigned int:1 in struct __fileData at offset 1(7)

__dummy 1-1:640 Class = enumeration constant: 6, Length = 4

 Type = int

__error 1-1:823 Type = int in union at offset 0

__error2 1-1:873 Type = int in struct __amrc2type at offset 0

__fcb_ascii 1-1:76 Type = unsigned int:1 in struct __file at offset 20(1)

__fcb_orientation 1-1:77 Type = unsigned int:2 in struct __file at offset 20(2)

__fcbgetc 1-1:73 Type = pointer to function returning int in struct __file at offset 12

__fcbputc 1-1:74 Type = pointer to function returning int in struct __file at offset 16

__fdbk 1-1:834 Type = unsigned char in struct at offset 3

__fdbk_fill 1-1:831 Type = unsigned char in struct at offset 0

__feedback 1-1:835 Type = struct with no tag in union at offset 0

__ffile 1-1:80 Class = struct tag

 1-1:85, 1-1:91

__file 1-1:65 Class = struct tag

 1-1:66, 1-1:67, 1-1:82

__fileptr 1-1:875 Type = pointer to struct __ffile in struct __amrc2type at offset 4

__fileData 1-1:673 Class = struct tag

 1-1:718

Figure 12. Example of a C listing (Part 4 of 31)

214 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 6

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

__fill 1-1:798 Type = unsigned int in struct at offset 0

__filler1 1-1:618 Type = unsigned char in struct __S99emparms at offset 3

__fill2 1-1:854 Type = array[2] of unsigned int in struct at offset 136

__fp 1-1:82 Type = pointer to struct __file in struct __ffile at offset 0

__fpos_elem 1-1:96 Type = array[8] of long in struct __fpos_t at offset 0

__fpos_t 1-1:95 Class = struct tag

 1-1:99

__ftncd 1-1:833 Type = unsigned char in struct at offset 2

__func__ 36-0:36 Class = static, Length = 8

 Type = array[8] of const unsigned char in function convert

__func__ 8-0:8 Class = static, Length = 5

 Type = array[5] of const unsigned char in function main

__hfs 1-1:647 Class = enumeration constant: 9, Length = 4

 Type = int

__hiperspace 1-1:648 Class = enumeration constant: 10, Length = 4

 Type = int

__last_op 1-1:847 Type = unsigned int in struct __amrctype at offset 8

__len 1-1:850 Type = unsigned int in struct at offset 4

__len_fill 1-1:849 Type = unsigned int in struct at offset 0

__maxreclen 1-1:710 Type = unsigned long in struct __fileData at offset 12

__memory 1-1:646 Class = enumeration constant: 8, Length = 4

 Type = int

__modeflag 1-1:698 Type = unsigned int:4 in struct __fileData at offset 2(3)

__msg 1-1:857 Type = struct with no tag in struct __amrctype at offset 12

__msgfile 1-1:643 Class = enumeration constant: 7, Length = 4

 Type = int

__openmode 1-1:697 Type = unsigned int:2 in struct __fileData at offset 2(1)

__other 1-1:649 Class = enumeration constant: 255, Length = 4

 Type = int

__parmr0 1-1:852 Type = unsigned int in struct at offset 128

Figure 12. Example of a C listing (Part 5 of 31)

Chapter 4. Compiler Options 215

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 7

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

__parmr1 1-1:853 Type = unsigned int in struct at offset 132

__printer 1-1:637 Class = enumeration constant: 2, Length = 4

 Type = int

__rc 1-1:828 Type = unsigned short in struct at offset 2

__rc 1-1:832 Type = unsigned char in struct at offset 1

__recfmASA 1-1:679 Type = unsigned int:1 in struct __fileData at offset 0(5)

__recfmBlk 1-1:678 Type = unsigned int:1 in struct __fileData at offset 0(4)

__recfmF 1-1:674 Type = unsigned int:1 in struct __fileData at offset 0(0)

__recfmM 1-1:680 Type = unsigned int:1 in struct __fileData at offset 0(6)

__recfmS 1-1:677 Type = unsigned int:1 in struct __fileData at offset 0(3)

__recfmU 1-1:676 Type = unsigned int:1 in struct __fileData at offset 0(2)

__recfmV 1-1:675 Type = unsigned int:1 in struct __fileData at offset 0(1)

__recnum 1-1:799 Type = unsigned int in struct at offset 4

__reserved 1-1:601 Type = unsigned char in struct __S99rbx at offset 16

__reserved 1-1:876 Type = array[6] of int in struct __amrc2type at offset 8

__reserve2 1-1:703 Type = unsigned int:5 in struct __fileData at offset 3(3)

__reserve4 1-1:715 Type = unsigned int in struct __fileData at offset 32

__reserv1 1-1:623 Type = int in struct __S99emparms at offset 20

__reserv2 1-1:609 Type = int in struct __S99rbx at offset 32

__reserv2 1-1:624 Type = int in struct __S99emparms at offset 24

__rplfdbwd 1-1:860 Type = array[4] of unsigned char in struct __amrctype at offset 220

__rrds_key_type 1-1:804 Class = typedef, Length = 8

 Type = struct with no tag

__str 1-1:851 Type = array[120] of unsigned char in struct at offset 8

__str2 1-1:855 Type = array[64] of unsigned char in struct at offset 144

__svc99_error 1-1:838 Type = unsigned short in struct at offset 2

__svc99_info 1-1:837 Type = unsigned short in struct at offset 0

__syscode 1-1:827 Type = unsigned short in struct at offset 0

Figure 12. Example of a C listing (Part 6 of 31)

216 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 8

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

__tape 1-1:638 Class = enumeration constant: 3, Length = 4

 Type = int

__tdq 1-1:639 Class = enumeration constant: 5, Length = 4

 Type = int

__terminal 1-1:636 Class = enumeration constant: 1, Length = 4

 Type = int

__vsamkeylen 1-1:712 Type = unsigned long in struct __fileData at offset 20

__vsamtype 1-1:711 Type = unsigned short in struct __fileData at offset 16

__vsamRKP 1-1:713 Type = unsigned long in struct __fileData at offset 24

__vsamRLS 1-1:702 Type = unsigned int:3 in struct __fileData at offset 3(0)

__EMBUFP 1-1:622 Type = pointer to void in struct __S99emparms at offset 16

__EMCPPLP 1-1:621 Type = pointer to void in struct __S99emparms at offset 12

__EMFUNCT 1-1:615 Type = unsigned char in struct __S99emparms at offset 0

__EMIDNUM 1-1:616 Type = unsigned char in struct __S99emparms at offset 1

__EMNMSGBK 1-1:617 Type = unsigned char in struct __S99emparms at offset 2

__EMRETCOD 1-1:620 Type = int in struct __S99emparms at offset 8

__EMS99RBP 1-1:619 Type = pointer to void in struct __S99emparms at offset 4

__FILEP 1-1:85 Class = typedef, Length = 4

 Type = pointer to struct __ffile

__RBA 1-1:841 Type = unsigned int in struct __amrctype at offset 4

__S99emparms 1-1:614 Class = struct tag

 1-1:627

__S99emparms_t 1-1:627 Class = typedef, Length = 28

 Type = struct __S99emparms

__S99parms 1-1:587 Class = typedef, Length = 20

 Type = struct __S99struc

 1-1:767

__S99rbx 1-1:591 Class = struct tag

 1-1:612

__S99rbx_t 1-1:612 Class = typedef, Length = 36

 Type = struct __S99rbx

Figure 12. Example of a C listing (Part 7 of 31)

Chapter 4. Compiler Options 217

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 9

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

__S99struc 1-1:570 Class = struct tag

 1-1:587

__S99ECPPL 1-1:600 Type = pointer to void in struct __S99rbx at offset 12

__S99EERR 1-1:607 Type = unsigned short in struct __S99rbx at offset 28

__S99EID 1-1:593 Type = array[6] of unsigned char in struct __S99rbx at offset 0

__S99EINFO 1-1:608 Type = unsigned short in struct __S99rbx at offset 30

__S99EKEY 1-1:597 Type = unsigned char in struct __S99rbx at offset 9

__S99EMGSV 1-1:598 Type = unsigned char in struct __S99rbx at offset 10

__S99EMSGP 1-1:606 Type = pointer to void in struct __S99rbx at offset 24

__S99ENMSG 1-1:599 Type = unsigned char in struct __S99rbx at offset 11

__S99EOPTS 1-1:595 Type = unsigned char in struct __S99rbx at offset 7

__S99ERCF 1-1:604 Type = unsigned char in struct __S99rbx at offset 19

__S99ERCO 1-1:603 Type = unsigned char in struct __S99rbx at offset 18

__S99ERES 1-1:602 Type = unsigned char in struct __S99rbx at offset 17

__S99ERROR 1-1:576 Type = unsigned short in struct __S99struc at offset 4

__S99ESUBP 1-1:596 Type = unsigned char in struct __S99rbx at offset 8

__S99EVER 1-1:594 Type = unsigned char in struct __S99rbx at offset 6

__S99EWRC 1-1:605 Type = int in struct __S99rbx at offset 20

__S99FLAG1 1-1:574 Type = unsigned short in struct __S99struc at offset 2

__S99FLAG2 1-1:582 Type = unsigned int in struct __S99struc at offset 16

__S99INFO 1-1:577 Type = unsigned short in struct __S99struc at offset 6

__S99RBLN 1-1:572 Type = unsigned char in struct __S99struc at offset 0

__S99S99X 1-1:580 Type = pointer to void in struct __S99struc at offset 12

__S99TXTPP 1-1:578 Type = pointer to void in struct __S99struc at offset 8

__S99VERB 1-1:573 Type = unsigned char in struct __S99struc at offset 1

_gtca Class = extern

 Type = function returning pointer to const void

 1-1:158

Figure 12. Example of a C listing (Part 8 of 31)

218 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 10

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

_Gtab Class = extern

 Type = function returning pointer to pointer to void

 1-1:148

_GETCFUNC 1-1:66 Class = typedef

 Type = function returning int

 1-1:73

_PUTCFUNC 1-1:67 Class = typedef

 Type = function returning int

 1-1:74

argc 7-0:7 Class = parameter, Length = 4

 Type = int in function main

 11-0:11, 26-0:26, 26-0:26

argv 7-0:7 Class = parameter, Length = 4

 Type = pointer to pointer to unsigned char in function main

 27-0:27, 28-0:28

c_temp 36-0:36 Class = parameter, Length = 8

 Type = double in function convert

 37-0:37, 38-0:38

c_temp 9-0:9 Class = auto, Length = 8

 Type = double in function main

 16-0:16, 20-0:20, 27-0:27, 30-0:30

ch 12-0:12 Class = auto, Length = 4

 Type = int in function main

clearerr Class = extern

 Type = function returning void

 1-1:398

clrmemf Class = extern

 Type = function returning int

 1-1:771

convert 36-0:36 Class = extern

 Type = function returning void

 5-0:5, 20-0:20, 30-0:30

f_temp 37-0:37 Class = auto, Length = 8

 Type = double in function convert

 37-0:37, 38-0:38

fclose Class = extern

 Type = function returning int

 1-1:399

fdelrec Class = extern

 Type = function returning int

Figure 12. Example of a C listing (Part 9 of 31)

Chapter 4. Compiler Options 219

694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 11

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

 1-1:769

feof Class = extern

 Type = function returning int

 1-1:400

ferror Class = extern

 Type = function returning int

 1-1:401

fflush Class = extern

 Type = function returning int

 1-1:402

fgetc Class = extern

 Type = function returning int

 1-1:403

fgetpos Class = extern

 Type = function returning int

 1-1:404

fgets Class = extern

 Type = function returning pointer to unsigned char

 1-1:405

fldata Class = extern

 Type = function returning int

 1-1:772

fldata_t 1-1:718 Class = typedef, Length = 36

 Type = struct __fileData

 1-1:772

flocate Class = extern

 Type = function returning int

 1-1:768

fopen Class = extern

 Type = function returning pointer to struct __ffile

 1-1:406

fpos_t 1-1:99 Class = typedef, Length = 32

 Type = struct __fpos_t

 1-1:404, 1-1:419

fprintf Class = extern

 Type = function returning int

 1-1:408

fputc Class = extern

 Type = function returning int

 1-1:410

Figure 12. Example of a C listing (Part 10 of 31)

220 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 12

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

fputs Class = extern

 Type = function returning int

 1-1:411

fread Class = extern

 Type = function returning unsigned int

 1-1:412

freopen Class = extern

 Type = function returning pointer to struct __ffile

 1-1:414

fscanf Class = extern

 Type = function returning int

 1-1:416

fseek Class = extern

 Type = function returning int

 1-1:418

fsetpos Class = extern

 Type = function returning int

 1-1:419

ftell Class = extern

 Type = function returning long

 1-1:420

fupdate Class = extern

 Type = function returning unsigned int

 1-1:770

fwrite Class = extern

 Type = function returning unsigned int

 1-1:421

getc Class = extern

 Type = function returning int

 1-1:423

getchar Class = extern

 Type = function returning int

 1-1:424

gets Class = extern

 Type = function returning pointer to unsigned char

 1-1:425

i 24-0:24 Class = auto, Length = 4

 Type = int in function main

 26-0:26, 26-0:26, 27-0:27, 28-0:28, 26-0:26, 26-0:26, 26-0:26

Figure 12. Example of a C listing (Part 11 of 31)

Chapter 4. Compiler Options 221

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 13

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

main 7-0:7 Class = extern

 Type = function returning int

perror Class = extern

 Type = function returning void

 1-1:426

printf Class = extern

 Type = function returning int

 1-1:427, 14-0:14, 17-0:17, 28-0:28, 38-0:38

putc Class = extern

 Type = function returning int

 1-1:428

putchar Class = extern

 Type = function returning int

 1-1:429

puts Class = extern

 Type = function returning int

 1-1:430

remove Class = extern

 Type = function returning int

 1-1:431

rename Class = extern

 Type = function returning int

 1-1:432

rewind Class = extern

 Type = function returning void

 1-1:433

scanf Class = extern

 Type = function returning int

 1-1:434, 16-0:16

setbuf Class = extern

 Type = function returning void

 1-1:435

setvbuf Class = extern

 Type = function returning int

 1-1:436

size_t 1-1:50 Class = typedef, Length = 4

 Type = unsigned int

 1-1:412, 1-1:412, 1-1:413, 1-1:421, 1-1:421, 1-1:421, 1-1:437, 1-1:768, 1-1:770, 1-1:770

sprintf Class = extern

 Type = function returning int

Figure 12. Example of a C listing (Part 12 of 31)

222 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 14

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

 1-1:439

sscanf Class = extern

 Type = function returning int

 1-1:442, 27-0:27

ssize_t 1-1:59 Class = typedef, Length = 4

 Type = int

svc99 Class = extern

 Type = function returning int

 1-1:767

tmpfile Class = extern

 Type = function returning pointer to struct __ffile

 1-1:444

tmpnam Class = extern

 Type = function returning pointer to unsigned char

 1-1:445

ungetc Class = extern

 Type = function returning int

 1-1:446

va_list 1-1:137 Class = typedef, Length = 8

 Type = array[2] of pointer to unsigned char

vfprintf Class = extern

 Type = function returning int

 1-1:447

vprintf Class = extern

 Type = function returning int

 1-1:449

vsprintf Class = extern

 Type = function returning int

 1-1:450

FILE 1-1:91 Class = typedef, Length = 4

 Type = struct __ffile

 1-1:398, 1-1:399, 1-1:400, 1-1:401, 1-1:402, 1-1:403, 1-1:404, 1-1:405, 1-1:406, 1-1:408,

 1-1:410, 1-1:411, 1-1:413, 1-1:414, 1-1:415, 1-1:416, 1-1:418, 1-1:419, 1-1:420, 1-1:422,

 1-1:423, 1-1:428, 1-1:433, 1-1:435, 1-1:436, 1-1:444, 1-1:446, 1-1:447, 1-1:768, 1-1:769,

 1-1:770, 1-1:772, 1-1:875

 * * * * * E N D O F C R O S S R E F E R E N C E L I S T I N G * * * * *

Figure 12. Example of a C listing (Part 13 of 31)

Chapter 4. Compiler Options 223

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 15

 * * * * * S T R U C T U R E M A P S * * * * *

===

| Aggregate map for: struct with no tag #1 Total size: 8 bytes |

|...|

|__rrds_key_type |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __fill |

| 4 | 4 | __recnum |

===

===

| Aggregate map for: _Packed struct with no tag #1 Total size: 8 bytes |

|...|

|_Packed __rrds_key_type |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __fill |

| 4 | 4 | __recnum |

===

===

| Aggregate map for: union with no tag #2 Total size: 4 bytes |

|...|

|__code |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __error |

| 0 | 4 | __abend |

| 0 | 2 | __syscode |

| 2 | 2 | __rc |

| 0 | 4 | __feedback |

| 0 | 1 | __fdbk_fill |

| 1 | 1 | __rc |

| 2 | 1 | __ftncd |

| 3 | 1 | __fdbk |

| 0 | 4 | __alloc |

| 0 | 2 | __svc99_info |

| 2 | 2 | __svc99_error |

===

===

| Aggregate map for: struct with no tag #3 Total size: 4 bytes |

|...|

|__abend |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 2 | __syscode |

Figure 12. Example of a C listing (Part 14 of 31)

224 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 16

 * * * * * S T R U C T U R E M A P S * * * * *

| 2 | 2 | __rc |

===

===

| Aggregate map for: struct with no tag #4 Total size: 4 bytes |

|...|

|__feedback |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 1 | __fdbk_fill |

| 1 | 1 | __rc |

| 2 | 1 | __ftncd |

| 3 | 1 | __fdbk |

===

===

| Aggregate map for: struct with no tag #5 Total size: 4 bytes |

|...|

|__alloc |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 2 | __svc99_info |

| 2 | 2 | __svc99_error |

===

===

| Aggregate map for: struct with no tag #6 Total size: 208 bytes |

|...|

|__msg |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __len_fill |

| 4 | 4 | __len |

| 8 | 120 | __str[120] |

| 128 | 4 | __parmr0 |

| 132 | 4 | __parmr1 |

| 136 | 8 | __fill2[2] |

 144 | 64 | __str2[64] |

===

===

| Aggregate map for: struct __amrctype Total size: 224 bytes |

|...|

|__amrc_type |

|*__amrc_ptr |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __code |

Figure 12. Example of a C listing (Part 15 of 31)

Chapter 4. Compiler Options 225

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 17

 * * * * * S T R U C T U R E M A P S * * * * *

| 0 | 4 | __error |

| 0 | 4 | __abend |

| 0 | 2 | __syscode |

| 2 | 2 | __rc |

| 0 | 4 | __feedback |

| 0 | 1 | __fdbk_fill |

| 1 | 1 | __rc |

| 2 | 1 | __ftncd |

| 3 | 1 | __fdbk |

| 0 | 4 | __alloc |

| 0 | 2 | __svc99_info |

| 2 | 2 | __svc99_error |

| 4 | 4 | __RBA |

| 8 | 4 | __last_op |

| 12 | 208 | __msg |

| 12 | 4 | __len_fill |

| 16 | 4 | __len |

| 20 | 120 | __str[120] |

| 140 | 4 | __parmr0 |

| 144 | 4 | __parmr1 |

| 148 | 8 | __fill2[2] |

| 156 | 64 | __str2[64] |

| 220 | 4 | __rplfdbwd[4] |

===

===

| Aggregate map for: _Packed struct __amrctype Total size: 224 bytes |

|...|

|_Packed __amrc_type |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __code |

| 0 | 4 | __error |

| 0 | 4 | __abend |

| 0 | 2 | __syscode |

| 2 | 2 | __rc |

| 0 | 4 | __feedback |

| 0 | 1 | __fdbk_fill |

| 1 | 1 | __rc |

| 2 | 1 | __ftncd |

| 3 | 1 | __fdbk |

| 0 | 4 | __alloc |

| 0 | 2 | __svc99_info |

| 2 | 2 | __svc99_error |

| 4 | 4 | __RBA |

| 8 | 4 | __last_op |

| 12 | 208 | __msg |

| 12 | 4 | __len_fill |

| 16 | 4 | __len |

| 20 | 120 | __str[120] |

| 140 | 4 | __parmr0 |

| 144 | 4 | __parmr1 |

| 148 | 8 | __fill2[2] |

| 156 | 64 | __str2[64] |

Figure 12. Example of a C listing (Part 16 of 31)

226 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 18

 * * * * * S T R U C T U R E M A P S * * * * *

| 220 | 4 | __rplfdbwd[4] |

===

===

| Aggregate map for: struct __amrc2type Total size: 32 bytes |

|...|

|__amrc2_type |

|*__amrc2_ptr |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __error2 |

| 4 | 4 | __fileptr |

| 8 | 24 | __reserved[6] |

===

===

| Aggregate map for: _Packed struct __amrc2type Total size: 32 bytes |

|...|

|_Packed __amrc2_type |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __error2 |

| 4 | 4 | __fileptr |

| 8 | 24 | __reserved[6] |

===

===

| Aggregate map for: struct __ffile Total size: 4 bytes |

|...|

|*__FILEP |

|FILE |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __fp |

===

===

| Aggregate map for: _Packed struct __ffile Total size: 4 bytes |

|...|

|_Packed FILE |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __fp |

===

Figure 12. Example of a C listing (Part 17 of 31)

Chapter 4. Compiler Options 227

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 19

 * * * * * S T R U C T U R E M A P S * * * * *

===

| Aggregate map for: struct __file Total size: 24 bytes |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __bufPtr |

| 4 | 4 | __countIn |

| 8 | 4 | __countOut |

| 12 | 4 | __fcbgetc |

| 16 | 4 | __fcbputc |

| 20 | 0(1) | __cntlinterpret |

| 20(1) | 0(1) | __fcb_ascii |

| 20(2) | 0(2) | __fcb_orientation |

| 20(4) | 3(4) | ***PADDING*** |

===

===

| Aggregate map for: _Packed struct __file Total size: 24 bytes |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 4 | __bufPtr |

| 4 | 4 | __countIn |

| 8 | 4 | __countOut |

| 12 | 4 | __fcbgetc |

| 16 | 4 | __fcbputc |

| 20 | 0(1) | __cntlinterpret |

| 20(1) | 0(7) | ***PADDING*** |

| 21 | 0(1) | __fcb_ascii |

| 21(1) | 0(7) | ***PADDING*** |

| 22 | 0(2) | __fcb_orientation |

| 22(2) | 1(6) | ***PADDING*** |

===

===

| Aggregate map for: struct __fileData Total size: 36 bytes |

|...|

|fldata_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 0(1) | __recfmF |

| 0(1) | 0(1) | __recfmV |

| 0(2) | 0(1) | __recfmU |

| 0(3) | 0(1) | __recfmS |

| 0(4) | 0(1) | __recfmBlk |

| 0(5) | 0(1) | __recfmASA |

| 0(6) | 0(1) | __recfmM |

| 0(7) | 0(1) | __dsorgPO |

| 1 | 0(1) | __dsorgPDSmem |

| 1(1) | 0(1) | __dsorgPDSdir |

| 1(2) | 0(1) | __dsorgPS |

Figure 12. Example of a C listing (Part 18 of 31)

228 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 20

 * * * * * S T R U C T U R E M A P S * * * * *

| 1(3) | 0(1) | __dsorgConcat |

| 1(4) | 0(1) | __dsorgMem |

| 1(5) | 0(1) | __dsorgHiper |

| 1(6) | 0(1) | __dsorgTemp |

| 1(7) | 0(1) | __dsorgVSAM |

| 2 | 0(1) | __dsorgHFS |

| 2(1) | 0(2) | __openmode |

| 2(3) | 0(4) | __modeflag |

| 2(7) | 0(1) | __dsorgPDSE |

| 3 | 0(3) | __vsamRLS |

| 3(3) | 0(5) | __reserve2 |

| 4 | 1 | __device |

| 5 | 3 | ***PADDING*** |

| 8 | 4 | __blksize |

| 12 | 4 | __maxreclen |

| 16 | 2 | __vsamtype |

| 18 | 2 | ***PADDING*** |

| 20 | 4 | __vsamkeylen |

| 24 | 4 | __vsamRKP |

| 28 | 4 | __dsname |

| 32 | 4 | __reserve4 |

===

===

| Aggregate map for: _Packed struct __fileData Total size: 52 bytes |

|...|

|_Packed fldata_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 0(1) | __recfmF |

| 0(1) | 0(7) | ***PADDING*** |

| 1 | 0(1) | __recfmV |

| 1(1) | 0(7) | ***PADDING*** |

| 2 | 0(1) | __recfmU |

| 2(1) | 0(7) | ***PADDING*** |

| 3 | 0(1) | __recfmS |

| 3(1) | 0(7) | ***PADDING*** |

| 4 | 0(1) | __recfmBlk |

| 4(1) | 0(7) | ***PADDING*** |

| 5 | 0(1) | __recfmASA |

| 5(1) | 0(7) | ***PADDING*** |

| 6 | 0(1) | __recfmM |

| 6(1) | 0(7) | ***PADDING*** |

| 7 | 0(1) | __dsorgPO |

| 7(1) | 0(7) | ***PADDING*** |

| 8 | 0(1) | __dsorgPDSmem |

| 8(1) | 0(7) | ***PADDING*** |

| 9 | 0(1) | __dsorgPDSdir |

| 9(1) | 0(7) | ***PADDING*** |

| 10 | 0(1) | __dsorgPS |

| 10(1) | 0(7) | ***PADDING*** |

| 11 | 0(1) | __dsorgConcat |

| 11(1) | 0(7) | ***PADDING*** |

| 12 | 0(1) | __dsorgMem |

Figure 12. Example of a C listing (Part 19 of 31)

Chapter 4. Compiler Options 229

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 21

 * * * * * S T R U C T U R E M A P S * * * * *

| 12(1) | 0(7) | ***PADDING*** |

| 13 | 0(1) | __dsorgHiper |

| 13(1) | 0(7) | ***PADDING*** |

| 14 | 0(1) | __dsorgTemp |

| 14(1) | 0(7) | ***PADDING*** |

| 15 | 0(1) | __dsorgVSAM |

| 15(1) | 0(7) | ***PADDING*** |

| 16 | 0(1) | __dsorgHFS |

| 16(1) | 0(7) | ***PADDING*** |

| 17 | 0(2) | __openmode |

| 17(2) | 0(6) | ***PADDING*** |

| 18 | 0(4) | __modeflag |

| 18(4) | 0(4) | ***PADDING*** |

| 19 | 0(1) | __dsorgPDSE |

| 19(1) | 0(7) | ***PADDING*** |

| 20 | 0(3) | __vsamRLS |

| 20(3) | 0(5) | ***PADDING*** |

| 21 | 0(5) | __reserve2 |

| 21(5) | 0(3) | ***PADDING*** |

| 22 | 1 | __device |

| 23 | 1 | ***PADDING*** |

| 24 | 4 | __blksize |

| 28 | 4 | __maxreclen |

| 32 | 2 | __vsamtype |

| 34 | 2 | ***PADDING*** |

| 36 | 4 | __vsamkeylen |

| 40 | 4 | __vsamRKP |

| 44 | 4 | __dsname |

| 48 | 4 | __reserve4 |

===

===

| Aggregate map for: struct __fpos_t Total size: 32 bytes |

|...|

|fpos_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 32 | __fpos_elem[8] |

===

===

| Aggregate map for: _Packed struct __fpos_t Total size: 32 bytes |

|...|

|_Packed fpos_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 32 | __fpos_elem[8] |

===

Figure 12. Example of a C listing (Part 20 of 31)

230 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 22

 * * * * * S T R U C T U R E M A P S * * * * *

===

| Aggregate map for: struct __S99emparms Total size: 28 bytes |

|...|

|__S99emparms_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 1 | __EMFUNCT |

| 1 | 1 | __EMIDNUM |

| 2 | 1 | __EMNMSGBK |

| 3 | 1 | __filler1 |

| 4 | 4 | __EMS99RBP |

| 8 | 4 | __EMRETCOD |

| 12 | 4 | __EMCPPLP |

| 16 | 4 | __EMBUFP |

| 20 | 4 | __reserv1 |

| 24 | 4 | __reserv2 |

===

===

| Aggregate map for: _Packed struct __S99emparms Total size: 28 bytes |

|...|

|_Packed __S99emparms_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 1 | __EMFUNCT |

| 1 | 1 | __EMIDNUM |

| 2 | 1 | __EMNMSGBK |

| 3 | 1 | __filler1 |

| 4 | 4 | __EMS99RBP |

| 8 | 4 | __EMRETCOD |

| 12 | 4 | __EMCPPLP |

| 16 | 4 | __EMBUFP |

| 20 | 4 | __reserv1 |

| 24 | 4 | __reserv2 |

===

===

| Aggregate map for: struct __S99rbx Total size: 36 bytes |

|...|

|__S99rbx_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 6 | __S99EID[6] |

| 6 | 1 | __S99EVER |

| 7 | 1 | __S99EOPTS |

| 8 | 1 | __S99ESUBP |

| 9 | 1 | __S99EKEY |

| 10 | 1 | __S99EMGSV |

| 11 | 1 | __S99ENMSG |

Figure 12. Example of a C listing (Part 21 of 31)

Chapter 4. Compiler Options 231

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 23

 * * * * * S T R U C T U R E M A P S * * * * *

| 12 | 4 | __S99ECPPL |

| 16 | 1 | __reserved |

| 17 | 1 | __S99ERES |

| 18 | 1 | __S99ERCO |

| 19 | 1 | __S99ERCF |

| 20 | 4 | __S99EWRC |

| 24 | 4 | __S99EMSGP |

| 28 | 2 | __S99EERR |

| 30 | 2 | __S99EINFO |

| 32 | 4 | __reserv2 |

===

===

| Aggregate map for: _Packed struct __S99rbx Total size: 36 bytes |

|...|

|_Packed __S99rbx_t |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 6 | __S99EID[6] |

| 6 | 1 | __S99EVER |

| 7 | 1 | __S99EOPTS |

| 8 | 1 | __S99ESUBP |

| 9 | 1 | __S99EKEY |

| 10 | 1 | __S99EMGSV |

| 11 | 1 | __S99ENMSG |

| 12 | 4 | __S99ECPPL |

| 16 | 1 | __reserved |

| 17 | 1 | __S99ERES |

| 18 | 1 | __S99ERCO |

| 19 | 1 | __S99ERCF |

| 20 | 4 | __S99EWRC |

| 24 | 4 | __S99EMSGP |

| 28 | 2 | __S99EERR |

| 30 | 2 | __S99EINFO |

| 32 | 4 | __reserv2 |

===

===

| Aggregate map for: struct __S99struc Total size: 20 bytes |

|...|

|__S99parms |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 1 | __S99RBLN |

| 1 | 1 | __S99VERB |

| 2 | 2 | __S99FLAG1 |

| 4 | 2 | __S99ERROR |

| 6 | 2 | __S99INFO |

| 8 | 4 | __S99TXTPP |

| 12 | 4 | __S99S99X |

| 16 | 4 | __S99FLAG2 |

===

Figure 12. Example of a C listing (Part 22 of 31)

232 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 24

 * * * * * S T R U C T U R E M A P S * * * * *

===

| Aggregate map for: _Packed struct __S99struc Total size: 20 bytes |

|...|

|_Packed __S99parms |

|===|

| Offset | Length | Member Name |

| Bytes(Bits) | Bytes(Bits) | |

|===================|===================|===|

| 0 | 1 | __S99RBLN |

| 1 | 1 | __S99VERB |

| 2 | 2 | __S99FLAG1 |

| 4 | 2 | __S99ERROR |

| 6 | 2 | __S99INFO |

| 8 | 4 | __S99TXTPP |

| 12 | 4 | __S99S99X |

| 16 | 4 | __S99FLAG2 |

===

 * * * * * E N D O F S T R U C T U R E M A P S * * * * *

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 25

 * * * * * M E S S A G E S U M M A R Y * * * * *

 Total Informational(00) Warning(10) Error(30) Severe Error(40)

 0 0 0 0 0

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 26

 Inline Report (Summary)

 Reason: P : noinline was specified for this routine

 F : inline was specified for this routine

 C : compact was specified for this routine

 M : This is an inline member routine

 A : Automatic inlining

 - : No reason

 Action: I : Routine is inlined at least once

 L : Routine is initially too large to be inlined

 T : Routine expands too large to be inlined

 C : Candidate for inlining but not inlined

 N : No direct calls to routine are found in file (no action)

 U : Some calls not inlined due to recursion or parameter mismatch

 - : No action

 Status: D : Internal routine is discarded

 R : A direct call remains to internal routine (cannot discard)

 A : Routine has its address taken (cannot discard)

 E : External routine (cannot discard)

 - : Status unchanged

 Calls/I : Number of calls to defined routines / Number inline

 Called/I : Number of times called / Number of times inlined

 Reason Action Status Size (init) Calls/I Called/I Name

 A I E 15 0/0 2/2 convert

 A T,N E 110 (72) 2/2 0/0 main

 Mode = AUTO Inlining Threshold = 100 Expansion Limit = 1000

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 27

 Inline Report (Call Structure)

 Defined Function : convert

 Calls To : 0

 Called From(2,2) : main(2,2)

 Defined Function : main

 Calls To(2,2) : convert(2,2)

 Called From : 0

Figure 12. Example of a C listing (Part 23 of 31)

Chapter 4. Compiler Options 233

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 28

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

000000 F2F0 F0F5 =C’2005’ Compiled Year

000004 F0F1 F2F0 =C’0120’ Compiled Date MMDD

000008 F0F0 F1F1 F1F7 =C’001117’ Compiled Time HHMMSS

00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: main 01/20/2005 00:11:17 Page 29

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000001 | * #include <stdio.h>

 000002 | *

 000003 | * #include "ccnuaan.h"

 000004 | *

 000005 | * void convert(double);

 000006 | *

 000007 | * int main(int argc, char **argv)

000018 000007 | main DS 0D

000018 47F0 F022 000007 | B 34(,r15)

00001C 01C3C5C5 CEE eyecatcher

000020 00000120 DSA size

000024 00000328 =A(PPA1-main)

000028 47F0 F001 000007 | B 1(,r15)

00002C 58F0 C31C 000007 | L r15,796(,r12)

000030 184E 000007 | LR r4,r14

000032 05EF 000007 | BALR r14,r15

000034 00000000 =F’0’

000038 07F3 000007 | BR r3

00003A 90E5 D00C 000007 | STM r14,r5,12(r13)

00003E 58E0 D04C 000007 | L r14,76(,r13)

000042 4100 E120 000007 | LA r0,288(,r14)

000046 5500 C314 000007 | CL r0,788(,r12)

00004A 4130 F03A 000007 | LA r3,58(,r15)

00004E 4720 F014 000007 | BH 20(,r15)

000052 58F0 C280 000007 | L r15,640(,r12)

000056 90F0 E048 000007 | STM r15,r0,72(r14)

00005A 9210 E000 000007 | MVI 0(r14),16

00005E 50D0 E004 000007 | ST r13,4(,r14)

000062 18DE 000007 | LR r13,r14

000064 End of Prolog

000064 C050 0000 011E 000000 | LARL r5,F’286’

00006A 5010 D0D0 000007 | ST r1,#SR_PARM_1(,r13,208)

 000008 | * {

 000009 | * double c_temp;

 000010 | *

 000011 | * if (argc == 1) { /* get Celsius value from stdin */

00006E 5810 D0D0 000011 | L r1,#SR_PARM_1(,r13,208)

000072 5800 1000 000011 | L r0,argc(,r1,0)

000076 A70E 0001 000011 | CHI r0,H’1’

00007A 4770 30B0 000011 | BNE @1L1

 000012 | * int ch;

 000013 | *

 000014 | * printf("Enter Celsius temperature: \n");

00007E 58F0 3196 000014 | L r15,=V(PRINTF)(,r3,406)

000082 1805 000014 | LR r0,r5

000084 4110 D098 000014 | LA r1,#MX_TEMP1(,r13,152)

000088 5000 D098 000014 | ST r0,#MX_TEMP1(,r13,152)

00008C 05EF 000014 | BALR r14,r15

 000015 | *

 000016 | * if (scanf("%f", &c_temp) != 1) {

00008E 4100 D0B0 000016 | LA r0,c_temp(,r13,176)

000092 58F0 319A 000016 | L r15,=V(SCANF)(,r3,410)

000096 4120 501D 000016 | LA r2,+CONSTANT_AREA(,r5,29)

00009A 4110 D098 000016 | LA r1,#MX_TEMP1(,r13,152)

00009E 5020 D098 000016 | ST r2,#MX_TEMP1(,r13,152)

Figure 12. Example of a C listing (Part 24 of 31)

234 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: main 01/20/2005 00:11:17 Page 30

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

0000A2 5000 D09C 000016 | ST r0,#MX_TEMP1(,r13,156)

0000A6 05EF 000016 | BALR r14,r15

0000A8 180F 000016 | LR r0,r15

0000AA A70E 0001 000016 | CHI r0,H’1’

0000AE 4780 3076 000016 | BE @1L2

 000017 | * printf("You must enter a valid temperature\n");

0000B2 58F0 3196 000017 | L r15,=V(PRINTF)(,r3,406)

0000B6 4100 5020 000017 | LA r0,+CONSTANT_AREA(,r5,32)

0000BA 4110 D098 000017 | LA r1,#MX_TEMP1(,r13,152)

0000BE 5000 D098 000017 | ST r0,#MX_TEMP1(,r13,152)

0000C2 05EF 000017 | BALR r14,r15

0000C4 47F0 30AC 000017 | B @1L3

0000C8 000017 | @1L2 DS 0H

 000018 | * }

 000019 | * else {

 000020 | * convert(c_temp);

0000C8 6800 D0B0 000020 | LD f0,c_temp(,r13,176)

0000CC 6000 D0C0 000020 | STD f0,c_temp:convert(,r13,192)

 000021 | * }

 000022 | * }

 000023 | * else { /* convert the command-line arguments to Fahrenheit */

 000024 | * int i;

 000025 | *

 000026 | * for (i = 1; i < argc; ++i) {

 000027 | * if (sscanf(argv[i], "%f", &c_temp) != 1)

 000028 | * printf("%s is not a valid temperature\n",argv[i]);

 000029 | * else

 000030 | * convert(c_temp);

 000031 | * }

 000032 | * }

 000033 | * return 0;

 000034 | * }

 000035 | *

 000036 | * void convert(double c_temp) {

 000037 | * double f_temp = (c_temp * CONV + OFFSET);

0000D0 6820 5048 000037 | + LD f2,+CONSTANT_AREA(,r5,72)

0000D4 2C02 000037 | + MDR f0,f2

0000D6 6820 5050 000037 | + LD f2,+CONSTANT_AREA(,r5,80)

0000DA 2A02 000037 | + ADR f0,f2

0000DC 6000 D0C8 000037 | + STD f0,f_temp:convert(,r13,200)

 000038 | * printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

0000E0 6820 D0C0 000038 | + LD f2,c_temp:convert(,r13,192)

0000E4 6020 D09C 000038 | + STD f2,#MX_TEMP1(,r13,156)

0000E8 6000 D0A4 000038 | + STD f0,#MX_TEMP1(,r13,164)

0000EC 58F0 3196 000038 | + L r15,=V(PRINTF)(,r3,406)

0000F0 4100 5058 000038 | + LA r0,+CONSTANT_AREA(,r5,88)

0000F4 4110 D098 000038 | + LA r1,#MX_TEMP1(,r13,152)

0000F8 5000 D098 000038 | + ST r0,#MX_TEMP1(,r13,152)

0000FC 05EF 000038 | + BALR r14,r15

 000039 | * }

0000FE 000039 | +@1L10 DS 0H

0000FE 000039 | +@1L3 DS 0H

0000FE 47F0 3180 000039 | + B @1L4

000102 000039 | +@1L1 DS 0H

000102 4100 0001 000026 | LA r0,1

000106 5000 D0B8 000026 | ST r0,i(,r13,184)

Figure 12. Example of a C listing (Part 25 of 31)

Chapter 4. Compiler Options 235

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: main 01/20/2005 00:11:17 Page 31

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

00010A 5810 D0D0 000026 | L r1,#SR_PARM_1(,r13,208)

00010E 5810 1000 000026 | L r1,argc(,r1,0)

000112 1901 000026 | CR r0,r1

000114 47B0 3180 000026 | BNL @1L6

000118 000026 | @1L5 DS 0H

000118 5810 D0D0 000027 | L r1,#SR_PARM_1(,r13,208)

00011C 5810 1004 000027 | L r1,argv(,r1,4)

000120 5820 D0B8 000027 | L r2,i(,r13,184)

000124 8920 0002 000027 | SLL r2,2

000128 5822 1000 000027 | L r2,(*)uchar*(r2,r1,0)

00012C 4100 D0B0 000027 | LA r0,c_temp(,r13,176)

000130 58F0 319E 000027 | L r15,=V(SSCANF)(,r3,414)

000134 4110 D098 000027 | LA r1,#MX_TEMP1(,r13,152)

000138 5020 D098 000027 | ST r2,#MX_TEMP1(,r13,152)

00013C 4120 501D 000027 | LA r2,+CONSTANT_AREA(,r5,29)

000140 5020 D09C 000027 | ST r2,#MX_TEMP1(,r13,156)

000144 5000 D0A0 000027 | ST r0,#MX_TEMP1(,r13,160)

000148 05EF 000027 | BALR r14,r15

00014A 180F 000027 | LR r0,r15

00014C A70E 0001 000027 | CHI r0,H’1’

000150 4780 3130 000027 | BE @1L7

000154 5810 D0D0 000028 | L r1,#SR_PARM_1(,r13,208)

000158 5810 1004 000028 | L r1,argv(,r1,4)

00015C 5820 D0B8 000028 | L r2,i(,r13,184)

000160 8920 0002 000028 | SLL r2,2

000164 5802 1000 000028 | L r0,(*)uchar*(r2,r1,0)

000168 58F0 3196 000028 | L r15,=V(PRINTF)(,r3,406)

00016C 4120 507B 000028 | LA r2,+CONSTANT_AREA(,r5,123)

000170 4110 D098 000028 | LA r1,#MX_TEMP1(,r13,152)

000174 5020 D098 000028 | ST r2,#MX_TEMP1(,r13,152)

000178 5000 D09C 000028 | ST r0,#MX_TEMP1(,r13,156)

00017C 05EF 000028 | BALR r14,r15

00017E 47F0 3166 000028 | B @1L8

000182 000028 | @1L7 DS 0H

000182 6800 D0B0 000030 | LD f0,c_temp(,r13,176)

000186 6000 D0C0 000030 | STD f0,c_temp:convert(,r13,192)

00018A 6820 5048 000037 | + LD f2,+CONSTANT_AREA(,r5,72)

00018E 2C02 000037 | + MDR f0,f2

000190 6820 5050 000037 | + LD f2,+CONSTANT_AREA(,r5,80)

000194 2A02 000037 | + ADR f0,f2

000196 6000 D0C8 000037 | + STD f0,f_temp:convert(,r13,200)

00019A 6820 D0C0 000038 | + LD f2,c_temp:convert(,r13,192)

00019E 6020 D09C 000038 | + STD f2,#MX_TEMP1(,r13,156)

0001A2 6000 D0A4 000038 | + STD f0,#MX_TEMP1(,r13,164)

0001A6 58F0 3196 000038 | + L r15,=V(PRINTF)(,r3,406)

0001AA 4100 5058 000038 | + LA r0,+CONSTANT_AREA(,r5,88)

0001AE 4110 D098 000038 | + LA r1,#MX_TEMP1(,r13,152)

0001B2 5000 D098 000038 | + ST r0,#MX_TEMP1(,r13,152)

0001B6 05EF 000038 | + BALR r14,r15

0001B8 000039 | +@1L11 DS 0H

0001B8 000039 | +@1L8 DS 0H

0001B8 5800 D0B8 000039 | + L r0,i(,r13,184)

0001BC A70A 0001 000039 | + AHI r0,H’1’

0001C0 5000 D0B8 000039 | + ST r0,i(,r13,184)

0001C4 5810 D0D0 000039 | + L r1,#SR_PARM_1(,r13,208)

0001C8 5810 1000 000039 | + L r1,argc(,r1,0)

Figure 12. Example of a C listing (Part 26 of 31)

236 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: main 01/20/2005 00:11:17 Page 32

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

0001CC 1901 000039 | + CR r0,r1

0001CE 4740 30C6 000039 | + BL @1L5

0001D2 000039 | +@1L9 DS 0H

0001D2 000039 | +@1L6 DS 0H

0001D2 000039 | +@1L4 DS 0H

0001D2 41F0 0000 000033 | LA r15,0

0001D6 000034 | @1L13 DS 0H

0001D6 Start of Epilog

0001D6 180D 000034 | LR r0,r13

0001D8 58D0 D004 000034 | L r13,4(,r13)

0001DC 58E0 D00C 000034 | L r14,12(,r13)

0001E0 9825 D01C 000034 | LM r2,r5,28(r13)

0001E4 051E 000034 | BALR r1,r14

0001E6 0707 000034 | NOPR 7

0001E8 Start of Literals

0001E8 00000000 =V(PRINTF)

0001EC 00000000 =V(SCANF)

0001F0 00000000 =V(SSCANF)

0001F4 End of Literals

 *** General purpose registers used: 1111110000001111

 *** Floating point registers used: 1111111100000000

 *** Size of register spill area: 128(max) 0(used)

 *** Size of dynamic storage: 288

 *** Size of executable code: 464

Figure 12. Example of a C listing (Part 27 of 31)

Chapter 4. Compiler Options 237

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: convert 01/20/2005 00:11:17 Page 33

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000001 | * #include <stdio.h>

 000002 | *

 000003 | * #include "ccnuaan.h"

 000004 | *

 000005 | * void convert(double);

 000006 | *

 000007 | * int main(int argc, char **argv)

 000008 | * {

 000009 | * double c_temp;

 000010 | *

 000011 | * if (argc == 1) { /* get Celsius value from stdin */

 000012 | * int ch;

 000013 | *

 000014 | * printf("Enter Celsius temperature: \n");

 000015 | *

 000016 | * if (scanf("%f", &c_temp) != 1) {

 000017 | * printf("You must enter a valid temperature\n");

 000018 | * }

 000019 | * else {

 000020 | * convert(c_temp);

 000021 | * }

 000022 | * }

 000023 | * else { /* convert the command-line arguments to Fahrenheit */

 000024 | * int i;

 000025 | *

 000026 | * for (i = 1; i < argc; ++i) {

 000027 | * if (sscanf(argv[i], "%f", &c_temp) != 1)

 000028 | * printf("%s is not a valid temperature\n",argv[i]);

 000029 | * else

 000030 | * convert(c_temp);

 000031 | * }

 000032 | * }

 000033 | * return 0;

 000034 | * }

 000035 | *

 000036 | * void convert(double c_temp) {

0001F8 000036 | convert DS 0D

0001F8 47F0 F022 000036 | B 34(,r15)

0001FC 01C3C5C5 CEE eyecatcher

000200 00000100 DSA size

000204 00000188 =A(PPA1-convert)

000208 47F0 F001 000036 | B 1(,r15)

00020C 58F0 C31C 000036 | L r15,796(,r12)

000210 184E 000036 | LR r4,r14

000212 05EF 000036 | BALR r14,r15

000214 00000000 =F’0’

000218 07F3 000036 | BR r3

00021A 90E5 D00C 000036 | STM r14,r5,12(r13)

00021E 58E0 D04C 000036 | L r14,76(,r13)

000222 4100 E100 000036 | LA r0,256(,r14)

000226 5500 C314 000036 | CL r0,788(,r12)

00022A 4130 F03A 000036 | LA r3,58(,r15)

00022E 4720 F014 000036 | BH 20(,r15)

000232 58F0 C280 000036 | L r15,640(,r12)

000236 90F0 E048 000036 | STM r15,r0,72(r14)

00023A 9210 E000 000036 | MVI 0(r14),16

Figure 12. Example of a C listing (Part 28 of 31)

238 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: convert 01/20/2005 00:11:17 Page 34

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

00023E 50D0 E004 000036 | ST r13,4(,r14)

000242 18DE 000036 | LR r13,r14

000244 End of Prolog

000244 C050 0000 002E 000000 | LARL r5,F’46’

00024A 5010 D0B8 000036 | ST r1,#SR_PARM_2(,r13,184)

 000037 | * double f_temp = (c_temp * CONV + OFFSET);

00024E 5810 D0B8 000037 | L r1,#SR_PARM_2(,r13,184)

000252 6800 1000 000037 | LD f0,c_temp(,r1,0)

000256 6820 5048 000037 | LD f2,+CONSTANT_AREA(,r5,72)

00025A 2C02 000037 | MDR f0,f2

00025C 6820 5050 000037 | LD f2,+CONSTANT_AREA(,r5,80)

000260 2A02 000037 | ADR f0,f2

000262 6000 D0B0 000037 | STD f0,f_temp(,r13,176)

 000038 | * printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

000266 5810 D0B8 000038 | L r1,#SR_PARM_2(,r13,184)

00026A 6820 1000 000038 | LD f2,c_temp(,r1,0)

00026E 6020 D09C 000038 | STD f2,#MX_TEMP2(,r13,156)

000272 6000 D0A4 000038 | STD f0,#MX_TEMP2(,r13,164)

000276 58F0 3066 000038 | L r15,=V(PRINTF)(,r3,102)

00027A 4100 5058 000038 | LA r0,+CONSTANT_AREA(,r5,88)

00027E 4110 D098 000038 | LA r1,#MX_TEMP2(,r13,152)

000282 5000 D098 000038 | ST r0,#MX_TEMP2(,r13,152)

000286 05EF 000038 | BALR r14,r15

 000039 | * }

000288 000039 | @2L14 DS 0H

000288 Start of Epilog

000288 58D0 D004 000039 | L r13,4(,r13)

00028C 58E0 D00C 000039 | L r14,12(,r13)

000290 9825 D01C 000039 | LM r2,r5,28(r13)

000294 051E 000039 | BALR r1,r14

000296 0707 000039 | NOPR 7

000298 Start of Literals

000298 00000000 =V(PRINTF)

00029C End of Literals

 *** General purpose registers used: 1101110000001111

 *** Floating point registers used: 1111111100000000

 *** Size of register spill area: 128(max) 0(used)

 *** Size of dynamic storage: 256

 *** Size of executable code: 160

00029C 0000 0000

 Constant Area

0002A0 C595A385 9940C385 93A289A4 A240A385 |Enter Celsius te|

0002B0 94978599 81A3A499 857A4015 006C8600 |mperature: ..%f.|

0002C0 E896A440 94A4A2A3 408595A3 85994081 |You must enter a|

0002D0 40A58193 898440A3 85949785 9981A3A4 | valid temperatu|

0002E0 99851500 C9C2D440 411CCCCC CCCCCCCC |re..IBM|

0002F0 42200000 00000000 6CF54BF2 8640C385 |........%5.2f Ce|

000300 93A289A4 A24089A2 406CF54B F28640C6 |lsius is %5.2f F|

000310 81889985 95888589 A315006C A24089A2 |ahrenheit..%s is|

000320 409596A3 408140A5 81938984 40A38594 | not a valid tem|

Figure 12. Example of a C listing (Part 29 of 31)

Chapter 4. Compiler Options 239

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’: convert 01/20/2005 00:11:17 Page 35

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

000330 97859981 A3A49985 1500 |perature.. |

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 36

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 PPA1: Entry Point Constants

000340 1CCEA106 =F’483303686’ Flags

000344 000003B0 =A(PPA2-main)

000348 00000000 =F’0’ No PPA3

00034C 00000000 =F’0’ No EPD

000350 FF000000 =F’-16777216’ Register save mask

000354 00000000 =F’0’ Member flags

000358 90 =AL1(144) Flags

000359 000000 =AL3(0) Callee’s DSA use/8

00035C 0040 =H’64’ Flags

00035E 0012 =H’18’ Offset/2 to CDL

000360 00000000 =F’0’ Reserved

000364 500000E8 =F’1342177512’ CDL function length/2

000368 FFFFFCD8 =F’-808’ CDL function EP offset

00036C 38260000 =F’942014464’ CDL prolog

000370 400900DF =F’1074331871’ CDL epilog

000374 00000000 =F’0’ CDL end

000378 0004 **** AL2(4),C’main’

 PPA1 End

 PPA1: Entry Point Constants

000380 1CCEA106 =F’483303686’ Flags

000384 000001D0 =A(PPA2-convert)

000388 00000000 =F’0’ No PPA3

00038C 00000000 =F’0’ No EPD

000390 FF000000 =F’-16777216’ Register save mask

000394 00000000 =F’0’ Member flags

000398 90 =AL1(144) Flags

000399 000000 =AL3(0) Callee’s DSA use/8

00039C 0040 =H’64’ Flags

00039E 0012 =H’18’ Offset/2 to CDL

0003A0 00000000 =F’0’ Reserved

0003A4 50000050 =F’1342177360’ CDL function length/2

0003A8 FFFFFE78 =F’-392’ CDL function EP offset

0003AC 38260000 =F’942014464’ CDL prolog

0003B0 40080048 =F’1074266184’ CDL epilog

0003B4 00000000 =F’0’ CDL end

0003B8 0007 **** AL2(7),C’convert’

 PPA1 End

 PPA2: Compile Unit Block

0003C8 0300 2202 =F’50340354’ Flags

0003CC FFFF FC38 =A(CEESTART-PPA2)

0003D0 0000 0000 =F’0’ No PPA4

0003D4 FFFF FC38 =A(TIMESTMP-PPA2)

0003D8 0000 0000 =F’0’ No primary

0003DC 0000 0000 =F’0’ Flags

 PPA2 End

Figure 12. Example of a C listing (Part 30 of 31)

240 z/OS V1R7.0 XL C/C++ User’s Guide

z/OS XL C compiler listing components

The following sections describe the components of a C compiler listing. These are

available for regular and IPA compilations. Differences in the IPA versions of the

listings are noted. “Using the IPA Link step listing” on page 264 describes

IPA-specific listings.

Heading information

The first page of the listing is identified by the product number, the compiler version

and release numbers, the name of the data set or HFS file containing the source

code, the date and time compilation began (formatted according to the current

locale), and the page number.

Note: If the name of the data set or HFS file that contains the source code is

greater than 32 characters, it is truncated. Only the right-most 32 characters

appear in the listing.

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 37

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 NAME TYPE ID ADDR LENGTH NAME TYPE ID ADDR LENGTH

 PC 1 000000 0003E0 MAIN LD 0 000018 000001

 CONVERT LD 0 0001F8 000001 CEESG003 ER 2 000000

 PRINTF ER 3 000000 SCANF ER 4 000000

 SSCANF ER 5 000000 CEESTART ER 6 000000

 CEEMAIN SD 7 000000 00000C EDCINPL ER 8 000000

 MAIN ER 9 000000

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 38

 E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

 ORIGINAL NAME EXTERNAL SYMBOL NAME

 main MAIN

 convert CONVERT

 CEESG003 CEESG003

 printf PRINTF

 scanf SCANF

 sscanf SSCANF

 CEESTART CEESTART

 CEEMAIN CEEMAIN

 EDCINPL EDCINPL

5694A01 V1.7 z/OS XL C ’TSCTEST.ZOSV1R7.SCCNSAM(CCNUAAM)’ 01/20/2005 00:11:17 Page 39

 * * * * * S T O R A G E O F F S E T L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

argc 7-0:7 Class = parameter, Location = 0(r1), Length = 4

argv 7-0:7 Class = parameter, Location = 4(r1), Length = 4

c_temp 9-0:9 Class = automatic, Location = 176(r13), Length = 8

i 24-0:24 Class = automatic, Location = 184(r13), Length = 4

c_temp 36-0:36 Class = parameter, Location = 0(r1), Length = 8

f_temp 37-0:37 Class = automatic, Location = 176(r13), Length = 8

 * * * * * E N D O F S T O R A G E O F F S E T L I S T I N G * * * * *

 * * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 12. Example of a C listing (Part 31 of 31)

Chapter 4. Compiler Options 241

Prolog section

The Prolog section provides information about the compile-time library, file

identifiers, compiler options, and other items in effect when the compiler was

invoked.

All options except those with no default (for example, DEFINE) are shown in the

listing. Any problems with the compiler options appear after the body of the Prolog

section.

IPA considerations: If you specify IPA suboptions that are irrelevant to the IPA

Compile step, the Prolog does not display them. If IPA processing is not active, IPA

suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler

options that generate them.

Source program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text

after the #include directives.

Includes section

The compiler generates the Includes section when you use include files, and

specify the options SOURCE, LIST, or INLRPT.

Cross-Reference Listing

The XREF option generates a cross-reference table that contains a list of the

identifiers from the source program and the line numbers in which they appear.

Structure and Union Maps

You obtain structure and union maps by using the AGGREGATE option. The table

shows how each structure and union in the program is mapped. It contains the

following:

v Name of the structure or union and the elements within the structure or union

v Byte offset of each element from the beginning of the structure or union, and the

bit offset for unaligned bit data

v Length of each element

v Total length of each structure, union, and substructure

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it

generates messages. If you specify the SOURCE compiler option, preprocessor error

messages appear immediately after the source statement in error. You can generate

your own messages in the preprocessing stage by using the #error preprocessor

directive. For information on #error, see the z/OS XL C/C++ Language Reference.

If you specify the compiler options CHECKOUT or INFO(), the compiler will generate

informational diagnostic messages.

For more information on the compiler messages, see “FLAG | NOFLAG” on page

100, and z/OS XL C/C++ Messages.

Message Summary

This listing section displays the total number of messages and the number of

messages for each severity level.

242 z/OS V1R7.0 XL C/C++ User’s Guide

Inline Report

If you specify the OPTIMIZE and INLINE(,REPORT,,) options, or the OPTIMIZE and

INLRPT options, an Inline Report is included in the listing. This report contains an

inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined

subprogram.

The summary contains information such as:

v Name of each defined subprogram. Subprogram names appear in alphabetical

order.

v Reason for action on a subprogram:

– The P indicates that #pragma noinline and the COMPACT compiler option are

not in effect.

– The F indicates that the subprogram was declared inline, either by #pragma

inline for C or the inline keyword for C++.

– The C indicates that the COMPACT compiler option is specified for

#pragma_override(FuncName,"OPT(COMPACT,yes)" is specified in the source

code.

– The M indicates that C++ routine is an inline member routine.

– The A indicates automatic inlining acted on the subprogram.

– The - indicates there was no reason to inline the subprogram.

v Action on a subprogram:

– Subprogram was inlined at least once.

– Subprogram was not inlined because of initial size constraints.

– Subprogram was not inlined because of expansion beyond size constraint.

– Subprogram was a candidate for inlining, but was not inlined.

– Subprogram was a candidate for inlining, but was not referenced.

– The subprogram is directly recursive, or some calls have mismatching

parameters.

Note: ″Called″ and ″Calls″ in the actions section of the inline report indicate how

many times a function has been called or has called other functions, regardless

of whether or not the callers or callees have been inlined.

v Status of original subprogram after inlining:

– Subprogram is discarded because it is no longer referenced and is defined as

static internal.

– Subprogram was not discarded for various reasons :

- Subprogram is external. (It can be called from outside the compilation unit.)

- A call to this subprogram remains.

- Subprogram has its address taken.

v Initial relative size of subprogram (in Abstract Code Units (ACU)).

v Final relative size of subprogram (in ACUs) after inlining.

v Number of calls within the subprogram and the number of these calls that were

inlined into subprogram.

v Number of times the subprogram is called by others in the compile unit and the

number of times the subprogram was inlined.

v Mode that is selected and the value of threshold and limit specified for the

compilation.

The detailed call structure contains specific information of each subprogram such

as:

v Subprograms that it calls

v Subprograms that call it

Chapter 4. Compiler Options 243

v Subprograms in which it is inlined

The information can help you to better analyze your program if you want to use the

inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a subprogram

with automatic storage increases the automatic storage of the subprogram it is

being inlined into by more than 4K, a message is generated.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module

in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the

line number of inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External

Symbol Dictionary lists the names that the compiler generates for the output object

module. It includes address information and size information about each symbol.

External Symbol Cross Reference

The XREF compiler option generates the External Symbol Cross Reference section.

It shows the original name and corresponding mangled name for each symbol.

Storage Offset Listing

If you specify the XREF option, the listing file includes offset information on

identifiers.

Static Map

Static Map displays the contents of the @STATIC data area, which holds the file

scope read/write static variables. It displays the offset (as a hexadecimal number),

the length (as a hexadecimal number), and the names of the objects mapped to

@STATIC. Under certain circumstances, the compiler may decide to map other

objects to @STATIC. In the example of the listing, the unnamed string ″Enter

Celsius temperature: \n″ is stored in the @STATIC area at offset 48 and its length is

23 (both numbers are in hexadecimal notation), under the name ″″12.

If you specify the XREF, IPA (ATTRIBUTE) or IPA (XREF) options, the listing file

includes offset information for file scope read/write static variables.

Using the z/OS XL C++ compiler listing

If you select the SOURCE, INLRPT, or LIST option, the compiler creates a listing that

contains information about the source program and the compilation. If the

compilation terminates before reaching a particular stage of processing, the

compiler does not generate corresponding parts of the listing. The listing contains

standard information that always appears, together with optional information that is

supplied by default or specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all

compiler diagnostic messages to your terminal. The TERMINAL option directs only the

diagnostic messages part of the compiler listing to your terminal.

Notes:

1. Although the compiler listing is for your use, it is not a programming interface

and is subject to change.

244 z/OS V1R7.0 XL C/C++ User’s Guide

2. The compiler always attempts to put diagnostic messages in the listing, as close

as possible to the location where the condition occurred. The exact location or

line number within the listing may not be the same from release to release.

IPA considerations

The listings that the IPA Compile step produces are basically the same as those

that a regular compilation produces. Any differences are noted throughout this

section.

The IPA Link step listing has a separate format from the listings mentioned above.

Many listing sections are similar to those that are produced by a regular compilation

or the IPA Compile step with the IPA(OBJECT) option specified. Refer to “Using the

IPA Link step listing” on page 264 for information about IPA Link step listings.

Example of a C++ compiler listing

Figure 13 shows an example of a z/OS XL C++ compiler listing. Vertical ellipses

indicate sections that have been truncated.

5694A01 V1.7 z/OS XL C++ //’TSCTEST.ZOSV1R7.SCCNSAM(CCNUBRC)’ 01/20/2005 00:12:43

 * * * * * P R O L O G * * * * *

 Compiler options. :AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

 :NOATTRIBUTE BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS

 :CVFT DIGRAPH DLL(NOCALLBACKANY) ENUMSIZE(SMALL) NOEVENTS

 :EXECOPS EXH NOEXPMAC NOEXPORTALL NOFASTTEMPINC FLAG(I)

 :NOGOFF NOGONUMBER HALT(16) NOIGNERRNO ILP32 NOINITAUTO

 :INLRPT NOLIBANSI LIST LONGNAME LONGLONG NOMARGINS

 :MAXMEM(2097152) MEMORY NAMEMANGLING(ANSI) NESTINC(255) OBJECT

 :OBJECTMODEL(COMPAT) NOOE NOOFFSET NOOPTIMIZE PLIST(HOST)

 :NOPORT NOPPONLY REDIR ROSTRING ROCONST NORTTI

 :NOSEQUENCE NOSHOWINC SOURCE SPILL(128) START NOSTATICINLINE

 :STRICT NOSTRICT_INDUCTION TARGET(LE,CURRENT)

 :NOTEMPLATEREGISTRY TEMPLATERECOMPILE TERMINAL NOTEST(HOOK)

 :TMPLPARSE(NO) TUNE(5) UNROLL(AUTO) NOWARN64 NOWSIZEOF XREF

 :NOCONVLIT

 :NOCSECT

 :NODEBUG

 :FLOAT(HEX,FOLD,AFP) ROUND(Z)

 :INFO(LAN)

 :INLINE(AUTO,REPORT,100,1000)

 :NOIPA

 :LANGLVL(ANONSTRUCT,ANONUNION,ANSIFOR,ANSISINIT,DBCS,NODOLLARINNAMES,EMPTYSTRUCT,ILLPTOM,

 IMPLICITINT,LIBEXT,LONGLONG,OFFSETNONPOD,NOOLDDIGRAPH,OLDFRIEND,NOOLDMATH,OLDTEMPACC,

 NOOLDTMPLALIGN,OLDTMPLSPEC,TRAILENUM,TYPEDEFCLASS,NOUCS,ZEROEXTARRAY)

 :NOLOCALE

 :LSEARCH()

 :OPTFILE(DD:OPTS)

 :SEARCH(//’TSCTEST.CEEZ170.SCEEH.+’ //’TSCTEST.ZOSV1R7.SCLBH.+’)

 :NOSERVICE

 :NOSQL

 :NOSUPPRESS

 :TEMPINC(./tempinc)

 :NOXPLINK(NOBACKCHAIN,NOCALLBACK,GUARD,OSCALL(UPSTACK),NOSTOREARGS)

 Version Macros. : __COMPILER_VER__=0x41070000

 : __LIBREL__=0x41070000

 : __TARGET_LIB__=0x41070000

 Source margins. :

 Varying length. : 1 - 32767

 Fixed length. : 1 - 32767

 Sequence columns. :

 Varying length. : none

 Fixed length. : none

 Listing name. : DD:SYSCPRT

 * * * * * E N D O F P R O L O G * * * * *

Figure 13. Example of a C++ compiler listing (Part 1 of 21)

Chapter 4. Compiler Options 245

5694A01 V1.7 z/OS XL C++ //’TSCTEST.ZOSV1R7.SCCNSAM(CCNUBRC)’ 01/20/2005 00:12:43

 * * * * * S O U R C E * * * * *

 1 |//

 2 |// Sample Program: Biorhythm

 3 |// Description : Calculates biorhythm based on the current

 4 |// system date and birth date entered

 5 |//

 6 |// File 2 of 2-other file is CCNUBRH

 7 |

 8 |#include <stdio.h>

 9 |#include <string.h>

 10 |#include <math.h>

 11 |#include <time.h>

 12 |#include <iostream>

 13 |#include <iomanip>

 14 |

 15 |#include "ccnubrh.h" //BioRhythm class and Date class

 16 |using namespace std;

 17 |static ostream& operator << (ostream&, BioRhythm&);

 18 |

 19 |

 20 |int main(void) {

 21 |

 22 | BioRhythm bio;

 23 | int code;

 24 |

 25 | if (!bio.ok()) {

 26 | cerr << "Error in birthdate specification - format is yyyy/mm/dd";

 27 | code = 8;

 28 | }

 29 | else {

 30 | cout << bio; // write out birthdate for bio

 31 | code = 0;

 32 | }

 33 | return(code);

 34 |}

 35 |

 36 |const int Date::dateLen ;

 37 |const int Date::numMonths;

 38 |const int Date::numDays[Date::numMonths] = {

 39 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

 40 | };

 41 |

 42 |const int BioRhythm::pCycle;

 43 |const int BioRhythm::eCycle;

 44 |const int BioRhythm::iCycle;

 45 |

 46 |ostream& operator<<(ostream& os, BioRhythm& bio) {

 47 | os << "Total Days : " << bio.AgeInDays() << "\n";

 48 | os << "Physical : " << bio.Physical() << "\n";

 49 | os << "Emotional : " << bio.Emotional() << "\n";

Figure 13. Example of a C++ compiler listing (Part 2 of 21)

246 z/OS V1R7.0 XL C/C++ User’s Guide

50 | os << "Intellectual: " << bio.Intellectual() << "\n";

 51 |

 52 |return(os);

 53 |}

 54 |

 55 |Date::Date() {

 56 | time_t lTime;

 57 | struct tm *newTime;

 58 |

 59 | time(&lTime);

 60 | newTime = localtime(&lTime);

 61 | cout << "local time is " << asctime(newTime) << endl;

 62 |

 63 | curYear = newTime->tm_year + 1900;

 64 | curDay = newTime->tm_yday + 1;

 65 |}

 66 |

 67 |BirthDate::BirthDate(const char *birthText) {

 68 | strcpy(text, birthText);

 69 |}

 70 |

 71 |BirthDate::BirthDate() {

 72 | cout << "Please enter your birthdate in the form yyyy/mm/dd\n";

 73 | cin >> setw(dateLen+1) >> text;

 74 |}

 75 |

 76 |Date::DaysSince(const char *text) {

 77 |

 78 | int year, month, day, totDays, delim;

 79 | int daysInYear = 0;

 80 | int i;

 81 | int leap = 0;

 82 |

 83 | int rc = sscanf(text, "%4d%c%2d%c%2d",

 84 | &year, &delim, &month, &delim, &day);

 85 | --month;

 86 | if (rc != 5 || year < 0 || year > 9999 ||

 87 | month < 0 || month > 11 ||

 88 | day < 1 || day > 31 ||

 89 | (day > numDays[month]&& month != 1)) {

 90 | return(-1);

 91 | }

 92 | if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

 93 | leap = 1;

 94 |

 95 | if (month == 1 && day > numDays[month]) {

 96 | if (day > 29)

 97 | return(-1);

 98 | else if (!leap)

 99 | return (-1);

 100 | }

 101 |

 102 | for (i=0;i<month> 1 || (month == 1 && day == 29)))

 110 | ++daysInYear;

 111 |

 112 | totDays = (curDay - daysInYear) + (curYear - year)*365;

 113 |

 114 | // now, correct for leap year

 115 | for (i=year+1; i < curYear; ++i) {

 116 | if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {

 117 | ++totDays;

 118 | }

 119 | }

 120 | return(totDays);

 121 |}

 * * * * * E N D O F S O U R C E * * * * *

Figure 13. Example of a C++ compiler listing (Part 3 of 21)

Chapter 4. Compiler Options 247

5694A01 V1.7 z/OS XL C++ //’TSCTEST.ZOSV1R7.SCCNSAM(CCNUBRC)’ 01/20/2005 00:12:43

 * * * * * I N C L U D E S * * * * *

 1 = //’TSCTEST.CEEZ170.SCEEH.H(STDIO)’

 2 = //’TSCTEST.CEEZ170.SCEEH.H(FEATURES)’

 3 = //’TSCTEST.CEEZ170.SCEEH.SYS.H(TYPES)’

 4 = //’TSCTEST.CEEZ170.SCEEH.H(STRING)’

 5 = //’TSCTEST.CEEZ170.SCEEH.H(MATH)’

 6 = //’TSCTEST.CEEZ170.SCEEH.H(@IEEE754)’

 7 = //’TSCTEST.CEEZ170.SCEEH.H(BUILTINS)’

 8 = //’TSCTEST.CEEZ170.SCEEH.H(TIME)’

 9 = //’TSCTEST.CEEZ170.SCEEH(IOSTREAM)’

 10 = //’TSCTEST.CEEZ170.SCEEH(ISTREAM)’

 11 = //’TSCTEST.CEEZ170.SCEEH(OSTREAM)’

 12 = //’TSCTEST.CEEZ170.SCEEH.H(YVALS)’

 13 = //’TSCTEST.CEEZ170.SCEEH(IOS)’

 14 = //’TSCTEST.CEEZ170.SCEEH(XLOCNUM)’

 15 = //’TSCTEST.CEEZ170.SCEEH(CERRNO)’

 16 = //’TSCTEST.CEEZ170.SCEEH.H(ERRNO)’

 17 = //’TSCTEST.CEEZ170.SCEEH(CLIMITS)’

 18 = //’TSCTEST.CEEZ170.SCEEH.H(LIMITS)’

 19 = //’TSCTEST.CEEZ170.SCEEH(CSTDIO)’

 20 = //’TSCTEST.CEEZ170.SCEEH(CSTDLIB)’

 21 = //’TSCTEST.CEEZ170.SCEEH.H(STDLIB)’

 22 = //’TSCTEST.CEEZ170.SCEEH(STREAMBU)’ ...

 * * * * * E N D O F I N C L U D E S * * * * *

Figure 13. Example of a C++ compiler listing (Part 4 of 21)

5694A01 V1.7 z/OS XL C++ //’TSCTEST.ZOSV1R7.SCCNSAM(CCNUBRC)’ 01/20/2005 00:12:43

 * * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

 ___valist :

 1:134 (D) 1:137 (R)

 __abs :

 21:357 (R) 21:438 (R)

 __absd :

 5:1000(R) 5:1080(R)

 __acos :

 5:986 (R) 5:1083(R)

 __acosf :

 5:1001(R) 5:1082(R)

 __acosl :

 5:1002(R) 5:1084(R)

 __amrc_type :

 1:863 (D) 1:867 (R)

 __amrctype :

 1:811 (D) 1:863 (R) ...
 * * * * * E N D O F C R O S S R E F E R E N C E L I S T I N G * * * * *

Figure 13. Example of a C++ compiler listing (Part 5 of 21)

248 z/OS V1R7.0 XL C/C++ User’s Guide

5694A01 V1.7 z/OS XL C++ //’TSCTEST.ZOSV1R7.SCCNSAM(CCNUBRC)’ 01/20/2005 00:12:43

 * * * * * M E S S A G E S U M M A R Y * * * * *

TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL

 (U) (S) (E) (W) (I)

 6 0 0 0 0 6

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43

 Inline Report (Summary)

 Reason: P : noinline was specified for this routine

 F : inline was specified for this routine

 C : compact was specified for this routine

 M : This is an inline member routine

 A : Automatic inlining

 - : No reason

 Action: I : Routine is inlined at least once

 L : Routine is initially too large to be inlined

 T : Routine expands too large to be inlined

 C : Candidate for inlining but not inlined

 N : No direct calls to routine are found in file (no action)

 U : Some calls not inlined due to recursion or parameter mismatch

 - : No action

 Status: D : Internal routine is discarded

 R : A direct call remains to internal routine (cannot discard)

 A : Routine has its address taken (cannot discard)

 E : External routine (cannot discard)

 - : Status unchanged

 Calls/I : Number of calls to defined routines / Number inline

 Called/I : Number of times called / Number of times inlined

 Reason Action Status Size (init) Calls/I Called/I Name

 A I D 17 0/0 3/3 std::bad_cast::bad_cast(const char*)

 M I D 18 0/0 1/1 std::bad_cast::bad_cast(const std::bad_cast&)

 A I R 17 0/0 2/1 std::bad_alloc::bad_alloc(const char*)

 P - - 142 (70) 1/1 1/0 std::_EBCDIC::_LFS_OFF::ctype<char>::ctype(const short*,bool,un

 signed int)

 A I D 7 0/0 2/2 std::_EBCDIC::_LFS_OFF::locale::id::id(unsigned int)

 ...
 Mode = AUTO Inlining Threshold = 100 Expansion Limit = 1000

Figure 13. Example of a C++ compiler listing (Part 6 of 21)

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43

 Inline Report (Call Structure)

 Defined Function : std::bad_cast::bad_cast(const char*)

 Calls To : 0

 Called From(3,3) : const std::_EBCDIC::_LFS_OFF::ctype<char>& std::_EBCDIC::_LFS_OFF::use_facet<std::_EBCDIC::_LFS_OFF

 ::ctype<char> >(const std::_EBCDIC::_LFS_OFF::locale&)(1,1)

 const std::_EBCDIC::_LFS_OFF::num_put<char,std::ostreambuf_iterator<char,std::char_traits<char> > >& std

 ::_EBCDIC::_LFS_OFF::use_facet<std::_EBCDIC::_LFS_OFF::num_put<char,std::ostreambuf_iterator<char,std

 ::char_traits<char> > > >(const std::_EBCDIC::_LFS_OFF::locale&)(1,1)

 const std::_EBCDIC::_LFS_OFF::numpunct<char>& std::_EBCDIC::_LFS_OFF::use_facet<std::_EBCDIC::_LFS_OFF

 ::numpunct<char> >(const std::_EBCDIC::_LFS_OFF::locale&)(1,1)

 Defined Function : std::bad_cast::bad_cast(const std::bad_cast&)

 Calls To : 0

 Called From(1,1) : std::bad_cast::_Doraise() const(1,1)

 ...

Figure 13. Example of a C++ compiler listing (Part 7 of 21)

Chapter 4. Compiler Options 249

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43

 Inline Report (Additional Information)

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::basic_ is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::num_pu is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::basic_ is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::num_pu is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::numpun is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::num_pu is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::num_pu is (or grows) too large to be inlined.

 INFORMATIONAL CCN1052: Function std::_EBCDIC::_LFS_OFF::num_pu is (or grows) too large to be inlined.

 ...

Figure 13. Example of a C++ compiler listing (Part 8 of 21)

250 z/OS V1R7.0 XL C/C++ User’s Guide

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43 26

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

 000000 F2F0 F0F5 =C’2005’ Compiled Year

 000004 F0F1 F2F0 =C’0120’ Compiled Date MMDD

 000008 F0F0 F1F2 F4F4 =C’001244’ Compiled Time HHMMSS

 00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 27

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000001 | * //

 000002 | * // Sample Program: Biorhythm

 000003 | * // Description : Calculates biorhythm based on the current

 000004 | * // system date and birth date entered

 000005 | * //

 000006 | * // File 2 of 2-other file is CCNUBRH

 000007 | *

 000008 | * #include <stdio.h>

 000009 | * #include <string.h>

 000010 | * #include <math.h>

 000011 | * #include <time.h>

 000012 | * #include <iostream*gt;

 000013 | * #include <iomanip>

 000014 | *

 000015 | * #include "ccnubrh.h" //BioRhythm class and Date class

 000016 | * using namespace std;

 000017 | * static ostream& operator << (ostream&, BioRhythm&);

 000018 | *

 000019 | *

 000020 | * int main(void) {

 000018 000020 | main DS 0D

 000018 47F0 F028 000020 | B 40(,r15)

 00001C 01C3C5C5 CEE eyecatcher

 000020 00000230 DSA size

 000024 0000BA28 =A(PPA1-main)

 000028 47F0 F001 000020 | B 1(,r15)

 00002C 58F0 C31C 000020 | L r15,796(,r12)

 000030 184E 000020 | LR r4,r14

 000032 05EF 000020 | BALR r14,r15

 000034 00000000 =F’0’

 000038 0540 000020 | BALR r4,0

 00003A 4140 401E 000020 | LA r4,30(,r4)

 00003E 07F4 000020 | BR r4

 000040 90E6 D00C 000020 | STM r14,r6,12(r13)

 000044 58E0 D04C 000020 | L r14,76(,r13)

 000048 4100 E230 000020 | LA r0,560(,r14)

 00004C 5500 C314 000020 | CL r0,788(,r12)

 000050 4140 F040 000020 | LA r4,64(,r15)

 000054 4720 F014 000020 | BH 20(,r15)

 000058 58F0 C280 000020 | L r15,640(,r12)

 00005C 90F0 E048 000020 | STM r15,r0,72(r14)

 000060 9210 E000 000020 | MVI 0(r14),16

 000064 50D0 E004 000020 | ST r13,4(,r14)

 000068 18DE 000020 | LR r13,r14

 00006A End of Prolog

 00006A 5800 C1F4 000020 | L r0,_CEECAA_(,r12,500)

 00006E 5000 D1E0 000020 | ST r0,#CEECAACRENT_1(,r13,480)

 000072 5810 D1E0 000020 | L r1,#CEECAACRENT_1(,r13,480)

 000076 5820 4540 000020 | L r2,=Q(@STATIC)(,r4,1344)

 00007A 4152 1000 000020 | LA r5,=Q(@STATIC)(r2,r1,0)

 00007E C060 0000 5C31 000000 | LARL r6,F’23601’

 000084 4100 0000 000020 | LA r0,0

 000088 5000 D0B0 000020 | ST r0,__es.__l@0(,r13,176)

 00008C 4110 50E8 000020 | LA r1,__fsm_tab(,r5,232)

 000090 5010 D0B4 000020 | ST r1,__es.__t@4(,r13,180)

Figure 13. Example of a C++ compiler listing (Part 9 of 21)

Chapter 4. Compiler Options 251

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 28

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000094 5000 D0B8 000020 | ST r0,__es.__this@8(,r13,184)

 000098 5000 D0BC 000020 | ST r0,__es.__i@c(,r13,188)

 000021 | *

 000022 | * BioRhythm bio;

 00009C 4110 D0C0 000022 | LA r1,bio(,r13,192)

 0000A0 5010 D0D8 000022 | ST r1,__787(,r13,216)

 0000A4 4100 1004 000036 | 53 LA r0,#AddressShadow(,r1,4)

 0000A8 5000 D0F0 000036 | 53 ST r0,this:__ct__9BirthDateFv(,r13,240)

 000023 | * int code;

 000024 | *

 000025 | * if (!bio.ok()) {

 000026 | * cerr << "Error in birthdate specification - format is yyyy/mm/dd";

 000027 | * code = 8;

 000028 | * }

 000029 | * else {

 000030 | * cout << bio; // write out birthdate for bio

 000031 | * code = 0;

 000032 | * }

 000033 | * return(code);

 000034 | * }

 000035 | *

 000036 | * const int Date::dateLen ;

 000037 | * const int Date::numMonths;

 000038 | * const int Date::numDays[Date::numMonths] = {

 000039 | * 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

 000040 | * };

 000041 | *

 000042 | * const int BioRhythm::pCycle;

 000043 | * const int BioRhythm::eCycle;

 000044 | * const int BioRhythm::iCycle;

 000045 | *

 000046 | * ostream& operator<<(ostream& os, BioRhythm& bio) {

 000047 | * os << "Total Days : " << bio.AgeInDays() << "\n";

 000048 | * os << "Physical : " << bio.Physical() << "\n";

 000049 | * os << "Emotional : " << bio.Emotional() << "\n";

 000050 | * os << "Intellectual: " << bio.Intellectual() << "\n";

 000051 | *

 000052 | * return(os);

 000053 | * }

 000054 | *

 000055 | * Date::Date() {

 000056 | * time_t lTime;

 000057 | * struct tm *newTime;

 000058 | *

 000059 | * time(&lTime);

 0000AC 5810 5000 000059 | + L r1,time(,r5,0)

 0000B0 4120 D0F4 000059 | + LA r2,lTime:__ct__9BirthDateFv(,r13,244)

 0000B4 58F0 1008 000059 | + L r15,&EPA_&WSA(,r1,8)

 0000B8 5800 100C 000059 | + L r0,&EPA_&WSA(,r1,12)

 0000BC 5000 C1F4 000059 | + ST r0,_CEECAA_(,r12,500)

 0000C0 4110 D098 000059 | + LA r1,#MX_TEMP1(,r13,152)

 0000C4 5020 D098 000059 | + ST r2,#MX_TEMP1(,r13,152)

 0000C8 05EF 000059 | + BALR r14,r15

 000060 | * newTime = localtime(&lTime);

 0000CA 5810 5004 000060 | + L r1,localtime(,r5,4)

 0000CE 4120 D0F4 000060 | + LA r2,lTime:__ct__9BirthDateFv(,r13,244)

Figure 13. Example of a C++ compiler listing (Part 10 of 21)

252 z/OS V1R7.0 XL C/C++ User’s Guide

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 29

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 0000D2 58F0 1008 000060 | + L r15,&EPA_&WSA(,r1,8)

 0000D6 5800 100C 000060 | + L r0,&EPA_&WSA(,r1,12)

 0000DA 5000 C1F4 000060 | + ST r0,_CEECAA_(,r12,500)

 0000DE 4110 D098 000060 | + LA r1,#MX_TEMP1(,r13,152)

 0000E2 5020 D098 000060 | + ST r2,#MX_TEMP1(,r13,152)

 0000E6 05EF 000060 | + BALR r14,r15

 0000E8 180F 000060 | + LR r0,r15

 0000EA 5000 D0F8 000060 | + ST r0,newTime:__ct__9BirthDateFv(,r13,248)

 000061 | * cout << "local time is " << asctime(newTime) << endl;

 0000EE 5810 5008 000061 | + L r1,cout__Q3_3std7_EBCDIC8_LFS_OFF(,r5,8)

 0000F2 5800 D1E0 000061 | + L r0,#CEECAACRENT_1(,r13,480)

 0000F6 58F0 4544 000061 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0000FA 4120 6079 000061 | + LA r2,+CONSTANT_AREA(,r6,121)

 0000FE 4DE0 F010 000061 | + BAS r14,16(,r15)

 000102 4700 0008 000061 | + NOP 8

 000106 1821 000061 | + LR r2,r1

 000108 5830 D0F8 000061 | + L r3,newTime:__ct__9BirthDateFv(,r13,248)

 00010C 5810 500C 000061 | + L r1,asctime(,r5,12)

 000110 58F0 1008 000061 | + L r15,&EPA_&WSA(,r1,8)

 000114 5800 100C 000061 | + L r0,&EPA_&WSA(,r1,12)

 000118 5000 C1F4 000061 | + ST r0,_CEECAA_(,r12,500)

 00011C 4110 D098 000061 | + LA r1,#MX_TEMP1(,r13,152)

 000120 5030 D098 000061 | + ST r3,#MX_TEMP1(,r13,152)

 000124 05EF 000061 | + BALR r14,r15

 000126 1812 000061 | + LR r1,r2

 000128 182F 000061 | + LR r2,r15

 00012A 5800 D1E0 000061 | + L r0,#CEECAACRENT_1(,r13,480)

 00012E 58F0 4544 000061 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 000132 4DE0 F010 000061 | + BAS r14,16(,r15)

 000136 4700 0008 000061 | + NOP 8

 00013A 1801 000061 | + LR r0,r1

 00013C 5000 D0FC 000061 | + ST r0,__1152:__ct__9BirthDateFv(,r13,252)

 000140 5820 5010 000061 | + L r2,endl__Q3_3std7_EBCDIC8_LFS_OFFHcQ2_3std11char_traitsXTc_...(,r5,16)

 000144 5020 D100 000061 | + ST r2,__1151:__ct__9BirthDateFv(,r13,256)

 000148 5810 D0FC 000146 | 11 + L r1,__1152:__ct__9BirthDateFv(,r13,252)

 00014C 58F0 2008 000146 | 11 + L r15,&Func_;&WSA;(,r2,8)

 000150 5800 200C 000146 | 11 + L r0,&Func_;&WSA;(,r2,12)

 000154 4DE0 F010 000146 | 11 + BAS r14,16(,r15)

 000158 4700 0004 000146 | 11 + NOP 4

 000062 | *

 000063 | * curYear = newTime->tm_year + 1900;

 00015C 5810 D0F0 000063 | + L r1,this:__ct__9BirthDateFv(,r13,240)

 000160 5820 D0F8 000063 | + L r2,newTime:__ct__9BirthDateFv(,r13,248)

 000164 5800 2014 000063 | + L r0,(tm).tm_year@14(,r2,20)

 000168 A70A 076C 000063 | + AHI r0,H’1900’

 00016C 5000 1000 000063 | + ST r0,(Date).curYear@0(,r1,0)

 000064 | * curDay = newTime->tm_yday + 1;

 000170 5810 D0F0 000064 | + L r1,this:__ct__9BirthDateFv(,r13,240)

 000174 5820 D0F8 000064 | + L r2,newTime:__ct__9BirthDateFv(,r13,248)

 000178 5800 201C 000064 | + L r0,(tm).tm_yday@1c(,r2,28)

 00017C A70A 0001 000064 | + AHI r0,H’1’

 000180 5000 1004 000064 | + ST r0,(Date).curDay@4(,r1,4)

 000065 | * }

 000066 | *

 000067 | * BirthDate::BirthDate(const char *birthText) {

 000068 | * strcpy(text, birthText);

Figure 13. Example of a C++ compiler listing (Part 11 of 21)

Chapter 4. Compiler Options 253

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 30

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000069 | * }

 000070 | *

 000071 | * BirthDate::BirthDate() {

 000072 | * cout << "Please enter your birthdate in the form yyyy/mm/dd\n";

 000184 5810 5008 000072 | + L r1,cout__Q3_3std7_EBCDIC8_LFS_OFF(,r5,8)

 000188 5800 D1E0 000072 | + L r0,#CEECAACRENT_1(,r13,480)

 00018C 58F0 4544 000072 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 000190 4120 6088 000072 | + LA r2,+CONSTANT_AREA(,r6,136)

 000194 4DE0 F010 000072 | + BAS r14,16(,r15)

 000198 4700 0008 000072 | + NOP 8

 000073 | * cin >> setw(dateLen+1) >> text;

 00019C 5810 5014 000073 | + L r1,setw__Q3_3std7_EBCDIC8_LFS_OFFFi(,r5,20)

 0001A0 4130 D170 000073 | + LA r3,#wtemp_1(,r13,368)

 0001A4 58F0 1008 000073 | + L r15,&Func_&WSA(,r1,8)

 0001A8 5800 100C 000073 | + L r0,&Func_&WSA(,r1,12)

 0001AC 4110 000B 000073 | + LA r1,11

 0001B0 4DE0 F010 000073 | + BAS r14,16(,r15)

 0001B4 4700 0004 000073 | + NOP 4

 0001B8 1803 000073 | + LR r0,r3

 0001BA 1830 000073 | + LR r3,r0

 0001BC 5010 3000 000073 | + ST r1,#wtemp_1(,r3,0)

 0001C0 1810 000073 | + LR r1,r0

 0001C2 5020 1004 000073 | + ST r2,#wtemp_1(,r1,4)

 0001C6 4110 D170 000073 | + LA r1,#wtemp_1(,r13,368)

 0001CA D207 D108 1000 000073 | + MVC __1096:__ct__9BirthDateFv(8,r13,264),(_Smanip<int>)(r1,0)

 0001D0 4130 D108 000073 | + LA r3,__1096:__ct__9BirthDateFv(,r13,264)

 0001D4 5030 D104 000073 | + ST r3,__1097:__ct__9BirthDateFv(,r13,260)

 0001D8 5810 5018 000105 | 52 + L r1,cin__Q3_3std7_EBCDIC8_LFS_OFF(,r5,24)

 0001DC 5810 1004 000105 | 52 + L r1,(basic_istream<char,std::char_traits<char> >)[]@4(,r1,4)

 0001E0 5820 3004 000105 | 52 + L r2,(_Smanip<int>)._Manarg@4(,r3,4)

 0001E4 5830 3000 000105 | 52 + L r3,(_Smanip<int>)._Pf@0(,r3,0)

 0001E8 58F0 3008 000105 | 52 + L r15,&Func_&WSA(,r3,8)

 0001EC 5800 300C 000105 | 52 + L r0,&Func_&WSA(,r3,12)

 0001F0 4DE0 F010 000105 | 52 + BAS r14,16(,r15)

 0001F4 4700 0008 000105 | 52 + NOP 8

 0001F8 5810 5018 000106 | 52 + L r1,cin__Q3_3std7_EBCDIC8_LFS_OFF(,r5,24)

 0001FC 5010 D110 000106 | 52 + ST r1,__1099:__ct__9BirthDateFv(,r13,272)

 000200 5820 D0F0 000106 | 52 + L r2,this:__ct__9BirthDateFv(,r13,240)

 000204 4120 2008 000106 | 52 + LA r2,#AddressShadow(,r2,8)

 000208 5800 D1E0 000106 | 52 + L r0,#CEECAACRENT_1(,r13,480)

 00020C 58F0 4548 000106 | 52 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_istream<char,std::ch...(,r4,1352)

 000210 4DE0 F010 000106 | 52 + BAS r14,16(,r15)

 000214 4700 0008 000106 | 52 + NOP 8

 000074 | * }

 000218 5800 D0F0 000074 | + L r0,this:__ct__9BirthDateFv(,r13,240)

 00021C 5000 D114 000074 | + ST r0,retval:__ct__9BirthDateFv(,r13,276)

 000220 000074 | +@1L34 DS 0H

 000220 5800 D114 000074 | + L r0,retval:__ct__9BirthDateFv(,r13,276)

 000224 5800 D0D8 000037 | 53 L r0,__787(,r13,216)

 000228 1810 000037 | 53 LR r1,r0

 00022A 4110 1004 000037 | 53 LA r1,#AddressShadow(,r1,4)

 00022E 5000 D178 000037 | 53 ST r0,#wtemp_2(,r13,376)

 000232 5010 D0DC 000037 | 53 ST r1,__713(,r13,220)

 000236 4120 1008 000025 | 53 LA r2,#AddressShadow(,r1,8)

 00023A 5800 D1E0 000025 | 53 L r0,#CEECAACRENT_1(,r13,480)

 00023E 58F0 454C 000025 | 53 L r15,=V(Date::DaysSince(const char*))(,r4,1356)

Figure 13. Example of a C++ compiler listing (Part 12 of 21)

254 z/OS V1R7.0 XL C/C++ User’s Guide

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 31

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000242 4DE0 F010 000025 | 53 BAS r14,16(,r15)

 000246 4700 0008 000025 | 53 NOP 8

 00024A 1801 000025 | 53 LR r0,r1

 00024C 5810 D178 000025 | 53 L r1,#wtemp_2(,r13,376)

 000250 5000 1000 000025 | 53 ST r0,(BioRhythm).age@0(,r1,0)

 000254 9201 D0B3 000036 | 53 MVI __es.__c4@3(r13,179),1

 000258 4110 D0C0 000025 | LA r1,bio(,r13,192)

 00025C 5010 D0E0 000025 | ST r1,__789(,r13,224)

 000260 5800 1000 000054 | 53 L r0,(BioRhythm).age@0(,r1,0)

 000264 1200 000054 | 53 LTR r0,r0

 000266 47B0 4236 000054 | 53 BNL @1L27

 00026A 5810 501C 000026 | L r1,cerr__Q3_3std7_EBCDIC8_LFS_OFF(,r5,28)

 00026E 5800 D1E0 000026 | L r0,#CEECAACRENT_1(,r13,480)

 000272 58F0 4544 000026 | L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 000276 4120 60BC 000026 | LA r2,+CONSTANT_AREA(,r6,188)

 00027A 4DE0 F010 000026 | BAS r14,16(,r15)

 00027E 4700 0008 000026 | NOP 8

 000282 4100 0008 000027 | LA r0,8

 000286 5000 D0E4 000027 | ST r0,code(,r13,228)

 00028A 47F0 4518 000028 | B @1L29

 00028E 000028 | @1L27 DS 0H

 00028E 5810 5008 000030 | L r1,cout__Q3_3std7_EBCDIC8_LFS_OFF(,r5,8)

 000292 4100 D0C0 000030 | LA r0,bio(,r13,192)

 000296 5010 D17C 000030 | ST r1,#wtemp_3(,r13,380)

 00029A 5000 D11C 000030 | ST r0,bio:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTc...(,r13,284)

 00029E 5810 D17C 000030 | L r1,#wtemp_3(,r13,380)

 0002A2 5010 D118 000030 | ST r1,os:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcT...(,r13,280)

 0002A6 5800 D1E0 000047 | + L r0,#CEECAACRENT_1(,r13,480)

 0002AA 58F0 4544 000047 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0002AE 4120 60F4 000047 | + LA r2,+CONSTANT_AREA(,r6,244)

 0002B2 4DE0 F010 000047 | + BAS r14,16(,r15)

 0002B6 4700 0008 000047 | + NOP 8

 0002BA 5820 D11C 000047 | + L r2,bio:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTc...(,r13,284)

 0002BE 5820 2000 000047 | + L r2,(BioRhythm).age@0(,r2,0)

 0002C2 5800 D1E0 000047 | + L r0,#CEECAACRENT_1(,r13,480)

 0002C6 58F0 4550 000047 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1360)

 0002CA 4DE0 F010 000047 | + BAS r14,16(,r15)

 0002CE 4700 0008 000047 | + NOP 8

 0002D2 5800 D1E0 000047 | + L r0,#CEECAACRENT_1(,r13,480)

 0002D6 58F0 4544 000047 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0002DA 4120 6103 000047 | + LA r2,+CONSTANT_AREA(,r6,259)

 0002DE 4DE0 F010 000047 | + BAS r14,16(,r15)

 0002E2 4700 0008 000047 | + NOP 8

 0002E6 5810 D118 000048 | + L r1,os:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcT...(,r13,280)

 0002EA 5800 D1E0 000048 | + L r0,#CEECAACRENT_1(,r13,480)

 0002EE 58F0 4544 000048 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0002F2 4120 6105 000048 | + LA r2,+CONSTANT_AREA(,r6,261)

 0002F6 4DE0 F010 000048 | + BAS r14,16(,r15)

 0002FA 4700 0008 000048 | + NOP 8

 0002FE 1801 000048 | + LR r0,r1

 000300 5000 D180 000048 | + ST r0,#wtemp_4(,r13,384)

 000304 4100 0017 000045 | 53 + LA r0,23

 000308 5000 D128 000045 | 53 + ST r0,__1436:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,296)

 00030C 5810 D11C 000060 | 53 + L r1,bio:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTc...(,r13,284)

 000310 5810 1000 000060 | 53 + L r1,(BioRhythm).age@0(,r1,0)

 000314 B3B5 0021 000060 | 53 + CDFR f2,r1

Figure 13. Example of a C++ compiler listing (Part 13 of 21)

Chapter 4. Compiler Options 255

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 32

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000318 B3B5 0000 000060 | 53 + CDFR f0,r0

 00031C 5810 5020 000060 | 53 + L r1,__fmod(,r5,32)

 000320 4120 D188 000060 | 53 + LA r2,#wtemp_5(,r13,392)

 000324 6020 D09C 000060 | 53 + STD f2,#MX_TEMP1(,r13,156)

 000328 6000 D0A4 000060 | 53 + STD f0,#MX_TEMP1(,r13,164)

 00032C 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 000330 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 000334 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 000338 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 00033C 5020 D098 000060 | 53 + ST r2,#MX_TEMP1(,r13,152)

 000340 05EF 000060 | 53 + BALR r14,r15

 000342 6800 D188 000060 | 53 + LD f0,#wtemp_5(,r13,392)

 000346 5800 D128 000060 | 53 + L r0,__1436:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,296)

 00034A B3B5 0020 000060 | 53 + CDFR f2,r0

 00034E 2D02 000060 | 53 + DDR f0,f2

 000350 6820 6118 000060 | 53 + LD f2,+CONSTANT_AREA(,r6,280)

 000354 2C02 000060 | 53 + MDR f0,f2

 000356 5810 5024 000060 | 53 + L r1,__sin(,r5,36)

 00035A 6000 D190 000060 | 53 + STD f0,#wtemp_6(,r13,400)

 00035E 4130 D190 000060 | 53 + LA r3,#wtemp_6(,r13,400)

 000362 4120 D198 000060 | 53 + LA r2,#wtemp_7(,r13,408)

 000366 A52A 8000 000060 | 53 + OILH r2,H’-32768’

 00036A 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 00036E 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 000372 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 000376 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 00037A 5030 D098 000060 | 53 + ST r3,#MX_TEMP1(,r13,152)

 00037E 5020 D09C 000060 | 53 + ST r2,#MX_TEMP1(,r13,156)

 000382 05EF 000060 | 53 + BALR r14,r15

 000384 6800 D198 000060 | 53 + LD f0,#wtemp_7(,r13,408)

 000388 6000 D130 000060 | 53 + STD f0,__1438:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,304)

 00038C 6000 D120 000060 | 53 + STD f0,__1440:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,288)

 000390 5810 D180 000060 | 53 + L r1,#wtemp_4(,r13,384)

 000394 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 000398 58F0 4554 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1364)

 00039C 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 0003A0 4700 000C 000060 | 53 + NOP 12

 0003A4 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 0003A8 58F0 4544 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0003AC 4120 6103 000060 | 53 + LA r2,+CONSTANT_AREA(,r6,259)

 0003B0 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 0003B4 4700 0008 000060 | 53 + NOP 8

 0003B8 5810 D118 000049 | + L r1,os:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcT...(,r13,280)

 0003BC 5800 D1E0 000049 | + L r0,#CEECAACRENT_1(,r13,480)

 0003C0 58F0 4544 000049 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 0003C4 4120 6120 000049 | + LA r2,+CONSTANT_AREA(,r6,288)

 0003C8 4DE0 F010 000049 | + BAS r14,16(,r15)

 0003CC 4700 0008 000049 | + NOP 8

 0003D0 1801 000049 | + LR r0,r1

 0003D2 5000 D1A0 000049 | + ST r0,#wtemp_8(,r13,416)

 0003D6 4100 001C 000048 | 53 + LA r0,28

 0003DA 5000 D140 000048 | 53 + ST r0,__1443:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,320)

 0003DE 5810 D11C 000060 | 53 + L r1,bio:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTc...(,r13,284)

 0003E2 5810 1000 000060 | 53 + L r1,(BioRhythm).age@0(,r1,0)

 0003E6 B3B5 0021 000060 | 53 + CDFR f2,r1

 0003EA B3B5 0000 000060 | 53 + CDFR f0,r0

Figure 13. Example of a C++ compiler listing (Part 14 of 21)

256 z/OS V1R7.0 XL C/C++ User’s Guide

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 33

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 0003EE 5810 5020 000060 | 53 + L r1,__fmod(,r5,32)

 0003F2 4120 D1A8 000060 | 53 + LA r2,#wtemp_9(,r13,424)

 0003F6 6020 D09C 000060 | 53 + STD f2,#MX_TEMP1(,r13,156)

 0003FA 6000 D0A4 000060 | 53 + STD f0,#MX_TEMP1(,r13,164)

 0003FE 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 000402 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 000406 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 00040A 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 00040E 5020 D098 000060 | 53 + ST r2,#MX_TEMP1(,r13,152)

 000412 05EF 000060 | 53 + BALR r14,r15

 000414 6800 D1A8 000060 | 53 + LD f0,#wtemp_9(,r13,424)

 000418 5800 D140 000060 | 53 + L r0,__1443:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,320)

 00041C B3B5 0020 000060 | 53 + CDFR f2,r0

 000420 2D02 000060 | 53 + DDR f0,f2

 000422 6820 6118 000060 | 53 + LD f2,+CONSTANT_AREA(,r6,280)

 000426 2C02 000060 | 53 + MDR f0,f2

 000428 5810 5024 000060 | 53 + L r1,__sin(,r5,36)

 00042C 6000 D1B0 000060 | 53 + STD f0,#wtemp_10(,r13,432)

 000430 4130 D1B0 000060 | 53 + LA r3,#wtemp_10(,r13,432)

 000434 4120 D1B8 000060 | 53 + LA r2,#wtemp_11(,r13,440)

 000438 A52A 8000 000060 | 53 + OILH r2,H’-32768’

 00043C 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 000440 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 000444 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 000448 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 00044C 5030 D098 000060 | 53 + ST r3,#MX_TEMP1(,r13,152)

 000450 5020 D09C 000060 | 53 + ST r2,#MX_TEMP1(,r13,156)

 000454 05EF 000060 | 53 + BALR r14,r15

 000456 6800 D1B8 000060 | 53 + LD f0,#wtemp_11(,r13,440)

 00045A 6000 D148 000060 | 53 + STD f0,__1445:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,328)

 00045E 6000 D138 000060 | 53 + STD f0,__1447:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,312)

 000462 5810 D1A0 000060 | 53 + L r1,#wtemp_8(,r13,416)

 000466 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 00046A 58F0 4554 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1364)

 00046E 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 000472 4700 000C 000060 | 53 + NOP 12

 000476 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 00047A 58F0 4544 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 00047E 4120 6103 000060 | 53 + LA r2,+CONSTANT_AREA(,r6,259)

 000482 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 000486 4700 0008 000060 | 53 + NOP 8

 00048A 5810 D118 000050 | + L r1,os:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcT...(,r13,280)

 00048E 5800 D1E0 000050 | + L r0,#CEECAACRENT_1(,r13,480)

 000492 58F0 4544 000050 | + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 000496 4120 612F 000050 | + LA r2,+CONSTANT_AREA(,r6,303)

 00049A 4DE0 F010 000050 | + BAS r14,16(,r15)

 00049E 4700 0008 000050 | + NOP 8

 0004A2 1801 000050 | + LR r0,r1

 0004A4 5000 D1C0 000050 | + ST r0,#wtemp_12(,r13,448)

 0004A8 4100 0021 000051 | 53 + LA r0,33

 0004AC 5000 D158 000051 | 53 + ST r0,__1450:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,344)

 0004B0 5810 D11C 000060 | 53 + L r1,bio:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTc...(,r13,284)

 0004B4 5810 1000 000060 | 53 + L r1,(BioRhythm).age@0(,r1,0)

 0004B8 B3B5 0021 000060 | 53 + CDFR f2,r1

 0004BC B3B5 0000 000060 | 53 + CDFR f0,r0

 0004C0 5810 5020 000060 | 53 + L r1,__fmod(,r5,32)

Figure 13. Example of a C++ compiler listing (Part 15 of 21)

Chapter 4. Compiler Options 257

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 34

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 0004C4 4120 D1C8 000060 | 53 + LA r2,#wtemp_13(,r13,456)

 0004C8 6020 D09C 000060 | 53 + STD f2,#MX_TEMP1(,r13,156)

 0004CC 6000 D0A4 000060 | 53 + STD f0,#MX_TEMP1(,r13,164)

 0004D0 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 0004D4 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 0004D8 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 0004DC 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 0004E0 5020 D098 000060 | 53 + ST r2,#MX_TEMP1(,r13,152)

 0004E4 05EF 000060 | 53 + BALR r14,r15

 0004E6 6800 D1C8 000060 | 53 + LD f0,#wtemp_13(,r13,456)

 0004EA 5800 D158 000060 | 53 + L r0,__1450:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,344)

 0004EE B3B5 0020 000060 | 53 + CDFR f2,r0

 0004F2 2D02 000060 | 53 + DDR f0,f2

 0004F4 6820 6118 000060 | 53 + LD f2,+CONSTANT_AREA(,r6,280)

 0004F8 2C02 000060 | 53 + MDR f0,f2

 0004FA 5810 5024 000060 | 53 + L r1,__sin(,r5,36)

 0004FE 6000 D1D0 000060 | 53 + STD f0,#wtemp_14(,r13,464)

 000502 4130 D1D0 000060 | 53 + LA r3,#wtemp_14(,r13,464)

 000506 4120 D1D8 000060 | 53 + LA r2,#wtemp_15(,r13,472)

 00050A A52A 8000 000060 | 53 + OILH r2,H’-32768’

 00050E 58F0 1008 000060 | 53 + L r15,&EPA_&WSA(,r1,8)

 000512 5800 100C 000060 | 53 + L r0,&EPA_&WSA(,r1,12)

 000516 5000 C1F4 000060 | 53 + ST r0,_CEECAA_(,r12,500)

 00051A 4110 D098 000060 | 53 + LA r1,#MX_TEMP1(,r13,152)

 00051E 5030 D098 000060 | 53 + ST r3,#MX_TEMP1(,r13,152)

 000522 5020 D09C 000060 | 53 + ST r2,#MX_TEMP1(,r13,156)

 000526 05EF 000060 | 53 + BALR r14,r15

 000528 6800 D1D8 000060 | 53 + LD f0,#wtemp_15(,r13,472)

 00052C 6000 D160 000060 | 53 + STD f0,__1452:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,352)

 000530 6000 D150 000060 | 53 + STD f0,__1454:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,336)

 000534 5810 D1C0 000060 | 53 + L r1,#wtemp_12(,r13,448)

 000538 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 00053C 58F0 4554 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1364)

 000540 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 000544 4700 000C 000060 | 53 + NOP 12

 000548 5800 D1E0 000060 | 53 + L r0,#CEECAACRENT_1(,r13,480)

 00054C 58F0 4544 000060 | 53 + L r15,=V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::ch...(,r4,1348)

 000550 4120 6103 000060 | 53 + LA r2,+CONSTANT_AREA(,r6,259)

 000554 4DE0 F010 000060 | 53 + BAS r14,16(,r15)

 000558 4700 0008 000060 | 53 + NOP 8

 00055C 5800 D118 000052 | + L r0,os:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcT...(,r13,280)

 000560 5000 D168 000052 | + ST r0,retval:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,360)

 000564 000052 | +@1L37 DS 0H

 000564 5800 D168 000052 | + L r0,retval:__ls__FRQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream...(,r13,360)

 000568 4100 0000 000031 | LA r0,0

 00056C 5000 D0E4 000031 | ST r0,code(,r13,228)

 000570 000032 | @1L29 DS 0H

 000570 58F0 D0E4 000033 | L r15,code(,r13,228)

 000574 50F0 D0E8 000033 | ST r15,__712(,r13,232)

 000578 4100 D0C0 000033 | LA r0,bio(,r13,192)

 00057C 000034 | @1L1518 DS 0H

 00057C 5800 D1E0 000020 | L r0,#CEECAACRENT_1(,r13,480)

 000580 5000 C1F4 000020 | ST r0,_CEECAA_(,r12,500)

 000584 Start of Epilog

 000584 180D 000034 | LR r0,r13

Figure 13. Example of a C++ compiler listing (Part 16 of 21)

258 z/OS V1R7.0 XL C/C++ User’s Guide

15694A01 V1.7 z/OS XL C++ CCNUBRC: main 01/20/05 12:12:43 35

 OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 000586 58D0 D004 000034 | L r13,4(,r13)

 00058A 58E0 D00C 000034 | L r14,12(,r13)

 00058E 9826 D01C 000034 | LM r2,r6,28(r13)

 000592 051E 000034 | BALR r1,r14

 000594 0707 000034 | NOPR 7

 000596 0000

 000598 Start of Literals

 000598 00000000 =Q(@STATIC)

 00059C 00000000 =V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::char_traits<char> >

 0005A0 00000000 =V(std::_EBCDIC::_LFS_OFF::basic_istream<char,std::char_traits<char> >

 0005A4 00000000 =V(Date::DaysSince(const char*))

 0005A8 00000000 =V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::char_traits<char> >

 0005AC 00000000 =V(std::_EBCDIC::_LFS_OFF::basic_ostream<char,std::char_traits<char> >

 0005B0 End of Literals

 *** General purpose registers used: 1111111000001111

 *** Floating point registers used: 1111111100000000

 *** Size of register spill area: 128(max) 0(used)

 *** Size of dynamic storage: 560

 *** Size of executable code: 1406

 ...

Figure 13. Example of a C++ compiler listing (Part 17 of 21)

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43 378

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 TYPE ID ADDR LENGTH NAME

 SD 1 000000 00E680 @STATICP

 PR 2 000000 0006D8 @STATIC

 PR 3 000000 000004 dateLen__4Date

 PR 4 000000 000004 numMonths__4Date

 PR 5 000000 000004 pCycle__9BioRhythm

 PR 6 000000 000004 eCycle__9BioRhythm

 PR 7 000000 000004 iCycle__9BioRhythm

 PR 8 000000 000030 numDays__4Date

 PR 9 000000 000004 _Psave__use_facet__Q3_3std7_EBCDIC8_

 LFS_OFFHQ4_3std7_EBCDIC8_LFS_OFF7num

 _putXTcTQ2_3std19ostreambuf_iterator

 XTcTQ2_3std11char_traitsXTc____RCQ4_

 3std7_EBCDIC8_LFS_OFF6locale_RCQ4_3s

 td7_EBCDIC8_LFS_OFF7num_putXTcTQ2_3s

 td19ostreambuf_iteratorXTcTQ2_3std11

 char_traitsXTc_____2

 PR 10 000000 000004 id__Q4_3std7_EBCDIC8_LFS_OFF7num_put

 XTcTQ2_3std19ostreambuf_iteratorXTcT

 Q2_3std11char_traitsXTc___

 PR 11 000000 000004 _Facsav__Q4_3std7_EBCDIC8_LFS_OFF8_T

 idyfacXTQ4_3std7_EBCDIC8_LFS_OFF7num

 _putXTcTQ2_3std19ostreambuf_iterator

 XTcTQ2_3std11char_traitsXTc____

 PR 12 000000 000004 _Psave__use_facet__Q3_3std7_EBCDIC8_

 LFS_OFFHQ4_3std7_EBCDIC8_LFS_OFF5cty

 peXTc__RCQ4_3std7_EBCDIC8_LFS_OFF6lo

 cale_RCQ4_3std7_EBCDIC8_LFS_OFF5ctyp

 eXTc___2

 PR 13 000000 000004 _Facsav__Q4_3std7_EBCDIC8_LFS_OFF8_T

 idyfacXTQ4_3std7_EBCDIC8_LFS_OFF5cty

 peXTc__ ...

Figure 13. Example of a C++ compiler listing (Part 18 of 21)

Chapter 4. Compiler Options 259

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43 386

 E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

 ORIGINAL NAME EXTERNAL SYMBOL NAME

 @STATICP @STATICP

 @STATIC @STATIC

 Date::dateLen dateLen__4Date

 Date::numMonths numMonths__4Date

 BioRhythm::pCycle pCycle__9BioRhythm

 BioRhythm::eCycle eCycle__9BioRhythm

 BioRhythm::iCycle iCycle__9BioRhythm

 Date::numDays numDays__4Date

 const std::_EBCDIC::_LFS_OFF _Psave__use_facet__Q3_3std7_EBCDIC8_

 ::num_put<char,std LFS_OFFHQ4_3std7_EBCDIC8_LFS_OFF7num

 ::ostreambuf_iterator<char,std _putXTcTQ2_3std19ostreambuf_iterator ...

Figure 13. Example of a C++ compiler listing (Part 19 of 21)

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43 395

 * * * * * S T O R A G E O F F S E T L I S T I N G * * * * *

 IDENTIFIER DEFINITION ATTRIBUTES

 <SEQNBR>-<FILE NO>:<FILE LINE NO>

 code 23-0:23 Class = automatic, Location = 228(r13), Length = 4

 bio 22-0:22 Class = automatic, Location = 192(r13), Length = 24

 newTime 57-0:57 Class = automatic, Location = 204(r13), Length = 4

 lTime 56-0:56 Class = automatic, Location = 200(r13), Length = 4

 newTime 57-0:57 Class = automatic, Location = 208(r13), Length = 4

 lTime 56-0:56 Class = automatic, Location = 204(r13), Length = 4

 birthText 67-0:67 Class = parameter, Location = 192(r13), Length = 4

 newTime 57-0:57 Class = automatic, Location = 212(r13), Length = 4

 lTime 56-0:56 Class = automatic, Location = 208(r13), Length = 4

 totDays 78-0:78 Class = automatic, Location = 260(r13), Length = 4

 i 80-0:80 Class = automatic, Location = 256(r13), Length = 4

 day 78-0:78 Class = automatic, Location = 252(r13), Length = 4

 month 78-0:78 Class = automatic, Location = 248(r13), Length = 4

 ...
 * * * * * E N D O F S T O R A G E O F F S E T L I S T I N G * * * * *

Figure 13. Example of a C++ compiler listing (Part 20 of 21)

260 z/OS V1R7.0 XL C/C++ User’s Guide

z/OS XL C++ compiler listing components

The following sections describe the components of a C++ compiler listing.These are

available for regular and IPA compilations. Differences in the IPA versions of the

listings are noted. “Using the IPA Link step listing” on page 264 describes

IPA-specific listings.

Heading information

The first page of the listing is identified by the product number, the compiler version

and release numbers, the name of the data set or HFS file containing the source

code, the date and time compilation began (formatted according to the current

locale), and the page number.

Note: If the name of the data set or HFS file that contains the source code is

greater than 32 characters, it is truncated. Only the right-most 32 characters

appear in the listing.

Prolog section

The Prolog section provides information about the compile-time library, file

identifiers, compiler options, and other items in effect when the compiler was

invoked.

All options except those with no default (for example, DEFINE) are shown in the

listing. Any problems with the compiler options appear after the body of the Prolog

section.

15694A01 V1.7 z/OS XL C++ CCNUBRC 01/20/05 12:12:43 407

 * * * * * S T A T I C M A P * * * * *

 OFFSET (HEX) LENGTH (HEX) NAME

 0 4 time

 4 4 localtime

 8 4 cout__Q3_3std7_EBCDIC8_LFS_OFF

 C 4 asctime

 10 4 endl__Q3_3std7_EBCDIC8_LFS_OFFHcQ2_3std11char_traitsXTc__RQ4_3std7_EBCDIC8_LFS_OFF13basic_ostream

 Q2_3std11char_traitsXTc___RQ4_3std7_EBCDIC8_LFS_OFF13basic_ostreamXTcTQ2_3std11char_traitsXTc__

 14 4 setw__Q3_3std7_EBCDIC8_LFS_OFFFi

 18 4 cin__Q3_3std7_EBCDIC8_LFS_OFF

 1C 4 cerr__Q3_3std7_EBCDIC8_LFS_OFF

 20 4 __fmod

 24 4 __sin

 28 4 sscanf

 2C 4 numDays__4Date

 30 4 __ct__Q2_3std7_LockitFi

 34 4 _Id_cnt__Q5_3std7_EBCDIC8_LFS_OFF6locale2id

 38 4 __dt__Q2_3std7_LockitFv

 3C 4 _Getfacet__Q4_3std7_EBCDIC8_LFS_OFF6localeCFUi

 40 4 _Tidy__Q4_3std7_EBCDIC8_LFS_OFF8_TidyfacXTQ4_3std7_EBCDIC8_LFS_OFF7num_putXTcTQ2_3std19ostreambuf

 ratorXTcTQ2_3std11char_traitsXTc____Fv

 ...

 * * * * * E N D O F S T A T I C M A P * * * * *

 * * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 13. Example of a C++ compiler listing (Part 21 of 21)

Chapter 4. Compiler Options 261

IPA considerations: If you specify IPA suboptions that are irrelevant to the IPA

Compile step, the Prolog does not display them. If IPA processing is not active, IPA

suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler

options that generate them.

Source Program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text

after the #include directives.

Cross-Reference Listing

The option XREF generates a cross-reference table that contains a list of the

identifiers from the source program. The table also displays a list of reference,

modification, and definition information for each identifier.

The option ATTR generates a cross-reference table that contains a list of the

identifiers from the source program, with a list of attributes for each identifier.

If you specify both ATTR and XREF, the cross-reference listing is a composite of the

two forms. It contains the list of identifiers, as well as the attribute and reference,

modification, and definition information for each identifier. The list is in the form:

identifier : attribute

 n:m (x)

where:

n corresponds to the file number from the INCLUDE LIST. If the identifier is

from the main program, n is 0.

m corresponds to the line number in the file n.

x is the cross reference code. It takes one of the following values:

 R - referenced

 D - defined

 M - modified

together with the line numbers in which they appear.

Includes section

The compiler generates the Includes section when you use include files, and

specify the options SOURCE, LIST, or INLRPT.

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it

generates messages. If you specify the SOURCE compiler option, preprocessor error

messages appear immediately after the source statement in error. You can generate

your own messages in the preprocessing stage by using #error. For information on

#error, see the z/OS XL C/C++ Language Reference.

If you specify the compiler options FLAG(I), CHECKOUT or INFO(), the compiler will

generate informational diagnostic messages.

For a description of compiler messages, see z/OS XL C/C++ Messages.

262 z/OS V1R7.0 XL C/C++ User’s Guide

Message Summary

This listing section displays the total number of messages and the number of

messages for each severity level.

Inline Report

If the OPTIMIZE and INLRPT options are specified, an Inline Report will be included in

the listing. This report contains an inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined

subprogram.

The summary contains information such as:

v Name of each defined subprogram. Subprogram names appear in alphabetical

order.

v Reason for action on a subprogram:

– The P indicates that #pragma noinline and the COMPACT compiler option are

not in effect.

– The F indicates that the subprogram was declared inline, either by #pragma

inline for C or the inline keyword for C++.

– The C indicates that the COMPACT compiler option is specified for

#pragma_override(FuncName,"OPT(COMPACT,yes)" is specified in the source

code.

– The M indicates that C++ routine is an inline member routine.

– The A indicates automatic inlining acted on the subprogram.

– The - indicates there was no reason to inline the subprogram.

v Action on a subprogram:

– Subprogram was inlined at least once.

– Subprogram was not inlined because of initial size constraints.

– Subprogram was not inlined because of expansion beyond size constraint.

– Subprogram was a candidate for inlining, but was not inlined.

– Subprogram was a candidate for inlining, but was not referenced.

– This subprogram is directly recursive, or some calls have mismatching

parameters

Note: The ″Called″ and ″Calls″ in the actions section of the inline report, indicate

how many times a function has been called or has called other functions, despite

whether or not the callers or callees have been inlined.

v Status of original subprogram after inlining:

– Subprogram is discarded because it is no longer referenced and is defined as

static internal.

– Subprogram was not discarded for various reasons :

- Subprogram is external. (It can be called from outside the compilation unit.)

- Some call to this subprogram remains.

- Subprogram has its address taken.

v Initial relative size of subprogram (in Abstract Code Units (ACU)).

v Final relative size of subprogram (in ACUs) after inlining.

v Number of calls within the subprogram and the number of these calls that were

inlined into the subprogram.

v Number of times the subprogram is called by others in the compile unit and the

number of times this subprogram was inlined.

v Mode that is selected and the value of threshold and limit specified for this

compilation.

Chapter 4. Compiler Options 263

The detailed call structure contains specific information of each subprogram such

as:

v What subprograms it calls

v What subprograms call it

v In which subprograms it is inlined.

The information can help you to better analyze your program if you want to use the

inliner in selective mode.

There may be additional messages as a result of the inlining. For example, if

inlining a subprogram with automatic storage increases the automatic storage of the

subprogram it is being inlined into by more than 4K, a message is emitted.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module

in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the

line number of any inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External

Symbol Dictionary lists the names that the compiler generates for the output object

module. It includes address information and size information about each symbol.

External Symbol Cross Reference

The ATTR or XREF compiler options generate the External Symbol Cross Reference

section. It shows the original name and corresponding mangled name for each

symbol. For additional information on mangled names, see Chapter 13, “Filter

Utility,” on page 427.

Storage Offset Listing

If you specify the XREF option, the listing file includes offset information on

identifiers.

Static Map

Static Map displays the contents of the @STATIC data area, which holds the file

scope read/write static variables. It displays the offset (as a hexadecimal number),

the length (as a hexadecimal number), and the names of the objects mapped to

@STATIC. Under certain circumstances, the compiler may decide to map other

objects to @STATIC.

If you specify the ATTR or XREF option, the listing file includes offset information for

file scope read/write static variables.

Using the IPA Link step listing

The IPA Link step generates a listing file if you specify any of the following options:

v ATTR

v INLINE(,REPORT,,)

v INLRPT

v IPA(MAP)

v LIST

v XREF

264 z/OS V1R7.0 XL C/C++ User’s Guide

Note: IPA does not support source listings or source annotations within Pseudo

Assembly listings. The Pseudo Assembly listings do display the file and line

number of the source code that contributed to a segment of pseudo

assembly code.

Example of an IPA Link step listing

Figure 14 shows an example of an IPA Link step listing.

5694-A01 V1.7 z/OS XL C/C++ IPA ’USERID1.DEFECT.CNTL(INCLCNTL)’ 02/15/2005 16:16:46 Page 1

 * * * * * P R O L O G * * * * *

 Compile Time Library : 41070000

 Command options:

 Primary input name. : ’USERID1.DEFECT.CNTL(INCLCNTL)’

 Compiler options. : *IPA(LINK,MAP,NOREFMAP,LEVEL(1),DUP,ER,NONCAL,NOUPCASE,NOPDF1,NOPDF2,NOPDFNAME,NOCONTROL)

 : *NOGONUMBER *NOALIAS *TERMINAL *LIST *XREF *NOATTR *NOOFFSET

 : *MEMORY *NOCSECT *LIBANSI *FLAG(I)

 : *NOTEST(NOSYM,NOBLOCK,NOLINE,NOPATH,HOOK) *OPTIMIZE(2)

 : *INLINE(AUTO,REPORT,1000,8000) *OPTFILE(DD:OPTION) *NOSERVICE *NOOE

 : *NOLOCALE *HALT(16) *NOGOFF

 * * * * * E N D O F P R O L O G * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA ’USERID1.DEFECT.CNTL(INCLCNTL)’ 02/15/2005 16:16:46 Page 2

 * * * * * O B J E C T F I L E M A P * * * * *

*ORIGIN IPA FILE ID FILE NAME

 P 1 USERID1.DEFECT.CNTL(INCLCNTL)

 PI Y 2 USERID1.DEFECT.PASS1.OBJECT(INCLMAIN)

 PI Y 3 USERID1.DEFECT.PASS1.OBJECT(INCLRTN1)

 PI Y 4 USERID1.DEFECT.PASS1.OBJECT(INCLRTN2)

ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE IN=internal

 A=automatic call U=UPCASE automatic call R=RENAME card L=C Library

 * * * * * E N D O F O B J E C T F I L E M A P * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA ’USERID1.DEFECT.CNTL(INCLCNTL)’ 02/15/2005 16:16:46 Page 3

 * * * * * C O M P I L E R O P T I O N S M A P * * * * *

 SOURCE FILE ID COMPILE OPTIONS

 1 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 2 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 3 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 * * * * * E N D O F C O M P I L E R O P T I O N S M A P * * * * *

Figure 14. Example of an IPA Link step listing (Part 1 of 8)

Chapter 4. Compiler Options 265

5694-A01 V1.7 z/OS XL C/C++ IPA ’USERID1.DEFECT.CNTL(INCLCNTL)’ 02/15/2005 16:16:46 Page 4

 * * * * * I N L I N E R E P O R T * * * * *

 IPA Inline Report (Summary)

 Reason: P : #pragma noinline was specified for this routine

 F : #pragma inline was specified for this routine

 A : Automatic inlining

 C : Partition conflict

 N : Not IPA Object

 - : No reason

 Action: I : Routine is inlined at least once

 L : Routine is initially too large to be inlined

 T : Routine expands too large to be inlined

 C : Candidate for inlining but not inlined

 N : No direct calls to routine are found in file (no action)

 U : Some calls not inlined due to recursion or parameter mismatch

 - : No action

 Status: D : Internal routine is discarded

 R : A direct call remains to internal routine (cannot discard)

 A : Routine has its address taken (cannot discard)

 E : External routine (cannot discard)

 - : Status unchanged

 Calls/I : Number of calls to defined routines / Number inline

 Called/I : Number of times called / Number of times inlined

 Reason Action Status Size (init) Calls/I Called/I Name

 A N - 200 (102) 11/11 0 main

 A I D 0 (18) 0 1/1 Incl_Rtn1

 A I D 0 (8) 0 10/10 Incl_Rtn2

 Mode = AUTO Inlining Threshold = 1000 Expansion Limit = 8000

5694-A01 V1.7 z/OS XL C/C++ IPA ’USERID1.DEFECT.CNTL(INCLCNTL)’ 02/15/2005 16:16:46 Page 5

 IPA Inline Report (Call Structure)

 Defined Subprogram : main

 Calls To(11,11) : Incl_Rtn2(10,10)

 Incl_Rtn1(1,1)

 Called From : 0

 Defined Subprogram : Incl_Rtn2

 Calls To : 0

 Called From(10,10) : main(10,10)

 Defined Subprogram : Incl_Rtn1

 Calls To : 0

 Called From(1,1) : main(1,1)

 * * * * * E N D O F I N L I N E R E P O R T * * * * *

Figure 14. Example of an IPA Link step listing (Part 2 of 8)

266 z/OS V1R7.0 XL C/C++ User’s Guide

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 02/15/2005 16:16:46 Page 6

 * * * * * P A R T I T I O N M A P * * * * *

PARTITION 0

PARTITION CSECT NAMES:

 Code: none

 Static: none

 Test: none

PARTITION DESCRIPTION:

 Initialization data partition

COMPILER OPTIONS FOR PARTITION 0:

 *AGGRCOPY(NOOVERLAP) *NOALIAS *ARCH(5) *ARGPARSE *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS

 *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGOFF *NOGONUMBER *NOIGNERRNO *ILP32

 *NOINITAUTO *IPA(LINK) *LIBANSI *LIST *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST)

 *REDIR *NORENT *NOROCONST *SPILL(128) *START *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5)

 *NOXPLINK *XREF

SYMBOLS IN PARTITION 0:

 *TYPE FILE ID SYMBOL

 D 1 gbl

 TYPE: F=function D=data

SOURCE FILES FOR PARTITION 0:

 *ORIGIN FILE ID SOURCE FILE NAME

 P 1 //’USERID1.DEFECT.C(INCLMAIN)’

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 14. Example of an IPA Link step listing (Part 3 of 8)

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 02/15/2005 16:16:46 Page 7

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

000000 F2F0 F0F5 =C’2005’ Compiled Year

000004 F0F2 F1F5 =C’0215’ Compiled Date MMDD

000008 F1F6 F1F6 F3F0 =C’161630’ Compiled Time HHMMSS

00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 02/15/2005 16:16:46 Page 8

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 02/15/2005 16:16:46 Page 9

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 TYPE ID ADDR LENGTH NAME

 SD 1 000000 000018 @STATICP

 SD 2 000000 000004 gbl

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 02/15/2005 16:16:46 Page 10

 E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

 ORIGINAL NAME EXTERNAL SYMBOL NAME

 @STATICP @STATICP

 gbl gbl

Figure 14. Example of an IPA Link step listing (Part 4 of 8)

Chapter 4. Compiler Options 267

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 11

 * * * * * P A R T I T I O N M A P * * * * *

PARTITION 1 OF 1

PARTITION SIZE:

 Actual: 50900

 Limit: 1572864

PARTITION CSECT NAMES:

 Code: none

 Static: none

 Test: none

PARTITION DESCRIPTION:

 Primary partition

COMPILER OPTIONS FOR PARTITION 1:

 *AGGRCOPY(NOOVERLAP) *NOALIAS *ARCH(5) *ARGPARSE *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS

 *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGOFF *NOGONUMBER *NOIGNERRNO *ILP32

 *NOINITAUTO *IPA(LINK) *LIBANSI *LIST *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST)

 *REDIR *NORENT *NOROCONST *SPILL(128) *START *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5)

 *NOXPLINK *XREF

SYMBOLS IN PARTITION 1:

 *TYPE FILE ID SYMBOL

 F 1 main

 TYPE: F=function D=data

SOURCE FILES FOR PARTITION 1:

 *ORIGIN FILE ID SOURCE FILE NAME

 P 1 //’USERID1.DEFECT.C(INCLMAIN)’

 P 2 //’USERID1.DEFECT.C(INCLRTN1)’

 P 3 //’USERID1.DEFECT.C(INCLRTN2)’

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 14. Example of an IPA Link step listing (Part 5 of 8)

268 z/OS V1R7.0 XL C/C++ User’s Guide

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 12

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

000000 F2F0 F0F5 =C’2005’ Compiled Year

000004 F0F2 F1F5 =C’0215’ Compiled Date MMDD

000008 F1F6 F1F6 F3F0 =C’161630’ Compiled Time HHMMSS

00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1: main 02/15/2005 16:16:46 Page 13

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

000018 000010 | 1 main DS 0D

000018 47F0 F022 000010 | 1 B 34(,r15)

00001C 01C3C5C5 CEE eyecatcher

000020 00000098 DSA size

000024 00000098 =A(PPA1-main)

000028 47F0 F001 000010 | 1 B 1(,r15)

00002C 58F0 C31C 000010 | 1 L r15,796(,r12)

000030 184E 000010 | 1 LR r4,r14

000032 05EF 000010 | 1 BALR r14,r15

000034 00000000 =F’0’

000038 07F3 000010 | 1 BR r3

00003A 90E4 D00C 000010 | 1 STM r14,r4,12(r13)

00003E 58E0 D04C 000010 | 1 L r14,76(,r13)

000042 4100 E098 000010 | 1 LA r0,152(,r14)

000046 5500 C314 000010 | 1 CL r0,788(,r12)

00004A 4130 F03A 000010 | 1 LA r3,58(,r15)

00004E 4720 F014 000010 | 1 BH 20(,r15)

000052 5000 E04C 000010 | 1 ST r0,76(,r14)

000056 9210 E000 000010 | 1 MVI 0(r14),16

00005A 50D0 E004 000010 | 1 ST r13,4(,r14)

00005E 18DE 000010 | 1 LR r13,r14

000060 End of Prolog

000060 180F 000008 | 3 + LR r0,r15

000062 1E0F 000008 | 3 + ALR r0,r15

000064 181F 000008 | 3 + LR r1,r15

000066 B252 0010 000008 | 3 + MSR r1,r0

00006A 180F 000008 | 3 + LR r0,r15

00006C B252 0001 000008 | 3 + MSR r0,r1

000070 181F 000008 | 3 + LR r1,r15

000072 B252 0010 000008 | 3 + MSR r1,r0

000076 180F 000008 | 3 + LR r0,r15

000078 B252 0001 000008 | 3 + MSR r0,r1

00007C 181F 000008 | 3 + LR r1,r15

00007E B252 0010 000008 | 3 + MSR r1,r0

000082 180F 000008 | 3 + LR r0,r15

000084 B252 0001 000008 | 3 + MSR r0,r1

000088 181F 000008 | 3 + LR r1,r15

00008A B252 0010 000008 | 3 + MSR r1,r0

00008E 180F 000008 | 3 + LR r0,r15

000090 B252 0001 000008 | 3 + MSR r0,r1

000094 B252 00F0 000008 | 3 + MSR r15,r0

000098 000022 | 1 @1L20 DS 0H

000098 Start of Epilog

000098 180D 000023 | 1 LR r0,r13

00009A 58D0 D004 000023 | 1 L r13,4(,r13)

00009E 58E0 D00C 000023 | 1 L r14,12(,r13)

0000A2 9824 D01C 000023 | 1 LM r2,r4,28(r13)

0000A6 051E 000023 | 1 BALR r1,r14

0000A8 0707 000023 | 1 NOPR 7

 *** General purpose registers used: 1101100000001111

 *** Floating point registers used: 0000000000000000

 *** Size of register spill area: 128(max) 0(used)

 *** Size of dynamic storage: 152

Figure 14. Example of an IPA Link step listing (Part 6 of 8)

Chapter 4. Compiler Options 269

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1: main 02/15/2005 16:16:46 Page 14

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 *** Size of executable code: 146

0000AA 0000

0000AC 0000 0000

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 15

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 PPA1: Entry Point Constants

0000B0 1CCEA106 =F’483303686’ Flags

0000B4 000000D8 =A(PPA2-main)

0000B8 00000000 =F’0’ No PPA3

0000BC 00000000 =F’0’ No EPD

0000C0 FE000000 =F’-33554432’ Register save mask

0000C4 00000000 =F’0’ Member flags

0000C8 90 =AL1(144) Flags

0000C9 000000 =AL3(0) Callee’s DSA use/8

0000CC 0040 =H’64’ Flags

0000CE 0012 =H’18’ Offset/2 to CDL

0000D0 00000000 =F’0’ Reserved

0000D4 50000049 =F’1342177353’ CDL function length/2

0000D8 FFFFFF68 =F’-152’ CDL function EP offset

0000DC 38240000 =F’941883392’ CDL prolog

0000E0 40090040 =F’1074331712’ CDL epilog

0000E4 00000000 =F’0’ CDL end

0000E8 0004 **** AL2(4),C’main’

 PPA1 End

 PPA2: Compile Unit Block

0000F0 0300 2202 =F’50340354’ Flags

0000F4 FFFF FF10 =A(CEESTART-PPA2)

0000F8 0000 0000 =F’0’ No PPA4

0000FC FFFF FF10 =A(TIMESTMP-PPA2)

000100 0000 0000 =F’0’ No primary

000104 0000 0000 =F’0’ Flags

 PPA2 End

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 16

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 TYPE ID ADDR LENGTH NAME

 SD 1 000000 000108 @STATICP

 LD 0 000018 000001 main

 ER 2 000000 CEESG003

 ER 3 000000 CEESTART

 SD 4 000000 000008 @@PPA2

 SD 5 000000 00000C CEEMAIN

 ER 6 000000 EDCINPL

Figure 14. Example of an IPA Link step listing (Part 7 of 8)

270 z/OS V1R7.0 XL C/C++ User’s Guide

IPA Link step listing components

The following sections describe the components of an IPA Link step listing.

Heading information

The first page of the listing is identified by the product number, the compiler version

and release numbers, the central title area, the date and time compilation began

(formatted according to the current locale), and the page number.

In the following listing sections, the central title area will contain the primary input

file identifier:

v Prolog

v Object File Map

v Source File Map

v Compiler Options Map

v Global Symbols Map

v Inline Report

v Messages

v Message Summary

In the following listing sections, the central title area will contain the phrase Partition

nnnn, where nnnn specifies the partition number:

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 17

 E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

 ORIGINAL NAME EXTERNAL SYMBOL NAME

 @STATICP @STATICP

 main main

 CEESG003 CEESG003

 CEESTART CEESTART

 @@PPA2 @@PPA2

 CEEMAIN CEEMAIN

 EDCINPL EDCINPL

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 18

 * * * * * S O U R C E F I L E M A P * * * * *

 OBJECT SOURCE

 *ORIGIN FILE ID FILE ID SOURCE FILE NAME

 P 2 1 //’USERID1.DEFECT.C(INCLMAIN)’

 - Compiled by 15694A01 1700

 on 02/15/2005 16:16:30

 P 3 2 //’USERID1.DEFECT.C(INCLRTN1)’

 - Compiled by 15694A01 1700

 on 02/15/2005 16:16:36

 P 4 3 //’USERID1.DEFECT.C(INCLRTN2)’

 - Compiled by 15694A01 1700

 on 02/15/2005 16:16:42

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F S O U R C E F I L E M A P * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 02/15/2005 16:16:46 Page 19

 * * * * * M E S S A G E S U M M A R Y * * * * *

TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL

 (U) (S) (E) (W) (I)

 0 0 0 0 0 0

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

 * * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 14. Example of an IPA Link step listing (Part 8 of 8)

Chapter 4. Compiler Options 271

v Partition Map

In the following listing sections, the title contains the phrase Partition nnnn:name.

nnnn specifies the partition number, and name specifies the name of the first function

in the partition:

v Pseudo Assembly Listing

v External Symbol Cross Reference

v Storage Offset Listing

Prolog section

The Prolog section of the listing provides information about the compile-time library,

file identifiers, compiler options, and other items in effect when the IPA Link step

was invoked.

The listing displays all compiler options except those with no default (for example,

DEFINE). If you specify IPA suboptions that are irrelevant to the IPA Link step, the

Prolog does not display them. Any problems with compiler options appear after the

body of the Prolog section and before the End of Prolog section.

Object File Map

The Object File Map displays the names of the object files that were used as input

to the IPA Link step. Specify any of the following options to generate the Object File

Map:

v IPA(MAP)

v LIST

Other listing sections, such as the Source File Map, use the File ID numbers that

appear in this listing section.

HFS file names that are too long to fit into a single listing record continue on

subsequent listing records.

Source File Map

The Source File Map listing section identifies the source files that are included in

the object files. The IPA Link step generates this section if you specify any of the

following options:

v IPA(MAP)

v LIST

The IPA Link step formats the compilation date and time according to the locale you

specify with the LOCALE option in the IPA Link step. If you do not specify the LOCALE

option, it uses the default locale.

This section appears near the end of the IPA Link step listing. If the IPA Link step

terminates early due to errors, it does not generate this section.

Compiler Options Map

The Compiler Options Map listing section identifies the compiler options that were

specified during the IPA Compile step for each compilation unit that is encountered

when the object file is processed. For each compilation unit, it displays the final

options that are relevant to IPA Link step processing. You may have specified these

options through a compiler option or #pragma directive, or you may have picked

them up as defaults.

The IPA Link step generates this listing section if you specify the IPA(MAP) option.

272 z/OS V1R7.0 XL C/C++ User’s Guide

Global Symbols Map

The Global Symbols Map listing section shows how global symbols are mapped into

members of global data structures by the global variable coalescing optimization

process.

Each global data structure is limited to 16 MB by the z/OS object architecture. If an

application has more than 16 MB of data, IPA Link must generate multiple global

data structures for the application. Each global data structure is assigned a unique

name.

The Global Symbols Map includes symbol information and file name information

(file name information may be approximate). In addition, line number information is

available for C compilations if you specified any of the following options during the

IPA Compile step:

v XREF

v IPA(XREF)

v XREF(ATTRIBUTE)

The IPA Link step generates this listing section if you specify the IPA(MAP) option

and the IPA Link step causes global symbols to be coalesced. The Global Symbols

Map is only added to the IPA Link step listing if the IPA Link phase optimization

changes the structure and/or layout of the global symbols utilized by the final

module. If no changes are made, then the Global Symbols Map is not included in

the listing.

Inline Report for IPA inliner

The Inline Report describes the actions that are performed by the IPA Inliner. The

IPA Link step generates this listing section if you specify the INLINE(,REPORT,,),

NOINLINE(,REPORT,,), or INLRPT option.

This report is similar to the one that is generated by the non-IPA inliner. In the IPA

version of this report, the term 'subprogram' is equivalent to a C/C++ function or a

C++ method. The summary contains information such as:

v Name of each defined subprogram. IPA sorts subprogram names in alphabetical

order.

v Reason for action on a subprogram:

– A #pragma noinline was specified for the subprogram. The P indicates that

inlining could not be performed.

– inline was specified for the subprogram. For z/OS XL C++, this is a result of

the inline specifier. For C, this a result of the #pragma inline. The F indicates

that the subprogram was declared inline.

– The IPA Link step performed auto-inlining on the subprogram.

– There was no reason to inline the subprogram.

– There was a partition conflict.

– The IPA Link step could not inline the object module because it was a non-IPA

object module.

v Action on a subprogram:

– IPA inlined subprogram at least once.

– IPA did not inline subprogram because of initial size constraints.

– IPA did not inline subprogram because of expansion beyond size constraint.

– Subprogram was a candidate for inlining, but IPA did not inline it.

– Subprogram was a candidate for inlining, but was not referenced.

– The subprogram is directly recursive, or some calls have mismatched

parameters.

Chapter 4. Compiler Options 273

|
|
|
|
|
|

v Status of original subprogram after inlining:

– IPA discarded the subprogram because it is no longer referenced and is

defined as static internal.

– IPA did not discard the subprogram, for various reasons :

- Subprogram is external. (It can be called from outside the compilation unit.)

- Subprogram call to this subprogram remains.

- Subprogram has its address taken.

v Initial relative size of subprogram (in Abstract Code Units (ACUs)).

v Final relative size of subprogram (in ACUs) after inlining.

v Number of calls within the subprogram and the number of these calls that IPA

inlined into the subprogram.

v Number of times the subprogram is called by others in the compile unit and the

number of times IPA inlined the subprogram.

v Mode that is selected and the value of threshold and limit you specified for the

compilation.

Static functions whose names are not unique within the application as a whole will

have names prefixed with nnnn:, where nnnn is the source file number.

The detailed call structure contains specific information of each subprogram such

as:

v Subprograms that it calls

v Subprograms that call it

v Subprograms in which it is inlined.

The information can help you to better analyze your program if you want to use the

inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a subprogram

with automatic storage increases the automatic storage of the subprogram it is

being inlined into by more than 4K, the IPA Link step issues a message.

This report may display information about inlining specific subprograms, at the point

at which IPA determines that inlining is impossible.

The counts in this report do not include calls from non-IPA to IPA programs.

Note: Even if the IPA Link step did not perform any inlining, it generates the IPA

Inline Report if you request it.

Partition Map

The Partition Map listing section describes each of the object code partitions the

IPA Link step creates. It provides the following information:

v The reason for generating each partition

v How the code is packaged (the CSECTs)

v The options used to generate the object code

v The function and global data included in the partition

v The source files that were used to create the partition

The IPA Link step generates this listing section if you specify either of the following

options :

v IPA(MAP)

v LIST

274 z/OS V1R7.0 XL C/C++ User’s Guide

The Pseudo Assembly, External Symbol Dictionary, External Symbol Cross

Reference, and Storage Offset listing sections follow the Partition Map listing

section for the partition, if you have specified the appropriate compiler options.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the current

partition of the object module, in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the

line number of inlined code to aid you in debugging inlined code. Refer to

“GONUMBER | NOGONUMBER” on page 106, “IPA | NOIPA” on page 117, and

“LIST | NOLIST” on page 138 for information about source and line numbers in the

listing section.

External Symbol Dictionary

The External Symbol Dictionary lists the names that the IPA Link step generates for

the current partition of the object module. It includes address information and size

information about each symbol.

External Symbol Cross Reference

The IPA Link step generates this section if you specify the ATTR or XREF compiler

option. It shows how the IPA Link step maps internal and ESD names for external

symbols that are defined or referenced in the current partition of the object module.

Storage Offset Listing

The Storage Offset listing section displays the offsets for the data in the current

partition of the object module.

During the IPA Compile step, the compiler saves symbol storage offset information

in the IPA object file as follows:

v For C, if you specify the XREF, IPA(ATTRIBUTE), IPA(XREF) options, or the #pragma

options(XREF)

v For C++, if you specify the ATTR, XREF, IPA(ATTRIBUTE), or IPA(XREF) options

If this is done and the compilation unit includes variables, the IPA Link step may

generate a Storage Offset listing.

If you specify the ATTR or XREF option on the IPA Link step, and any of the

compilation units that contributed variables to a particular partition had storage

offset information encoded in the IPA object file, the IPA Link step generates a

Storage Offset listing section for that partition.

The Storage Offset listing displays the variables that IPA did not coalesce. The

symbol definition information appears as file#:line#.

Static Map

If you specify the ATTR or XREF option, the listing file includes offset information for

file scope read/write static variables.

Messages

If the IPA Link step detects an error, or the possibility of an error, it issues one or

more diagnostic messages, and generates the Messages listing section. This listing

section contains a summary of the messages that are issued during IPA Link step

processing.

Chapter 4. Compiler Options 275

The IPA Link step listing sorts the messages by severity. The Messages listing

section displays the listing page number where each message was originally

shown. It also displays the message text, and optionally, information relating the

error to a file name, line (if known), and column (if known).

For more information on compiler messages, see “FLAG | NOFLAG” on page 100,

and z/OS XL C/C++ Messages.

Message Summary

This listing section displays the total number of messages and the number of

messages for each severity level.

The following tables show the components that are included in the listing depending

on which option is specified:

 Table 27. IPA Link step listing components

Listing

Component

Wl,

I,

ATTR

-Wl,

I,

INLINE

(,

REPORT

,,)

-Wl,

I,

INLRPT

(des

tina

tion)

-Wl,

I,

IPA

(MAP)

-Wl,

I,

LIST

(des

tina

tion)

-Wl,

I,

XREF -V Phase

Compiler

Options

Map

U U IPA Link

Cross-
Reference

Table

U Binder

Entry Point

and Alias

Summary

U Binder

External

Symbol

Cross-
Reference

U U U Backend

External

Symbol

Dictionary

U U Backend

Global

Symbols

Map **

U U IPA Link

Imported

and

Exported

Symbols

U Binder

Inline

Report

U U IPA Link

Input List U Binder

Message

Summary

U U U U U U U IPA Link

Message

Summary

Report

U Binder

Messages * U U U U U U U IPA Link

276 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

||

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|||

|
|
|

||||||||

|
|
|

||||||||

|
|
|

||||||||

|
|
|
|

||||||||

|
|
|

||||||||

|
|
|

||||||||

|
|
|
|

||||||||

|
|
||||||||

|||||||||

|
|
||||||||

|
|
|

||||||||

|||||||||

Table 27. IPA Link step listing components (continued)

Listing

Component

Wl,

I,

ATTR

-Wl,

I,

INLINE

(,

REPORT

,,)

-Wl,

I,

INLRPT

(des

tina

tion)

-Wl,

I,

IPA

(MAP)

-Wl,

I,

LIST

(des

tina

tion)

-Wl,

I,

XREF -V Phase

Module Map U Binder

Object File

Map

U U IPA Link

Partition

Map

U U IPA Link

Processing

Options

U Binder

Prolog U U U U U U U IPA Link

Pseudo

Assembly

Listing

U U Backend

Save

Module

Attributes

U Binder

Save

Operation

Summary

U Binder

Source File

Map

U U IPA Link

Storage

Offset

Listing

U Backend

* This section is only generated if diagnostic messages are issued.

** This section is only generated if the IPA Link phase coalesces global variables.

Chapter 4. Compiler Options 277

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|||

|||||||||

|
|
||||||||

|
|
||||||||

|
|
||||||||

|||||||||

|
|
|

||||||||

|
|
|

||||||||

|
|
|

||||||||

|
|
||||||||

|
|
|

||||||||

|

|

|

278 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 5. Binder options and control statements

This chapter lists the binder options, suboptions, and control statements that are

considered important for a C or C++ programmer. For a detailed description of all

the binder options and control statements, see z/OS MVS Program Management:

User’s Guide and Reference.

C or C++ programmers should be familiar with the following binder options and

relevant suboptions:

v ALIASES

v AMODE

v CALL

v CASE

v COMPAT

v DYNAM

v LET

v LIST

v MAP

v OPTIONS

v REUS

v RMODE

v UPCASE

v XREF

C or C++ programmers should be familiar with the following control statements:

v AUTOCALL

v ENTRY

v IMPORT

v INCLUDE

v LIBRARY

v NAME

v RENAME

© Copyright IBM Corp. 1996, 2005 279

280 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 6. Run-Time options

This chapter describes how to specify run-time options and #pragma runopts

preprocessor directives available to you with z/OS XL C/C++ and z/OS Language

Environment. For a detailed description of the z/OS Language Environment run-time

options and information about how to apply them in different environments, refer to

z/OS Language Environment Programming Reference.

Specifying run-time options

To allow your application to recognize run-time options, either the EXECOPS compiler

option, or the #pragma runopts(execops) directive must be in effect. The default

compiler option is EXECOPS.

You can specify run-time options as follows:

v At execution time in one of the following ways:

– On the GPARM option of the IBM-supplied cataloged procedures

– On the option list of the TSO CALL command

– On the PARM parameter of the EXEC PGM=your-program-name JCL statement

– On the exported _CEE_RUNOPTS environment variable under the z/OS shell

v At compile time, on a #pragma runopts directive in your main program

If EXECOPS is in effect, use a slash ’/’ to separate run-time options from arguments

that you pass to the application. For example:

GPARM=’STORAGE(FE,FE,FE)/PARM1,PARM2,PARM3’

If EXECOPS is in effect, Language Environment interprets the character string that

precedes the slash as run-time options. It passes the character string that follows

the slash to your application as arguments. If no slash separates the arguments,

Language Environment interprets the entire string as an argument.

If EXECOPS is not in effect, Language Environment passes the entire string to your

application.

If you specify two or more contradictory options (for example in a #pragma runopts

statement), the last option that is encountered is accepted. Run-time options that

you specify at execution time have higher precedence than those specified at

compile time.

For more information on the precedence and specification of run-time options for

applications that are compiled with the z/OS Language Environment, refer to z/OS

Language Environment Programming Reference.

Using the #pragma runopts preprocessor directive

You can use the #pragma runopts preprocessor directive to specify z/OS Language

Environment run-time options. You can also use #pragma runopts to specify the

run-time options ARGPARSE, ENV, PLIST, REDIR, and EXECOPS, which have matching

compiler options. If you specify the compiler option, it takes precedence over the

#pragma runopts directive.

When the run-time option EXECOPS is in effect, you can specify run-time options at

execution time, as previously described. These options override run-time options

that you compiled into the program by using the #pragma runopts directive.

© Copyright IBM Corp. 1996, 2005 281

You can specify multiple run-time options per directive or multiple directives per

compilation unit. If you want to specify the ARGPARSE or REDIR options, the #pragma

runopts directive must be in the same compilation unit as main(). Neither run-time

option has an effect on programs invoked under the z/OS shell. This is because the

shell program handles the parsing and redirection of command line arguments

within that environment. Even though you can specify this directive in multiple

compilation units, the specification that will take effect depends on the order of

linking. It is advisable to specify it only once, and in the same compilation unit as

main().

When you specify multiple instances of #pragma runopts in separate compilation

units, the compiler generates a CSECT for each compilation unit that contains a

#pragma runopts directive. When you link multiple compilation units that specify

#pragma runopts, the linkage editor takes only the first CSECT, thereby ignoring

your other option statements. Therefore, you should always specify your #pragma

runopts directive in the same source file that contains the function main().

For more information on the #pragma runopts preprocessor directive, see z/OS XL

C/C++ Language Reference.

282 z/OS V1R7.0 XL C/C++ User’s Guide

Part 3. Compiling, binding, and running z/OS XL C/C++

programs

This part describes how to compile, bind, and run z/OS XL C/C++ programs using

z/OS Language Environment in the following sections:

v Chapter 7, “Compiling,” on page 285

v Chapter 8, “Using the IPA Link step with z/OS XL C/C++ programs,” on page 323

v Chapter 9, “Binding z/OS XL C/C++ programs,” on page 351

v Chapter 10, “Binder processing,” on page 379

v Chapter 11, “Running a C or C++ application,” on page 405

© Copyright IBM Corp. 1996, 2005 283

284 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 7. Compiling

This chapter describes how to compile your program with the z/OS XL C/C++

compiler and z/OS Language Environment. For specific information about compiler

options see Chapter 4, “Compiler Options,” on page 43.

The z/OS XL C/C++ compiler analyzes the source program and translates the

source code into machine instructions that are known as object code.

You can perform compilations under z/OS batch, TSO, or the z/OS UNIX System

Services environment

Note: As of z/OS V1R5 C/C++, the compiler will only work if both the SCEERUN and

SCEERUN2 Language Environment libraries are available.

Input to the z/OS XL C/C++ compiler

The following sections describe how to specify input to the z/OS XL C/C++ compiler

for a regular compilation, or the IPA Compile step. For more information about input

for IPA, refer to Chapter 8, “Using the IPA Link step with z/OS XL C/C++ programs,”

on page 323.

If you are compiling a C or C++ program, input for the compiler consists of the

following:

v Your z/OS XL C/C++ source program

v The z/OS XL C/C++ standard header files including IBM-supplied Class Library

header files

v Your header files

When you invoke the z/OS XL C/C++ compiler, the operating system locates and

runs the compiler. To run the compiler, you need these default data sets supplied by

IBM:

v CBC.SCCNCMP

v CEE.SCEERUN

v CEE.SCEERUN2

The locations of the compiler and the run-time library were determined by the

system programmer who installed the product. The compiler and library should be

in the STEPLIB, JOBLIB, LPA, or LNKLST concatenations. LPA can be from either

specific modules (IEALPAxx) or a list (LPALSTxx). See the cataloged procedures

shipped with the product in Appendix D, “Cataloged procedures and REXX EXECs,”

on page 583.

HFS file names: Unless they appear in JCL, file names, which contain the special

characters blank, backslash, and double quote, must escape

these characters. The escape character is backslash (\).

Primary input

For a C or C++ program, the primary input to the compiler is the data set that

contains your XL C/C++ source program. If you are running the compiler in batch,

identify the input source program with the SYSIN DD statement. You can do this by

either defining the data set that contains the source code or by placing your source

code directly in the JCL stream. In TSO or in z/OS UNIX System Services, identify

the input source program by name as a command line argument. The primary input

source file can be any one of the following:

© Copyright IBM Corp. 1996, 2005 285

v A sequential data set

v A member of a partitioned data set

v All members of a partitioned data set

v A Hierarchical File System (HFS) file

v All files in an HFS directory

Secondary input

For a C or C++ program, secondary input to the compiler consists of data sets or

directories that contain include files. Use the LSEARCH and SEARCH compiler options,

or the SYSLIB DD statement when compiling in batch, to specify the location of the

include files.

For more information on the use of these compiler options, see “LSEARCH |

NOLSEARCH” on page 145 and “SEARCH | NOSEARCH” on page 176. For more

information on naming include files, see “Specifying include file names” on page

311. For information on how the compiler searches for include files, see “Search

sequences for include files” on page 318. For more information on include files,

refer to “Using include files” on page 310.

Note: The LRECL for the SCLBH.H data set has changed from 80 to 120. You should

ensure that SCLBH.H is the first data set in your SYSLIB concatenation. Do not

use the SYSLIB concatenation to search for C++ header files with the

compiler because searching the SYSLIB concatenation cannot distinguish

between the old UNIX System Laboratories header files and new ISO

Standard Library header files. For example, #include <iostream.h> (old

USL) and #include <iostream> (ISO Standard) are indistinguishable using

the SYSLIB concatenation. Use the SEARCH compiler option so that the correct

header files are included.

Output from the compiler

You can specify compiler output files as one or more of the following:

v A sequential data set

v A member of a partitioned data set

v A partitioned data set

v A Hierarchical File System (HFS) file

v An HFS directory

For valid combinations of input file types and output file types, refer to Table 30 on

page 289.

Specifying output files

You can use compile options to specify compilation output files as follows:

 Table 28. Compile options that provide output file names

Output File Type Compiler Option

Object Module OBJECT(filename)

Listing File SOURCE (filename), LIST(filename),

INLRPT(filename) (Note: All listings must go to

the same file. The last given location is used.)

Preprocessor Output PPONLY(filename)

Events File EVENTS(filename)

Template Output TEMPINC(location)

286 z/OS V1R7.0 XL C/C++ User’s Guide

Table 28. Compile options that provide output file names (continued)

Output File Type Compiler Option

Template Registry TEMPLATEREGISTRY(filename)

When compiler options that generate output files are specified without suboptions to

identify the output files, and, in the case of a batch job, the designated ddnames

are not allocated, the output file names are generated based on the name of the

source file.

Note: The exception to this case is Template Registry, which is fixed to templreg,

and Template Output, which is fixed to tempinc.
For data sets, the compiler generates a low-level qualifier by appending a suffix to

the data set name of the source, as Table 29 shows.

If you compile source from HFS files without specifying output file names in the

compiler options, the compiler writes the output files to the current working

directory. The compiler does the following to generate the output file names:

v Appends a suffix, if it does not exist

v Replaces the suffix, if it exists

The following default suffixes are used:

 Table 29. Defaults for output file types

Output File Type z/OS File HFS File

Object Module OBJ o

Listing File LIST lst

Preprocessor Output EXPAND i

Template Output TEMPINC ./tempinc

Template Registry TEMPLREG ./templreg

Notes:

1. Output files default to the HFS directory if the source resides in the HFS, or to a

z/OS data set if the source resides in a data set.

2. If you have specified the OE option, see “OE | NOOE” on page 158 for a

description of the default naming convention.

3. If you supply inline source in your JCL, the compiler will not generate an output

file name automatically. You can specify a file name either as a suboption for a

compiler option, or on a ddname in your JCL.

4. If you are using #pragma options to specify a compile-time option that generates

an output file, you must use a ddname to specify the output file name when

compiling under batch. The compiler will not automatically generate file names

for output that is created by #pragma options.

Example: Under TSO, the compiler generates the object file

’userid.TEST.SRC.OBJ’ if you compile the following:

 cc TEST.SRC (OBJ

The compiler generates the object file ’userid.TEST.SRC.OBJ(HELLO)’ if you

compile the following:

 cc ’hlqual.TEST.SRC(HELLO)’ (OBJ

Chapter 7. Compiling 287

Listing output

Note: Although the compiler listing is for your use, it is not a programming interface

and is subject to change.

To create a listing file that contains source, object, or inline reports use the SOURCE,

LIST, or INLRPT compile options, respectively. The listing includes the results of the

default or specified options of the CPARM parameter (that is, the diagnostic messages

and the object code listing). If you specify filename with two or more of these

compile options, the compiler combines the listings and writes them to the last file

specified in the compile options. If you did not specify filename, the listing will go to

the SYSCPRT DD name, if you allocated it. Otherwise, the compiler generates a

default file name as described in “LIST | NOLIST” on page 138.

Object module output

To create an object module and store it on disk or tape, you can use the OBJECT

compiler option.

If you do not specify filename with the OBJECT option, the compiler stores the object

code in the file that you define in the SYSLIN DD statement. If you do not specify

filename with the OBJECT option, and did not allocate SYSLIN, the compiler generates

a default file name, as described in “OBJECT | NOOBJECT” on page 156.

Under z/OS UNIX System Services, an object name specified with -o will take

priority over the file name specified with the OBJECT option.

Differences in object modules under IPA: The object module that a regular

compilation generates is different from the object module that the IPA Compile step

generates. The IPA Compile step and regular compilation both produce an object

module for each source file successfully processed. For the IPA Compile step,

however, the output is an IPA-optimized object file, or a combined IPA/conventional

object file (if you do not specify the NOOBJECT suboption of the IPA compiler option).

You can use the object file that the IPA(NOLINK,NOOBJECT) compiler option creates

as input to the IPA Link step only. If you attempt to bind an IPA object file that was

created by using the IPA(NOLINK,NOOBJECT) option, the binder issues an error

message.

Refer to “Valid input/output file types” on page 289 for information about valid

input/output file types.

Preprocessor output

If you specify filename with the PPONLY compile option, the compiler writes the

preprocessor output to that file. If you do not specify filename with the PPONLY

option, the compiler stores the preprocessor output in the file that you define in the

SYSUT10 DD statement. If you did not allocate SYSUT10, the compiler generates a

default file name, as described in “PPONLY | NOPPONLY” on page 168.

Template instantiation output

If you specify location, which is either an HFS file or a sequential file/PDS member,

with the TEMPLATEREGISTRY compile option, the compiler writes the template registry

to that location. If you do not specify location with the TEMPLATEREGISTRY option, the

compiler determines a default destination for the template registry file. See

“TEMPLATEREGISTRY | NOTEMPLATEREGISTRY” on page 194 for more

information on this default.

288 z/OS V1R7.0 XL C/C++ User’s Guide

If you specify location, which is either an HFS directory or a PDS, with the TEMPINC

compile option, the compiler writes the template instantiation output to that location.

If you do not specify location with the TEMPINC option, the compiler stores the

TEMPINC output in the file that is associated with the TEMPINC DD name. If you did

not allocate DD:TEMPINC, the compiler determines a default destination for the

template instantiation files. See “TEMPINC | NOTEMPINC” on page 192 for more

information on this default.

Valid input/output file types

Depending on the type of file that is used as primary input, certain output file types

are allowed. The following table describes these combinations of input and output

files:

 Table 30. Valid combinations of source and output file types

Input Source

File

Output Data Set Specified

Without (member) Name,

for example A.B.C

Output Data Set

Specified as

filename(member),

for example A.B.C(D)

Output Specified as

HFS File, for

example a/b/c.o

Output Specified as

HFS Directory, for

example a/b

Sequential

Data Set, for

example A.B

1. If the file exists as a

sequential data set,

overwrites it

2. If the file does not exist,

creates sequential data

set

3. Otherwise compilation

fails

1. If the PDS does

not exist, creates

PDS and member

2. If the PDS exists

and member does

not exist, adds

member

3. If the PDS and

member both

exist, then

overwrites the

member

1. If the directory

does not exist,

compilation fails

2. If the directory

exists but the file

does not exist,

creates file

3. If the file exists,

overwrites the file

Not supported

A member of a

PDS using

(member), for

example

A.B(C)

1. If the file exists as a

sequential data set,

overwrites it

2. If the file exists as a

PDS, creates or

overwrites member

3. If the file does not exist,

creates PDS and

member

1. If the PDS does

not exist, creates

PDS and member

2. If the PDS exists

and member does

not exist, adds

member

3. If the PDS and

member both

exist, then

overwrites the

member

1. If the directory

does not exist,

compilation fails

2. If the directory

exists and the file

with the specified

file name does

not exist, creates

file

3. If the directory

exists and the file

exists, overwrites

file

1. If the directory

does not exist,

compilation fails

2. If the directory

exists and the file

with the file name

MEMBER.ext does

not exist, creates

file

3. If the directory

exists and the file

with the file name

MEMBER.ext also

exists, overwrite

file

Chapter 7. Compiling 289

Table 30. Valid combinations of source and output file types (continued)

Input Source

File

Output Data Set Specified

Without (member) Name,

for example A.B.C

Output Data Set

Specified as

filename(member),

for example A.B.C(D)

Output Specified as

HFS File, for

example a/b/c.o

Output Specified as

HFS Directory, for

example a/b

All members

of a PDS, for

example A.B

1. If the file exists as a

PDS, creates or

overwrites members

2. If the file does not exist,

creates PDS and

members

3. Otherwise compilation

fails

Not Supported Not Supported 1. If the directory

does not exist,

compilation fails

2. If the directory

exists and the files

with the file names

MEMBER.ext do not

exist, creates files

3. If the directory

exists and the files

with the file names

MEMBER.ext exist,

overwrites files

HFS file, for

example

/a/b/d.c

1. If the file exists as a

sequential data set,

overwrites file

2. If the file does not exist,

creates sequential data

set

3. Otherwise compilation

fails

1. If the PDS does

not exist, creates

the PDS and

stores a member

into the data set

2. If the PDS exists

and member does

not exist, then

adds the member

in the PDS

3. If the PDS and

member both

exist, then

overwrites the

member

1. If the directory

does not exist,

compilation fails

2. If the directory

exists but the file

does not exist,

creates file

3. If the file exists,

overwrites the file

1. If the directory

does not exist,

compilation fails

2. If the directory

exists and the file

does not exist,

creates file

3. If the directory

exists and the file

exists, overwrites

file

HFS Directory,

for example

a/b/

Not supported Not supported Not supported 1. If the directory

does not exist,

compilation fails

2. If the directory

exists and the files

to be written do

not exist, creates

files

3. If the directory

exists and the files

to be written

already exist,

overwrites files

Compiling under z/OS batch

To compile your C/C++ source program under batch, you can either use cataloged

procedures that IBM supplies, or write your own JCL statements.

290 z/OS V1R7.0 XL C/C++ User’s Guide

Using cataloged procedures for z/OS XL C

You can use one of the following IBM-supplied cataloged procedures. Each

procedure includes a compilation step to compile your program.

EDCC Compile a 31-bit or 64-bit program

EDCCB Compile and bind a 31-bit program

EDCXCB Compile and bind a 31-bit XPLINK C program

EDCQCB Compile and bind a 64-bit C program

EDCCL Compile and link-edit a 31-bit naturally re-entrant program

EDCCBG Compile, bind, and run a 31-bit program

EDCXCBG

Compile, bind, and run a 31-bit XPLINK C program

EDCQCBG

Compile, bind, and run a 64-bit C program

EDCCLG Compile, link-edit, and run a 31-bit program

EDCCPLG

Compile, prelink, link-edit, and run a 31-bit program

EDCCLIB

Compile and maintain an object library for a 31-bit or 64-bit application

IPA considerations

The EDCC procedure should be used for the IPA Compile step. Only the EDCI and

EDCXI procedures apply to the IPA Link step. For information on the EDCI and EDCXI

procedures, see Chapter 8, “Using the IPA Link step with z/OS XL C/C++

programs,” on page 323.

To run the IPA Compile step, use the EDCC procedure, and ensure that you specify

the IPA(NOLINK) or IPA compiler option. Note that you must also specify the

LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, you must run the IPA Compile step for

each source file in your program, and the IPA Link step once for the entire program.

Once you have successfully created an IPA-optimized object module, you must bind

it to create the final executable.

For further information on IPA, see Chapter 8, “Using the IPA Link step with z/OS

XL C/C++ programs,” on page 323.

Using cataloged procedures for z/OS XL C++

You can use one of the following cataloged procedures that IBM supplies. Each

procedure includes a compilation step to compile your program.

CBCC Compile a 31-bit or 64-bit program

CBCCB Compile and bind a 31-bit non-XPLINK program

CBCXCB Compile and bind a 31-bit XPLINK C++ program

CBCQCB Compile and bind a 64-bit C++ program

CBCCL Compile, prelink, and link for a 31-bit non-XPLINK program

CBCCBG Compile, bind, and run a 31-bit non-XPLINK program

CBCXCBG Compile, bind, and run a 31-bit XPLINK C++ program

CBCQCBG Compile, bind, and run a 64-bit C++ program

CBCCLG Compile, prelink, link, and run a 31-bit non-XPLINK program

Chapter 7. Compiling 291

|
|
|

See Appendix D, “Cataloged procedures and REXX EXECs,” on page 583 for more

information on cataloged procedures.

IPA considerations

The CBCC procedure should be used for the IPA Compile step. Only the CBCI and

CBCXI procedures apply to the IPA Link step. For information on the CBCI and CBCXI

procedures, see Chapter 8, “Using the IPA Link step with z/OS XL C/C++

programs,” on page 323.

To run the IPA Compile step, use the CBCC procedure, and ensure that you specify

the IPA(NOLINK) or IPA compiler option. Note that for C you must also specify the

LONGNAME compiler option or the #pragma longname directive. For C++, you don’t

have to do this since C++ always uses LONGNAME. You should not specify the

NOLONGNAME option.

To create an IPA-optimized object module, you must run the IPA Compile step for

each source file in your program, and the IPA Link step once for the entire program.

Once you have successfully created an IPA-optimized object module, you must bind

it to create the final executable.

For further information on IPA, see Chapter 8, “Using the IPA Link step with z/OS

XL C/C++ programs,” on page 323.

Using special characters

When invoking the compiler directly, if a string contains a single quote (') it should

be written as two single quotes ('') as in:

//COMPILE EXEC PGM=CCNDRVR,PARM=’OPTFILE(’’USERID.OPTS’’)’

If you are using the same string to pass a parameter to a catalogued procedure,

use four single quotes (''''), as follows:

//COMPILE EXEC CBCC,CPARM=’OPTFILE(’’’’USERID.OPTS’’’’)’

A backslash need not precede special characters in HFS file names that you use in

DD cards. For example:

//SYSLIN DD PATH=’/u/user1/obj 1.o’

A backslash must precede special characters in HFS file names that you use in the

PARM statement. For example:

//STEP1 EXEC PGM=CCNDRVR,PARM=’/u/user1/obj\ 1.o’

Examples of compiling programs using your own JCL

The following example shows sample JCL for compiling a 32-bit C program:

292 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

The following example shows sample JCL for compiling a 64-bit C program:

 The following example shows sample JCL for compiling a 32-bit C++ program:

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CCNDRVR,

// PARM=’/SEARCH(’’CEE.SCEEH.+’’) NOOPT SO OBJ’

//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR

// DD DSNAME=CEE.SCEERUN2,DISP=SHR

// DD DSNAME=CBC.SCCNCMP,DISP=SHR

//SYSLIN DD DSNAME=MYID.MYPROG.OBJ(MEMBER),DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.h> ...
int main(void)

{

/* comment */ ...
}

@@

//SYSUT1 DD DSN=... ...
//*

Figure 15. JCL for compiling a 32-bit C program (for NOOPT, SOURCE, and OBJ)

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CCNDRVR,

// PARM=’/SEARCH(’’CEE.SCEEH.+’’) NOOPT SO LP64 OPTFILE(DD:CPATH)’

//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR

// DD DSNAME=CEE.SCEERUN2,DISP=SHR

// DD DSNAME=CBC.SCCNCMP,DISP=SHR

//SYSLIN DD DSNAME=MYID.MYPROG.OBJ(MEMBER),DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.h> ...

int main(void)

{

/* comment */ ...
}

@@

//SYSUT1 DD DSN=... ...
//*

Figure 16. JCL for compiling a 64-bit C program (for NOOPT, SOURCE, and LP64)

Chapter 7. Compiling 293

The following example shows sample JCL for compiling a 64-bit C++ program:

Specifying source files

For non-HFS files, use this format of the SYSIN DD statement:

//SYSIN DD DSNAME=dsname,DISP=SHR

If you specify a PDS without a member name, all members of that PDS are

compiled.

Note: If you specify a PDS as your primary input, you must specify either a PDS or

an HFS directory for your output files.

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CCNDRVR,

// PARM=’/CXX SEARCH(’’CEE.SCEEH.+’’,’’CBC.SCLBH.+’’),NOOPT,SO,OBJ’

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=CBC.SCCNCMP,DISP=SHR

//SYSLIN DD DSN=MYID.MYPROJ.OBJ,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.h>

#include <iostream.h> ...
int main(void)

{

// comment ...
}

@@

//SYSUT1 DD DSN=... ...
//*

Figure 17. JCL for compiling a 32-bit C++ program (for NOOPT, SOURCE, and OBJ)

//jobname JOB acctno,name...

//COMPILE EXEC PGM=CCNDRVR,

// PARM=’/CXX SEARCH(’’CEE.SCEEH.+’’,’’CBC.SCLBH.+’’),NOOPT,SO,LP64’

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=CBC.SCCNCMP,DISP=SHR

//SYSLIN DD DSN=MYID.MYPROJ.OBJ,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD DATA,DLM=@@

#include <stdio.>

#include <iostream.h> ...

int main(void)

{

// comment

 ...
}

@@

//SYSUT1 DD DSN=...

 ...
//*

Figure 18. JCL for compiling a 64-bit C++ program (for NOOPT, SOURCE, and LP64)

294 z/OS V1R7.0 XL C/C++ User’s Guide

For HFS files, use this format of the SYSIN DD statement:

//SYSIN DD PATH=’pathname’

You can specify compilation for a single file or all source files in an HFS directory,

for example:

//SYSIN DD PATH=’/u/david’

//* All files in the directory /u/david are compiled

Note: If you specify an HFS directory as your primary input, you must specify an

HFS directory for your output files.

When you place your source code directly in the input stream, use the following

form of the SYSIN DD statement:

//SYSIN DD DATA,DLM=

rather than:

//SYSIN DD *

When you use the DD * convention, the first XL C/C++ comment statement that

starts in column 1 will terminate the input to the compiler. This is because /*, the

beginning of a C or C++ comment, is also the default delimiter.

Note: To treat columns 73 through 80 as sequence numbers, use the SEQUENCE

compiler option.

For more information about the DD * convention, refer to the publications that are

listed in z/OS Information Roadmap.

Specifying include files

Example: Use the SEARCH option to specify system include files, and the LSEARCH

option to specify your include files:

//C EXEC PGM=CCNDRVR,PARM=’/CXX SEARCH(’’CEE.SCEEH.+’’,’’CBC.SCLBH.+’’)’

You can also use the SYSLIB and USERLIB DD statements (note that the SYSLIB DD

statement has a different use if you are running the IPA Link step). To specify more

than one library, concatenate multiple DD statements as follows:

//SYSLIB DD DSNAME=USERLIB,DISP=SHR

// DD DSNAME=DUPX,DISP=SHR

Note: If the concatenated data sets have different block sizes, either specify the

data set with the largest block size first, or use the DCB=dsname

subparameter on the first DD statement. For example:

//USERLIB DD DSNAME=TINYLIB,DISP=SHR,DCB=BIGLIB

// DD DSNAME=BIGLIB,DISP=SHR

where BIGLIB has the largest block size. For rules regarding concatenation

of data sets in JCL, refer to z/OS XL C/C++ Programming Guide.

Chapter 7. Compiling 295

Specifying output files

You can specify output file names as suboptions to the compiler. You can direct the

output to a PDS member as follows:

// CPARM=’LIST(MY.LISTINGS(MEMBER1))’

You can direct the output to an HFS file as follows:

// CPARM=’LIST(./listings/member1.lst)’

You can also use DD statements to specify output file names.

To specify non-HFS files, use DD statements with the DSNAME parameter. For

example:

//SYSLIN DD DSN=USERID.TEST.OBJ(HELLO),DISP=SHR

To specify HFS directories or files, use DD statements with the PATH parameter.

//SYSLIN DD PATH=’/u/david/test.o’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC)

on PATH and PATHOPTS parameters.

Note: Use the PATH and PATHOPTs parameters when specifying HFS files in the DD

statements. For additional information on these parameters, refer to the list

of publications in z/OS Information Roadmap.

If you do not specify the output filename as a suboption, and do not allocate the

associated ddname, the compiler generates a default output file name. These are

the two situations in which the compiler will not generate a default file name:

v You supply instream source in your JCL.

v You are using #pragma options to specify a compile-time option that generates

an output file.

Compiling under TSO

You can invoke the z/OS XL C/C++ compiler under TSO by foreground execution

from TSO READY. This method of foreground execution calls the CC or CXX REXX

EXECs supplied by IBM.

Note: To run the compiler under TSO, you must have access to the run-time

libraries. To ensure that you have access to the run-time library and

compiler, do one of the following:

v Have your system programmer add the libraries to the LPALST or LPA

v Have your system programmer add the libraries to the LNKLST

v Have your system programmer change the LOGON PROC so the libraries are added

to the STEPLIB for the TSO session

v Have your system programmer customize the REXX EXEC CCNCCUST, which is

called by the CC, CXX, and other EXECs to set up the environment

Using the CC and CXX REXX EXECs

You can use the CC REXX EXEC to invoke the z/OS XL C compiler, and the CXX

REXX EXEC to invoke the z/OS XL C++ compiler. These REXX EXECs share the

same syntax:

296 z/OS V1R7.0 XL C/C++ User’s Guide

��

%

CC

CXX

�

?

filename

(

,

)

option

 ��

where

% ensures that the REXX EXEC CC is invoked

option is any valid compiler option

filename can be one of the following:

v A sequential data set

v A member of a partitioned data set

v All members of a partitioned data set

v A Hierarchical File System (HFS) file

v All files in an HFS directory

If filename is not immediately recognizable as an HFS file or data

set, it is assumed to be a data set. Prefix the file name with // to

identify it as a data set, and with ./ or / to identify it as an HFS file.

For more information on file naming considerations refer to z/OS XL

C/C++ Programming Guide.

 If you invoke either CC or CXX with no arguments or with only a single question

mark, the appropriate preceding syntax diagram is displayed.

If you are using #pragma options to specify a compile-time option that generates an

output file, you must use a ddname to specify the output file name. The compiler

will not automatically generate file names for output that is created by #pragma

options.

Unless CCNCCUST has been customized, the default SYSLIB for CC is CEE.SCEEH.H,

and CEE.SCEEH.SYS.H concatenated. If you want to override the default SYSLIB that

is allocated by the CC exec, you must allocate the ddname SYSLIB before you

invoke CC. If you did not allocate the ddname SYSLIB before you invoked CC EXEC,

the CC EXEC allocates the default SYSLIB.

Specifying sequential and partitioned data sets

To specify a sequential or partitioned data set for your source file use the following

syntax:

��

�

 .

qualifier

//

’

(

member

)

’

DD:

ddname

dd:

(

member

)

��

Note: If you use the leading single quote to indicating a fully qualified data set

name, you must also use the trailing single quote.

Chapter 7. Compiling 297

Specifying HFS files or directories

You can use the CC or CXX REXX EXECs to compile source code that is stored in

HFS files and directories. Use the following syntax when specifying HFS file or

directory as your input or output file:

��

/

.

�

/

pathname

 ��

If you specify an HFS directory, all the source files in that directory are compiled. In

the following example all the files in /u/david/src are compiled:

CC /u/david/src

When the file name contains the special characters double quote, blank or

backslash, you must precede these characters with a backslash, as follows:

CC /u/david/db\ 1.c

CC file\"one

When you use the CC or CXX REXX EXEC, you must use unambiguous HFS source

file names. For example, the following input files are HFS files:

CXX ./test/hello.c

CC /u/david/test/hello.c

CXX test/hello.c

CC ///hello.c

CC ../test/hello.c

If you specify a file name that does not include pathnames with single slashes, the

compiler treats the file as a non-HFS file. The compiler treats the following input

files as non-HFS files:

CXX hello.c

CC //hello.c

Using special characters

When HFS file names contain the special characters blank, backslash, and double

quote, you must precede the special character with a backslash(\).

When suboptions contain the special characters left bracket (, right bracket),

comma, backslash, blank and double quote, you must precede these characters

with a double backslash(\\) to ensure that they are interpreted correctly, as in:

 def(errno=\\(*__errno\\(\\)\\))

Note: Under TSO, you must precede special characters by a backslash \ in both

file names and options.

Specifying compiler options under TSO

When you use REXX EXECs supplied by IBM, you can override the default

compiler options by specifying the options directly on the invocation line after an

open left parenthesis (.

Example: The following example specifies, multiple compiler options with the

sequential file STUDENT.GRADES.CXX:

298 z/OS V1R7.0 XL C/C++ User’s Guide

CXX ’STUDENT.GRADES.CXX’

 (LIST,TEST,

 LSEARCH(MASTER.STUDENT,COURSE.TEACHER),

 SEARCH(VGM9.FINANCE,SYSABC.REPORTS),

 OBJ(’GRADUATE.GRADES.OBJ(REPORT)’)

See “Summary of compiler options” on page 50 for more information on compiler

options.

Compiling and binding in the z/OS UNIX System Services environment

z/OS UNIX System Services C/C++ programs with source code in HFS files or data

sets must be compiled to create output object files residing either in HFS files or

data sets.

Both the SCEERUN and the SCEERUN2 libraries must be available when compiling in

the z/OS UNIX System Services environment.

You can compile and bind application source code at one time, or compile the

source and then bind at another time with other application source files or compiled

objects.

As of z/OS V1R6, there are two utilities that enable you to invoke the compiler. The

c89 utility enables compiler invocation using host environment variables and the xlc

utility uses an external configuration file to control the invocation of the compiler.

The following list highlights the differences between the xlc and c89 utilities:

v xlc utility uses the c89 utility to invoke the binder and the assembler and it has

no direct interface to them

v xlc does not require that lp64 and xplink be explicitly specified as options on

the command line for both the compile and the bind step; it uses _64 and _x

command name suffixes to ensure 64-bit and XPLINK compiles and binds

v xlc utility supports -q options syntax as the primary method of specifying options

on the command line

v xlc utility is unaffected by the value assigned to the STEPLIB environment

variable in the z/OS UNIX Systems Services session; it obtains the STEPLIB from

the configuration file

v xlc utility supports the same command names as the c89 utility (cc, c89, c++, and

cxx), so the PATH environment variable must contain the path to the xlc ″bin″

directory ahead of the /bin directory if the xlc version of cc, c89, c++, and cxx is

desired

v xlc utility does not support -WI for invoking IPA; it uses -O4 and -O5 or -qipa as

the mechanism for invoking IPA

Note: For more information on the xlc utility, see Chapter 19, “xlc — Compiler

invocation using a customizable configuration file,” on page 505.

The c89 utility and xlc utility invoke the binder by default, unless the output file of

the link-editing phase (-o option) is a PDS, in which case the prelinker is used.

For information on customizing your environment to compile and bind in the z/OS

UNIX System Services environment, see “Environment variables” on page 480 or

“Setting up a configuration file” on page 509.

Use the c89 utility or the xlc utility to compile and bind a C application program

from the z/OS shell. The syntax is:

Chapter 7. Compiling 299

c89 [-options ...] [file.c ...] [file.a ...] [file.o ...] [-l libname]

where:

options are c89 or xlc options.

file.c is a source file. Note that C source files have a file extension of

lowercase c.

file.o is an object file.

file.a is an archive file.

libname is an archive library.

The c89 and xlc utilities support IPA. For information on how to invoke the IPA

Compile step using c89 or xlc, refer to “Invoking IPA using the c89 or xlc utilities”

on page 304.

You can also use the cc command to compile a C application program from the

z/OS shell. For more information, see Chapter 18, “c89 — Compiler invocation

using host environment variables,” on page 465 or the xlc command names

described in Chapter 19, “xlc — Compiler invocation using a customizable

configuration file,” on page 505.

Use the c++ command to compile and bind a C++ application program from the

z/OS shell. The syntax for c++ is:

c++ [-options ...] [file.C ...] [file.a ...] [file.o ...] [-l libname]

where:

options are C++ options.

file.C is a source file. Note that C++ files have a file extension of

uppercase C. The _CXX_CXXSUFFIX environment variable or

cxxsuffix configuration file attribute can also be used to control

which extensions are recognized as C++ file source extensions.

file.o is an object file.

file.a is an archive file.

libname is an archive library.

Another name for the c++ command is cxx. The cxx command and the c++

command are identical. You can use cxx instead of c++ in all the examples that are

shown in this section. If you are using the xlc utility, you can also use the xlC and

the xlc++ commands, which are identical to c++ and cxx.

For a complete list of c++ options, and for more information on cxx, see Chapter 18,

“c89 — Compiler invocation using host environment variables,” on page 465 and

Chapter 19, “xlc — Compiler invocation using a customizable configuration file,” on

page 505.

Note: You can compile and bind application program source and objects from

within the shell using the c89 or xlc utilities. If you use one of these utilities,

you must keep track of and maintain all the source and object files for the

application program. You can use the make utility to maintain your z/OS UNIX

System Services application source files and object files automatically when

you update individual modules. The make utility will only compile files that

have changed since the last make run.

300 z/OS V1R7.0 XL C/C++ User’s Guide

For more information on using the make utility, see Chapter 16, “Archive and Make

Utilities,” on page 459 and z/OS UNIX System Services Programming Tools.

Compiling without binding using compiler invocation command names

supported by c89 and xlc

To compile source files without binding them, enter one of the supported command

names (for example, c89 or c++) with the -c option to create object file output. Use

the -o option to specify placement of the application program executable file to be

generated. The placement of the intermediate object file output depends on the

location of the source file:

v If the z/OS XL C/C++ source module is an HFS file, the object file is created in

the working directory.

v If the z/OS XL C/C++ source module is a data set, the object file is created as a

data set. The object file is placed in a data set with the qualified name of the

source and identified as an object.

For example, if the z/OS XL C/C++ source is in the sequential data set

LANE.APPROG.USERSRC.C, the object is placed in the data set

LANE.APPROG.USERSRC.OBJ. If the source is in the partitioned data set (PDS)

member 'OLSEN.IPROGS.C(FILSER)', the object is placed in the PDS member

'OLSEN.IPROGS.OBJ(FILSER)'.

Note: When the z/OS XL C/C++ source is located in a PDS member, you should

specify double-quote characters around the qualified data set name. For

example:

c89 -c "//'OLSEN.IPROGS.C(FILSER)'"

If the file name is not bracketed by quotes, the parentheses around the

member name in the fully qualified PDS name would be subject to special

shell parsing rules.

Since the data set name is always converted to uppercase, you can specify it in

lowercase or mixed case.

Compiling z/OS XL C application source to produce only object

files

c89 and xlc recognize that a file is a C source file by the .c suffix for HFS files, and

the .C low-level qualifier for data sets. They recognize that a file is an object file by

the .o suffix for HFS files, and the .OBJ low-level qualifier for data sets.

To compile z/OS XL C source to create the default 32-bit object file usersource.o in

your working HFS directory, specify:

c89 -c usersource.c

To compile z/OS XL C source to create the default 64-bit object file usersource.o in

your working HFS directory, specify the following using the c89 utility:

c89 -c -Wc,lp64 usersource.c

The following shows the same example using the xlc utility:

c89_64 -c usersource.c

To compile z/OS XL C source to create an object file as a member in the PDS

'KENT.APPROG.OBJ', specify:

c89 -c "//'kent.approg.c(usersrc)'"

Chapter 7. Compiling 301

Compiling z/OS XL C++ application source to produce only

object files

c89 and xlc recognize that a file is a C++ source file by the .C suffix for HFS files,

and the .CXX low-level qualifier for data sets. They recognize that a file is an object

file by the .o suffix for HFS files, and the .OBJ low-level qualifier for data sets.

To compile z/OS XL C++ source to create the default 32-bit object file usersource.o

in your working HFS directory, specify the following:

c++ -c usersource.C

To compile z/OS XL C++ source to create the default 64-bit object file usersource.o

in your working HFS directory, using the c89 utility specify:

c++ -c -Wc,lp64 usersource.C

The following shows the same example using the xlc utility:

c++_64 usersource.C

To compile z/OS XL C++ source to create an object file as a member in the PDS

’JONATHAN.APPROG.OBJ’, specify:

 c++ -c "//’jonathan.approg.CXX(usersrc)’"

z/OS XL C++ Note:

To use the TSO utility OGET to copy a C++ HFS listing file to a

VBA data set, you must add a blank to any null records in the

listing file. Use the awk command as follows if you are using

the c89 utility:

c++ -cV mypgm.C | awk ’/^[^$]/ {print} /^$/

 {printf "%s \n", $0}’ > mypgm.lst

The following shows the same example using the xlc utility:

xlC -c -qsource mypgm.C | awk ’/^[^$]/ {print} /^$/

 {printf "%s \n", $0}’ > mypgm.lst

Compiling and binding application source to produce an

application executable file

To compile an application source file to create the 32-bit object file usersource.o in

the HFS working directory and the executable file mymod.out in the /app/bin

directory, specify:

c89 -o /app/bin/mymod.out usersource.c

To compile an application source file, to create the 64-bit object file usersource.o in

the HFS working directory and the executable file mymod.out in the /app/bin

directory, specify the following using the c89 utility

 c89 -Wc,lp64 -Wl,lp64 -o /app/bin/mymod.out usersource.c

The following shows the same example using the xlc utility:

c89_64 -o /app/bin/mymod.out usersource.c

To compile the z/OS XL C source member MAINBAL in the PDS 'CLAUDIO.PGMS.C',

and bind it to produce the application executable file

/u/claudio/myappls/bin/mainbal.out, specify:

c89 -o /u/claudio/myappls/bin/mainbal.out "//'claudio.pgms.C(MAINBAL)'"

302 z/OS V1R7.0 XL C/C++ User’s Guide

Compiling and binding in one step using compiler invocation

command names supported by c89 and xlc

To compile and bind a XL C/C++ application program in one step to produce an

executable file, specify c89 or c++ without specifying the -c option. You can use the

-o option with the command to specify the name and location of the application

program executable file to be created. The c++ and cxx commands are identical.

You can use cxx instead of c++ in all the examples that are shown in this section. If

you are using the xlc utility, you can also use the xlC and xlc++ commands, which

are identical to c++ and cxx.

The c89 utility and xlc utility invoke the binder by default, unless the output file of

the link-editing phase (-o option) is a PDS, in which case the prelinker is used.

v To compile and bind an application source file to create the 32-bit default

executable file a.out in the HFS working directory, specify:

v To compile and bind an application source file to create the 64-bit default

executable file a.out in the HFS working directory, specify:

v To compile and bind an application source file to create the mymod.out executable

file in your /app/bin directory, specify:

v To compile and bind several application source files to create the mymod.out

executable file in your /app/bin directory, specify:

v To compile and bind an application source file to create the MYLOADMD member of

your 'APPROG.LIB' PDS, specify:

v To compile and bind an application source file with several previously compiled

object files to create the executable file zinfo in your /prg/lib HFS directory,

specify:

v To compile and bind an application source file and capture the listings from the

compile and bind steps into another file, specify:

 c89 usersource.c

 c++ usersource.C

 c89 -Wc,lp64 -Wl,lp64 usersource.c

 c++ -Wc,lp64 -Wl,lp64 usersource.C

 xlC_64 usersource.C

 c89 -o /app/bin/mymod.out usersource.c

 c++ -o /app/bin/mymod.out usersource.C

 c89 -o /app/bin/mymod.out usrsrc.c otsrc.c "//'MUSR.C(PWAPP)'"

 c++ -o /app/bin/mymod.out usrsrc.C otsrc.C "//'MUSR.C(PWAPP)'"

 c89 -o "//'APPROG.LIB(MYLOADMD)'" usersource.c

 c++ -o "//'APPROG.LIB(MYLOADMD)'" usersource.C

 c89 -o /prg/lib/zinfo usrsrc.c xstobj.o "//'MUSR.OBJ(PWAPP)'"

 c++ -o /prg/lib/zinfo usrsrc.C xstobj.o "//'MUSR.OBJ(PWAPP)'"

 c89 -V barryl.c > barryl.lst

 c++ -V barryl.C > barryl.lst

Chapter 7. Compiling 303

Note: -V does not cause all listings to be emitted when you invoke the compiler

using xlc. Use, for example, -qsource or -qlist instead.

Building an application with XPLINK using the c89 or xlc utilities

To build an application with XPLINK using the c89 utility you must specify the XPLINK

compiler option (i.e., −Wc,xplink) and the XPLINK binder option (i.e., −Wl,xplink).

The binder option is not actually passed to the binder. It is used by c89 to set up

the appropriate link data sets.

To build an application with XPLINK using the xlc utility, you do not have to

explicitly specify the xplink option on the command line for either the compile or

the bind step. xlc uses the _x command name suffix to ensure XPLINK compiles

and binds.

Building a 64-bit application using the c89 or xlc utilities

To build a 64-bit application using the c89 utility, you must use the LP64 compiler

option (i.e., -Wc,lp64) and the LP64 binder option (i.e., -Wl,lp64). The binder option

is not actually passed to the binder. It is used by c89 to set up the appropriate link

data sets.

To build a 64-bit application using the xlc utility, you do not have to explicitly specify

the lp64 option on the command line for either the compile or the bind step. xlc

uses the _64 command name suffix to ensure 64-bit compiles and binds.

Invoking IPA using the c89 or xlc utilities

You can invoke the IPA Compile step, the IPA Link step, or both using the c89 or

xlc utilities. The step that you invoke depends upon the invocation parameters and

type of files specified. To invoke IPA using c89, you must specify the I phase

indicator along with the W option of the c89 utility. You can specify IPA suboptions as

comma-separated keywords. To invoke IPA using xlc, you must use the -qipa, -O4,

or -O5 options. You can specify IPA suboptions as colon-separated keywords.

If you invoke the c89 utility or xlc utility by specifying the -c compiler option and at

least one source file, c89 or xlc automatically specifies IPA(NOLINK) and

automatically invokes the IPA Compile step. For example, the following c89

command invokes the IPA Compile step for the source file hello.c:

c89 -c -WI,noobject hello.c

The following xlc command invokes the IPA Compile step for the source file

hello.c:

xlc -c -qipa=noobject hello.c

If you invoke c89 or xlc with at least one source file for compilation and any

number of object files, and do not specify the -c option, c89 or xlc invokes the IPA

Compile step once for each compilation unit. It then invokes the IPA Link step once

for the entire program, and then invokes the binder.

Example: The following c89 command invokes the IPA Compile step, the IPA Link

step, and the bind step while creating program foo:

c89 -o foo -WI,object foo.c

The following shows the same example using the xlc utility:

xlc -o foo -qipa=object foo.c

304 z/OS V1R7.0 XL C/C++ User’s Guide

Refer to Chapter 18, “c89 — Compiler invocation using host environment variables,”

on page 465 for more information about the c89 utility or Chapter 19, “xlc —

Compiler invocation using a customizable configuration file,” on page 505 for more

information about the xlc utility.

Specifying options for the IPA Compile step

You can pass options to the IPA Compile step, as follows:

v You can pass IPA compiler option suboptions by specifying -WI, for c89 or -qipa=

for xlc, followed by the suboptions.

v You can pass compiler options by specifying -Wc, for c89 or -q for xlc, followed

by the options.

Using IPA(OBJONLY) with the c89 or xlc utilities

A compilation using IPA(OBJONLY) is simply a standard non-IPA compilation with this

option added. Do not use the -WI flag with c89 or -qipa with xlc, as this would

convert the compilation into an IPA Compile step.

Example: The following c89 command results in an OPT(2) IPA(OBJONLY)

compilation for the source file hello.c:

c89 -c -Wc,ipa\(objonly\) -2 hello.c

The following shows the same example using the xlc utility:

xlc -c -Wc,ipa\(objonly\) -O2 hello.c

Using the make utility

You can use the make utility to control the build of your z/OS UNIX System Services

XL C/C++ applications. The make utility calls the c89 utility by default to compile and

bind the programs that the previously created makefile specifies.

Example: To create myappl you compile and bind two source parts mymain.c and

mysub.c. This dependency is captured in makefile /u/jake/myappl/Makefile. No

recipe is specified, so the default makefile rules are used. If myappl was built and a

subsequent change was made only to mysub.c, you would specify:

cd /u/jake/myappl

make

The make utility sees that mysub.c has changed, and invokes the following

commands for you:

c89 -O -c mysub.c

c89 -o myappl mymain.o mysub.o

Note: The make utility requires that application program source files that are to be

“maintained” through use of a makefile reside in HFS files. To compile and

bind z/OS XL C/C++ source files that are in data sets, you must use the c89

utility directly.

See z/OS UNIX System Services Command Reference for a description of the make

utility. For a detailed discussion on how to create and use makefiles to manage

application parts, see z/OS UNIX System Services Programming Tools.

Chapter 7. Compiling 305

Compiling with IPA

If you request Interprocedural Analysis (IPA) through the IPA compiler option, the

compilation process changes significantly. IPA instructs the compiler to optimize

your z/OS XL C/C++ program across compilation units, and to perform optimizations

that are not otherwise available with the z/OS XL C/C++ compiler. You should refer

to z/OS XL C/C++ Programming Guide for an overview of IPA processing before

you invoke the compiler with the IPA compiler option.

Differences between the IPA compilation process and the regular compilation

process are noted throughout this chapter.

Figure 19 shows the flow of processing for a regular compilation:

 IPA processing consists of two separate steps, called the IPA Compile step and the

IPA Link step.

The IPA Compile step

The IPA Compile step is similar to a regular compilation.

You invoke the IPA Compile step for each source file in your application by

specifying the IPA(NOLINK) compiler option or by specifying -Wc,IPA or -WI -c in

z/OS UNIX System Services. The output of the IPA Compile step is an object file

which contains IPA information, or both IPA information and conventional object

code and data. The IPA information is an encoded form of the compilation unit with

additional IPA-specific compile-time optimizations.

Figure 20 on page 307 shows the flow of IPA Compile step processing.

Analysis phase

Invocation parameters

Compiler

Code generation
phase

Source file(s)
Listing sections
Messages

Object module(s)
Listing sections
Messages

Figure 19. Flow of regular compiler processing

306 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

The same environments that support a regular compilation also support the IPA

Compile step.

The IPA Link step

The IPA Link step is similar to the binding process.

You invoke the IPA Link step by specifying the IPA(LINK) compiler option or by

specifying -WI without specifying -c in z/OS UNIX System Services. This step links

the user application program together by combining object files with IPA information,

object files with conventional object code and data, and load module members. It

merges IPA information, performs IPA Link-time optimizations, and generates the

final object code and data.

Each application program module must be built with a single invocation of the IPA

Link step. All parts must be available during the IPA Link step; missing parts may

result in termination of IPA Link processing.

Figure 21 on page 308 shows the flow of IPA Link step processing:

Analysis phase

Invocation parameters
(IPA or IPA(NOLINK),

other suboptions may be
specified)

Compiler

IPA compile
optimization phase

IPA object
creation

Code generation
phase (optional)

Source file(s)
Listing sections
Messages

Messages
IPA object(s)

Messages

Listing sections
Messages
Regular object(s)

Figure 20. IPA Compile step processing

Chapter 7. Compiling 307

|
|

Only c89, xlc, c++ and z/OS batch support the IPA Link step. Refer to Chapter 8,

“Using the IPA Link step with z/OS XL C/C++ programs,” on page 323 for

information about the IPA Link step.

Compiling with IPA(OBJONLY)

The full Interprocedural Analysis using the IPA Compile and IPA Link steps performs

significant optimizations beyond those which are available using regular compilation.

If problems occur, diagnosis may take significant time and effort.

The IPA(OBJONLY) compilation is an intermediate level of optimization. This results

in a modified regular compile, not an IPA Compile step. Unlike the IPA Compile

step, no IPA information is written to the object file.

During compilation, this step performs the same IPA-specific compile-time

optimizations as the IPA Compile step, performs the requested non-IPA

optimizations, and then generates optimized object code and data.

You invoke the compiler for each source file in your application by specifying the

IPA(OBJONLY) compiler option.

The object file may be used by an IPA Link step, a prelink/link, or a bind. If it is

used as input to an IPA Link step, no IPA link-time optimizations can be performed

for this compilation unit because no IPA information is available.

Figure 22 on page 309 shows the flow of processing for an IPA(OBJONLY)

compilation.

IPA object
link phase

Analysis/
optimization phase

Code generation
phase

Invocation parameters
(IPA(LINK, CONTROL(dsn))

(other IPA suboptions may be
specified)

Compiler

Primary input file (object)

IPA control file
Secondary input (object, load module)

Listing sections
Messages

Listing sections
Messages

Listing sections
Messages
Final object code

Figure 21. IPA Link step processing

308 z/OS V1R7.0 XL C/C++ User’s Guide

|

Working with object files

z/OS object files are composed of a stream of 80 byte records. These may be

binary object records, or link control statements. It is useful to be able to browse the

contents of an object file, so that some basic information can be determined.

Browsing object files

Object files, which are sequential data sets or are members of a PDS or PDSE

object library, can be browsed directly using the Program Development Facility

(PDF) edit and browse options.

Object files, which are files in an HFS file system, can be browsed using the PDF

obrowse command. HFS files can be browsed using the TSO ISHELL command, and

then using the V (View) action (V on the Command line, or equivalently Browse

records from the File pull-down menu). This will result in a pop-up window for

entering a record length. To force display in F 80 record mode, one would issue the

following sequence of operations:

1. Enter the command: obrowse file.o

Note that the file name is deliberately typed with an extra character. This will

result in the display of an obrowse dialog panel with an error message that the

file is not found. After pressing Enter, a second obrowse dialog is displayed to

allow the file name to be corrected. This panel has an entry field for the record

length.

2. Correct the file name and enter 80 in the record length entry field.

3. Browse the object records as you would a F 80 data set.

The hex display mode (enabled by the HEX ON primary command) allows the value

of each byte to be displayed.

Analysis phase

Compiler

IPA compile
optimization phase

Code
generation phase

Source file(s)
Listing sections
Messages

Messages

Listing sections
Messages
Final object code

Invocation parameters
(IPA (OBJECTONLY),
other suboptions may be
specified)

Figure 22. Compiling with IPA(OBJECTONLY)

Chapter 7. Compiling 309

Identifying object file variations

Browse the object file and scroll to the end of the file. The last few records contain

a character string, which lists the options used during compilation.

In addition, it is possible to identify the compiler mode used to generate the object

file, as follows:

1. NOIPA

Option text has ″NOIPA″.

2. IPA(NOOBJECT)

Option text has ″IPA (NOLINK, NOOBJ)″. Towards the beginning of the file, an

ESD record will contain the symbol ″@@IPAOBJ″. A second ESD record will

contain the symbol ″@@DOIPA″.

3. IPA(OBJECT)

Option text has ″IPA (NOLINK, OBJ)″. Towards the beginning of the file, an ESD

record will contain the symbol ″@@IPAOBJ″. The IPA information will be separated

from the ″real″ code and data by a delimiter END record with the comment ″of

IPA object″. After the real code and data, there will be a second delimiter END

record with the comment ″of object″.

4. IPA(OBJONLY)

Option text has ″IPA (OBJONLY)″.

Using feature test macros

The compiler predefines feature test macros when certain features are available.

For example, the _LONG_LONG macro is predefined if the compiler supports the long

long data type. (Please refer to z/OS XL C/C++ Language Reference for a list of

the feature macros).

Using include files

The #include preprocessor directive allows you to retrieve source statements from

secondary input files and incorporate them into your C/C++ program.

z/OS XL C/C++ Language Reference describes the #include directive. Its syntax is:

�� #include < filename >

//

″

filename

″

//

 ��

The angle brackets specify system include files, and double quotation marks specify

user include files.

When you use the #include directive, you must be aware of the following:

v The library search sequence, the search order that XL C/C++ uses to locate the

file. See “Search sequences for include files” on page 318 for more information

on the library search sequence.

v The file-naming conversions that the XL C/C++ compiler performs.

v The area of the input record that contains sequence numbers when you are

including files with different record formats. See z/OS XL C/C++ Language

Reference for more information on #pragma sequence.

310 z/OS V1R7.0 XL C/C++ User’s Guide

Specifying include file names

You can use the SEARCH and LSEARCH compiler options to specify search paths for

system include files and user include files. For more information on these options,

see “LSEARCH | NOLSEARCH” on page 145 and “SEARCH | NOSEARCH” on

page 176.

You can specify filename of the #include directive in the following format:

��

#include

//

�

�

�

 / .

path

qualifier

.

qualifier

’

(

member

)

’

DD:ddname

(

member

)

��

The leading double slashes (//) not followed by a slash (in the first character of

filename) indicate that the file is to be treated as a non-HFS file, hereafter called a

data set.

Note:

1. filename immediately follows the double slashes (//) without spaces.

2. Absolute data set names are specified by putting single quotation marks

(’) around the name. Refer to the above syntax diagram for this

specification.

3. Absolute HFS file names are specified by putting a leading slash (/) as

the first character in the file name.

4. ddnames are always considered absolute.

Forming file names

Refer to “Determining whether the file name is in absolute form” on page 315 for

information on absolute file names. When the compiler performs a library search, it

treats filename as either an HFS file name or a data set name. This depends on

whether the library being searched is HFS or MVS. If the compiler treats filename

as an HFS file name, it does not perform any conversions on it. If it treats filename

as a data set name (DSN), it performs the following conversion:

v For the first DSN format:

��

�

�

 / .

path

qualifier

��

The compiler:

1. Uppercases qualifier and path

2. Truncates each qualifier and path to 8 characters

3. Converts the underscore character (which is invalid for a DSN) to the ’@’

character (hex 7c)

v For the second DSN format:

Chapter 7. Compiling 311

��

�

 .

’

qualifier

’

(

member

)

��

The compiler:

1. Uppercases the qualifier and member

2. Converts the underscore character (which is invalid for a DSN) to the ’@’

character (hex 7c)

v For the third DSN format:

�� DD:ddname

(

member

)
 ��

The compiler:

1. Uppercases the DD:, ddname, and member

2. Converts the underscore character (which is invalid for a DSN) to the ’@’

character (hex 7c)

Forming data set names with LSEARCH | SEARCH options

When the filename specified in the #include directive is not in absolute form, the

compiler combines it with different types of libraries to form complete data set

specifications. These libraries may be specified by the LSEARCH or SEARCH compiler

options. When the LSEARCH or SEARCH option indicates a data set then depending on

whether it is a ddname, sequential data set, or PDS, different parts of filename are

used to form the ddname or data set name.

Forming DDname

Example: The leftmost qualifier of the filename in the #include directive is used

when the filename is to be a ddname:

Invocation:

SEARCH(DD:SYSLIB)

Include directive:

#include "sys/afile.g.h"

Resulting ddname:

DD:SYSLIB(AFILE)

In the above example, if your header file includes an underscore (_), for example,

#include "sys/afile_1.g.h", the resulting ddname is DD:SYSLIB(AFILE@1).

Forming sequential data set names

Example: You specify libraries in the SEARCH | LSEARCH options as sequential

data sets by using a trailing period followed by an asterisk (.*), or by a single

asterisk (*). See “Specifying sequential data sets and PDSs” on page 148 to

understand how to specify sequential data sets. All qualifiers and periods (.) in

filename are used for sequential data set specification.

Invocation:

SEARCH(AA.*)

Include directive:

#include "sys/afile.g.h"

Resulting fully qualified data set name:

userid.AA.AFILE.G.H

312 z/OS V1R7.0 XL C/C++ User’s Guide

Forming PDS name with LSEARCH | SEARCH + specification

Example: To specify libraries in the SEARCH and LSEARCH options as PDSs, use a

period that is followed by a plus sign (.+), or a single plus sign (+). See “Specifying

sequential data sets and PDSs” on page 148 to understand how PDSs are

specified. When this is the case then all the paths, slashes (replaced by periods),

and any qualifiers following the leftmost qualifier of the filename are appended to

form the data set name. The leftmost qualifier is then used as the member name.

Invocation:

SEARCH(’AA.+’)

Include directive:

#include "sys/afile.g.h"

Resulting fully qualified data set name:

AA.SYS.G.H(AFILE)

and

Invocation:

SEARCH(’AA.+’)

Include directive:

#include "sys/bfile"

Resulting fully qualified data set name:

AA.SYS(BFILE)

Forming PDS with LSEARCH | SEARCH Options with No +

Example: When the LSEARCH or SEARCH option specifies a library but it neither ends

with an asterisk (*) nor a plus sign (+), it is treated as a PDS. The leftmost qualifier

of the filename in the #include directive is used as the member name.

Invocation:

SEARCH(’AA’)

Include directive:

#include "sys/afile.g.h"

Resulting fully qualified data set name:

AA(AFILE)

Examples of forming data set names

The following table gives the original format of the filename and the resulting

converted name when you specify the NOOE option:

 Table 31. Include filename conversions when NOOE is specified

#include Directive Converted Name

Example 1. This filename is absolute because single quotation marks (’) are used. It is a

sequential data set. A library search is not performed. LSEARCH is ignored.

#include "’USER1.SRC.MYINCS’" USER1.SRC.MYINCS

Example 2. This filename is absolute because single quotation marks (’) are used. The

compiler attempts to open data set COMIC/BOOK.OLDIES.K and fails because it is not a

valid data set name. A library search is not performed when filename is in absolute form.

SEARCH is ignored.

#include <’COMIC/BOOK.OLDIES.K’> COMIC/BOOK.OLDIES.K

Example 3.

Chapter 7. Compiling 313

Table 31. Include filename conversions when NOOE is specified (continued)

#include Directive Converted Name

SEARCH(LIB1.*,LIB2.+,LIB3) #include

"sys/abc/xx"

v first opt in SEARCH SEQUENTIAL FILE =

userid.LIB1.XX

v second opt in SEARCH PDS =

userid.LIB2.SYS.ABC(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 4.

SEARCH(LIB1.*,LIB2.+,LIB3) #include

"Sys/ABC/xx.x"

v first opt in SEARCH SEQUENTIAL FILE =

userid.LIB1.XX.X

v second opt in SEARCH PDS =

userid.LIB2.SYS.ABC.X(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 5.

SEARCH(LIB1.*,LIB2.+,LIB3) #include

<sys/name_1>

v first opt in SEARCH SEQUENTIAL FILE =

userid.LIB1.NAME@1

v second opt in SEARCH PDS =

userid.SYS(NAME@1)

v third opt in SEARCH PDS =

userid.LIB3(NAME@1)

Example 6.

SEARCH(LIB1.*,LIB2.+,LIB3) #include

<Name2/App1.App2.H>

v first opt in SEARCH SEQUENTIAL FILE =

userid.LIB1.APP1.APP2.H

v second opt in SEARCH PDS =

userid.LIB2.NAME2.APP2.H(APP1)

v third opt in SEARCH PDS = userid.LIB3(APP1)

Example 7. The PDS member named YEAREND of the library associated with the ddname

PLANLIB is used. A library search is not performed when filename in the #include directive

is in absolute form (ddname is used). SEARCH is ignored.

#include <dd:planlib(YEAREND)> DD:PLANLIB(YEAREND)

Search sequence

The following diagram describes the compiler file searching sequence:

314 z/OS V1R7.0 XL C/C++ User’s Guide

�1� The compiler opens the file without library search when the file name that is

specified in #include is in absolute form. This also means that it bypasses

the rules for the SEARCH and LSEARCH compiler options, and for POSIX.2.

See Figure 24 on page 316 for more information on absolute file testing.

�2� When the file name is not in absolute form, the compiler evaluates each

option in SEARCH and LSEARCH to determine whether to treat the file as a

data set or an HFS file search. The LSEARCH/SEARCH opt testing here is

described in Figure 25 on page 317.

�3� When the #include file name is not absolute, and is preceded by exactly

two slashes (//), the compiler treats the file as a data set. It then bypasses

all HFS file options of the SEARCH and LSEARCH options in the search.

Determining whether the file name is in absolute form

The compiler determines if the file name that is specified in #include is in absolute

form as follows:

Ignore

SEARCH/LSEARCH

& POSIX.2 rules;

search file directly

Create

dataset

path

& search

Ignore

this search

opt

End of

SEARCH/

LSEARCH

processing

Create

HFS file

path

& search

#include

is absolute

filename

Start

Yes

Yes

Yes

Yes

No

No

No

No

This

of SEARCH/LSEARCH

is DS

opt
#include

preceded by

filename

II

More opt

1

2

3

Figure 23. Overview of include file searching

Chapter 7. Compiling 315

�1� The compiler first checks whether you specified OE.

�2� When you specify OE, if double slashes (//) do not precede filename, and

the file name starts with a slash (/), then filename is in absolute form and

the compiler opens the file directly as an HFS file. Otherwise, the file is not

an absolute file and each opt in the SEARCH or LSEARCH compiler option

determines if the file is treated as an HFS or data set in the search for the

include file.

�3� When OE is specified, if double slashes (//) precede filename, and the file

name starts with a slash (/), then filename is in absolute form and the

compiler opens the file directly as an HFS file. Otherwise, the file is a data

set, and more testing is done to see if the file is absolute.

�4� If filename is enclosed in single quotation marks (’), then it is an absolute

data set. The compiler directly opens the file and ignores the libraries that

are specified in the LSEARCH or SEARCH options. If there are any invalid

characters in filename, the compiler converts the invalid characters to at

signs (@, hex 7c).

�5� If you used the ddname format of the #include directive, the compiler uses

the file associated with the ddname and directly opens the file as a data

set. The libraries that are specified in the LSEARCH or SEARCH options are

ignored.

�6� If none of the above conditions are true then filename is not in absolute

format and each opt in the SEARCH or LSEARCH compiler option determines if

the file is an HFS or a data set and then searched for the include file.

OE
YesNo

No

No

No
No

No

No Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

filename

preceded
by //

filename

starts with
/

Start

dataset

dataset
but not

absolute

Absolute
dataset

filename

starts with
/

filename

enclosed by
single quotes

filename

enclosed by
single quotes

filename

starts with
DD:

filename

starts with
DD:

Absolute
HFS file

Not absolute
dataset

or HFS file

Absolute
HFS file

Figure 24. Testing if filename is in absolute form

316 z/OS V1R7.0 XL C/C++ User’s Guide

�7� If none of the above conditions are true, then filename is a data set, but it is

not in absolute form. Only opts in the SEARCH or LSEARCH compiler option

that are in data set format are used in the search for include file.

 For example:

 Options specified:

 OE

Include Directive:

 #include "apath/afile.h" NOT absolute, HFS/MVS (no starting slash)

 #include "/apath/afile.h" absolute HFS, (starts with 1 slash)

 #include "//apath/afile.h.c" NOT absolute, MVS (starts with 2 slashes)

 #include "a.b.c" NOT absolute, HFS/MVS (no starting slash)

 #include "///apath/afile.h" absolute HFS, (starts with 3 slashes)

 #include "DD:SYSLIB" NOT absolute, HFS/MVS (no starting slash)

 #include "//DD:SYSLIB" absolute, MVS (DD name)

 #include "a.b(c)" NOT absolute, HFS/MVS (no starting slash)

 #include "//a.b(c)" NOT absolute, OS/MVS (PDS member name)

Using SEARCH and LSEARCH

When the file name in the #include directive is not in absolute form, the opts in

SEARCH are used to find system include files and the opts in LSEARCH are used to find

user include files. Each opt is a library path and its format determines if it is an HFS

path or a data set path:

Note:

1. If opt is preceded by double slashes (//) and opt does not start with a

slash (/), then this path is a data set path.

2. If opt is preceded by double slashes (//) and opt starts with a slash (/),

then this path is an HFS path.

3. If opt is not preceded by double slashes (//) and opt starts with a slash

(/), then this path is an HFS path.

Yes

NoNoNo

No

Yes

Yes

Yes

For each in

SEARCH/LSEARCH

opt

HFS path

opt has

a /

opt

preceded

by //

opt

start with

/

OE

specified

data set

path

Figure 25. Determining if the SEARCH/LSEARCH opt is an HFS path

Chapter 7. Compiling 317

4. If opt is not preceded by double slashes (//), opt does not start with a

slash (/) and NOOE is specified then this path is a data set path.

For example:

 SEARCH(./PATH) is an explicit HFS path

OE SEARCH(PATH) is treated as an HFS path

NOOE SEARCH(PATH) is treated as a non-HFS path

NOOE SEARCH(//PATH) is an explicit non-HFS path

Example: When combining the library with the file name specified on the #include

directive, it is the form of the library that determines how the include file name is to

be transformed:

Options specified:

 NOOE LSEARCH(Z, /u/myincs, (*.h)=(LIB(mac1)))

Include Directive:

 #include "apath/afile.h"

Resulting fully qualified include names:

1. userid.Z(AFILE) (Z is non-HFS so filename is treated as non-HFS)

2. /u/myincs/apath/afile.h (/u/myincs is HFS so filename is treated as HFS)

3. userid.MAC1.H(AFILE) (afile.h matches *.h)

Example: An HFS path specified on a SEARCH or LSEARCH option only combines with

the file name specified on an #include directive if the file name is not explicitly

stated as being MVS only. A file name is explicitly stated as being MVS only if two

slashes (//) precede it, and filename does not start with a slash (/).

Options specified:

 OE LSEARCH(/u/myincs, q, //w)

Include Directive:

 #include "//file.h"

Resulting fully qualified include names

 userid.W(FILE)

/u/myincs and q would not be combined with //file.h because both paths are

HFS and //file.h is explicitly MVS.

The order in which options on the LSEARCH or SEARCH option are specified is the

order that is searched.

See “LSEARCH | NOLSEARCH” on page 145 and “SEARCH | NOSEARCH” on

page 176 for more information on these compiler options.

Search sequences for include files

The status of the OE option affects the search sequence.

318 z/OS V1R7.0 XL C/C++ User’s Guide

With the NOOE option

Search sequences for include files are used when the include file is not in absolute

form. “Determining whether the file name is in absolute form” on page 315

describes the absolute form of include files.

If the include filename is not absolute, the compiler performs the library search as

follows:

v For system include files:

1. The search order as specified on the SEARCH option, if any

2. The libraries specified on the SYSLIB DD statement

v For user include files:

1. The directory of the file that contains the #include directive

2. When the containing file is HFS, the search order as specified on the LSEARCH

option, if any

3. The libraries specified on the USERLIB DD statement

4. The search order for system include files

Example: The example below shows an excerpt from a JCL stream, that compiles

a C program for a user whose user prefix is JONES:

//COMPILE EXEC PROC=EDCC,

// CPARM=’SEARCH(’’’’BB.D’’’’,BB.F),LSEARCH(CC.X)’

//SYSLIB DD DSN=JONES.ABC.A,DISP=SHR

// DD DSN=ABC.B,DISP=SHR

//USERLIB DD DSN=JONES.XYZ.A,DISP=SHR

// DD DSN=XYZ.B,DISP=SHR

//SYSIN DD DSN=JONES.ABC.C(D),DISP=SHR

 .

 .

 .

The search sequence that results from the preceding JCL statements is:

 Table 32. Order of search for include files

Order of Search For System Include Files For User Include Files

First BB.D JONES.CC.X

Second JONES.BB.F JONES.XYZ.A

Third JONES.ABC.A XYZ.B

Fourth ABC.B BB.D

Fifth JONES.BB.F

Sixth JONES.ABC.A

Seventh ABC.B

With the OE option

Search sequences for include files are used when the include file is not in absolute

form. “Determining whether the file name is in absolute form” on page 315

describes the absolute form of an include file.

If the include filename is not absolute, the compiler performs the library search as

follows:

v For system include files:

1. The search order as specified on the SEARCH option, if any

2. The libraries specified on the SYSLIB DD statement

Chapter 7. Compiling 319

v For user include files:

1. If you specified OE with a file name and the file being processed is an HFS

file and a main source file, the directory of the file containing the #include

directive

2. The search order as specified on the LSEARCH option, if any

3. The libraries specified on the USERLIB DD statement

4. The search order for system include files

Example: The following shows an example where you are given a file

/r/you/cproc.c that contains the following #include directives:

#include "/u/usr/header1.h"

#include "//aa/bb/header2.x"

#include "common/header3.h"

#include <header4.h>

And the following options:

OE(/u/crossi/myincs/cproc)

SEARCH(//V.+, /new/inc1, /new/inc2)

LSEARCH(//(*.x)=(lib(AAA)), /c/c1, /c/c2)

The include files would be searched as follows:

 Table 33. Examples of search order for z/OS UNIX System Services

#include Directive Filename Files in Search Order

Example 1. This is an absolute pathname, so no search is performed.

#include "/u/usr/header1.h" 1. /u/usr/header.h

Example 2. This is a data set (starts with //) and is treated as such.

″//aa/bb/header2.x″ 1. userid.AAA(HEADER2)

2. DD:USERLIB(HEADER2)

3. userid.V.AA.BB.X(HEADER2)

4. DD:SYSLIB(HEADER2)

Example 3. This is a system include file with a relative path name. The search starts with

the directory of the parent file or the name specified on the OE option if the parent is the

main source file (in this case the parent file is the main source file so the OE suboption is

chosen i.e. /u/crossi/myincs).

″common/header3.h″ 1. /u/crossi/myincs/common/header3.h

2. /c/c1/common/header3.h

3. /c/c2/common/header3.h

4. DD:USERLIB(HEADER3)

5. userid.V.COMMON.H(HEADER3)

6. /new/inc1/common/header3.h

7. /new/inc2/common/header3.h

8. DD:SYSLIB(HEADER3)

Example 4. This is a system include file with a relative path name. The search follows the

order of suboptions of the SEARCH option.

<header4.h> 1. userid.V.H(HEADER4)

2. /new/inc1/common/header4.h

3. /new/inc2/common/header4.h

4. DD:SYSLIB(HEADER4)

Compiling z/OS XL C source code using the SEARCH option

The following data sets contain the commonly-used system header files for C:

3

v CEE.SCEEH.H (standard header files)

v CEE.SCEEH.SYS.H (standard system header files)

320 z/OS V1R7.0 XL C/C++ User’s Guide

v CEE.SCEEH.ARPA.H (standard internet operations headers)

v CEE.SCEEH.NET.H (standard network interface headers)

v CEE.SCEEH.NETINET.H (standard internet protocol headers)

To specify that the compiler search these data sets, code the option:

 SEARCH(’CEE.SCEEH.+’)

These header files are also in the HFS in the directory /usr/include. To specify

that the compiler search this directory, code the option:

 SEARCH(/usr/include/)

This option is the default for the c89 utility.

IBM supplies this option as input to the Installation and Customization of the

compiler. Your system programmer can modify it as required for your installation.

The cataloged procedures, REXX EXECs, and panels that are supplied by IBM for

C specify the following data sets for the SYSLIB ddname by default:

v CEE.SCEEH.H (standard header files)

v CEE.SCEEH.SYS.H (standard system header files)

This is supplied for compatibility with previous releases, and will be overridden if

SEARCH() is used as described above.

Compiling z/OS XL C++ source code using the SEARCH option

The following data sets contain the commonly-used system header files for z/OS XL

C++:

3

v CEE.SCEEH (standard C++ header files)

v CEE.SCEEH.H (standard header files)

v CEE.SCEEH.SYS.H (standard system header files)

v CEE.SCEEH.ARPA.H (standard internet operations headers)

v CEE.SCEEH.NET.H (standard network interface headers)

v CEE.SCEEH.NETINET.H (standard internet protocol headers)

v CEE.SCEEH.T (standard template definitions)

v CBC.SCLBH.H (class library header files)

To specify that the compiler search these data sets, code the option:

 SEARCH(’CEE.SCEEH.+’,’CBC.SCLBH.+’)

These header files are also in the HFS in the directories /usr/include and

/usr/lpp/cbclib/include. To specify that the compiler search these directories,

code the option:

 SEARCH(/usr/include/,/usr/lpp/cbclib/include/)

This option is the default for the cxx z/OS UNIX System Services command.

IBM supplies this option as input to the installation and customization of the

compiler. Your system programmer can modify it as required for your installation.

3. The high-level qualifier may be different at your installation.

Chapter 7. Compiling 321

322 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 8. Using the IPA Link step with z/OS XL C/C++

programs

Traditional optimizers only have the ability to optimize within a function

(intra-procedural optimization) or at most within a compile unit (a single source file

and its corresponding header files). This is because traditional optimizers are only

given one compile unit at a time.

Interprocedural optimizations are a class of optimizations that operate across

function boundaries. IBM’s Interprocedural Analysis (IPA) optimizer is designed to

optimize complete modules at a time. This allows for increased optimization. By

seeing more of the application at once, IPA is able to find more opportunities for

optimization and this can result in much faster code.

In order to get a global module view of the application, IPA uses the following two

pass process:

v The first pass is called an IPA compile. During this pass, IPA collects all of the

relevant information about the compile unit and stores it in the object file. This

collected information is referred to as an IPA Object. The user can optionally

request that both an IPA object and a traditional object are created from an IPA

compile.

v The second pass is called the IPA Link. During this step, IPA acts like a

traditional linker, and all object files, object libraries and side decks are fed to IPA

so that it can completely optimize the module. The IPA Link step involves two

separate optimizers. The IPA optimizer is run first and focuses optimizations

across the module. IPA then breaks down the module into logical chunks called

partitions and invokes the traditional optimizer with these partitions.

Whenever a compiler attempts to perform more optimizations, or looks at a larger

portion of an application, more time, and more memory are required. Since IPA

does both more optimizations than either OPT(2) or OPT(3) and has a global view of

the module, the compile time and memory used by the IPA compile/link process is

more than that used by a traditional OPT(2) or OPT(3) compilation.

The first two sections of this chapter provide several examples on how to create

modules (with a main) or DLLs using IPA. The third section discusses the

Profile-Directed Feedback option that can be used with IPA to get even more

performance benefits. The fourth section gives some reference information on

IPA-specific subjects, like the IPA control file. The final section of this chapter

provides some hints and tips for troubleshooting situations that come up when

compiling and debugging IPA applications. All example source can be found in the

sample data set SCCNSAM. The names of the sample data set members are given in

each example below.

Invoking IPA using the c89 and xlc utilities

You can invoke the IPA Compile step, the IPA link step, or both. The step that c89

invokes depends upon the invocation parameters and type of files you specify. You

must specify the I phase indicator along with the W option of the c89 utility. You can

specify IPA suboptions as keywords separated by commas.

© Copyright IBM Corp. 1996, 2005 323

|

If you invoke the c89 utility with at least one source file and the -c option and the

-WI option, c89 automatically specifies the IPA(NOLINK) option and invokes the IPA

Compile step. For example, the following command invokes the IPA Compile step

for the source file hello.c:

c89 -c -WI hello.c

The syntax when using the xlc utility is:

c89 -c -qipa hello.c

If you invoke the c89 utility with the -WI option and with at least one object file, do

not specify the -c option and do not specify any source files. c89 automatically

specifies IPA(LINK) and automatically invokes the IPA Link step and the binder. For

example, the following command invokes the IPA Link step and the binder, to create

a program called hello:

c89 -o hello -WI hello.o

The syntax when using the xlc utility is:

c89 -o hello -qipa hello.o

If you invoke c89 with the -WI option and with at least one source file for

compilation and any number of object files, and do not specify the -c c89 compiler

option, c89 automatically invokes the IPA Compile step once for each compilation

unit and the IPA Link step once for the entire program. It then invokes the binder.

For example, the following command invokes the IPA Compile step, the IPA Link

step, and the binder to create a program called foo:

c89 -o foo -WI,object foo.c

The syntax when using the xlc utility is:

c89 -o foo -qipa=object foo.c

When linking an application built with IPA(PDF1), the user must specify -Wl,PDF1 to

ensure the application links correctly.

Specifying options

When using c89, you can pass options to IPA, as follows:

v If you specify -WI, followed by IPA suboptions, c89 passes those suboptions to

both the IPA Compile step and the IPA Link step (provided the IPA Link step is

invoked)

v If you specify -Wc, followed by compiler options, c89 passes those options only to

the IPA Compile step

v If you specify -Wl,I, followed by compiler options, c89 passes those options only

to the IPA Link step

The following is an example of passing options using the c89 utility:

c89 -O2 -WI,noobject -Wc,source -Wl,I,"maxmem(2048)" file.c

If you specify the previous command, you pass the IPA(NOOBJECT) and the SOURCE

option to the IPA Compile step, and the MAXMEM(2048) option to both the IPA

Compile and the IPA Link step.

The syntax when using the xlc utility is:

c89 -O2 -qipa=noobject -qsource -qmaxmem=2048 hello.c

324 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|
|

|

|

Other considerations

The c89 utility automatically generates all INCLUDE and LIBRARY IPA Link control

statements.

IPA under c89 supports the following types of files:

v MVS PDS members

v Sequential data sets

v Hierarchical File System (HFS) files

v z/OS UNIX archive (.a) files

Compiling under z/OS batch

To compile your C/C++ source program under batch, you can either use the

cataloged procedures that IBM supplies, or write your own JCL statements.

Using cataloged procedures for IPA Link

You can use one of the following IBM-supplied cataloged procedures.

EDCI Run the IPA Link step for a non-XPLINK 31-bit C program

EDCXI Run the IPA Link step for a 31-bit or 64-bit XPLINK C program

CBCI Run the IPA Link step for a 31-bit non-XPLINK C++ program

CBCXI Run the IPA Link step for a 31-bit or 64-bit XPLINK C++ program

Creating a module with IPA

This section describes creating a module that contains the function main.

Example 1. all C parts

The simplest case for IPA is an application that does not import any information

from a DLL, and that is all in a single language that supports IPA. The following

example covers this case. The sample programs mentioned here can be found in

the sample data set with the member names given here.

The first example shows a simple application that is made up of three source files.

The target is to compile it with IPA(Level(2)) and OPT(2). We also want a full inline

report and pseudo-assembly listing. This is the only example where the full source

will be shown in this chapter.

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 325

|

|

|
|

|

|

||

||

||

||

CCNGHI1.C

CCNGHI2.C

hello1.c:

 int seen_main;

 int seen_unused3;

 char *string1 = "Hello";

 char *stringU1 = "I’m not going to use this one!";

 int func2(char *);

 int main (void) {

 seen_main++;

 func2(string1);

 return 0;

 }

 float unused3(int a) {

 seen_unused3++;

 return (float) a+seen_unused3;

 }

Figure 26. hello1.c example source code

hello2.c:

 #include <stdio.h>

 int seen_func2;

 int seen_unused2;

 char *string2 = "world!";

 int func3 (char *);

 int func2(char * s1) {

 seen_func2++;

 printf("%s ",s1);

 return func3(string2);

 }

 double unused2(float x) {

 seen_unused2++;

 return x+ seen_unused2;

 }

Figure 27. hello2.c example source code

326 z/OS V1R7.0 XL C/C++ User’s Guide

CCNGHI3.C

Building example 1. under UNIX System Services

For this example, the following table shows the mapping of SCCNSAM data set

members to given file names:

 SCCNSAM member name Name used in this example

CCNGHI1 hello1.c

CCNGHI2 hello2.c

CCNGHI3 hello3.c

The following commands can be used to create this module under UNIX System

Services:

c89 -c -2 -WI,NOOBJECT,LIST hello1.c hello2.c hello3.c

c89 -2 -WI,MAP,LEVEL\(2\) -Wl,I,INLRPT,LIST\(hello.lst\) -o hello hello1.o

 hello2.o hello3.o

The first c89 command performs an IPA compile on hello1.c, hello2.c, and

hello3.c. The options after -WI are IPA suboptions, which are described below (for

further information on these suboptions, see “IPA | NOIPA” on page 117 in the

Chapter 4, “Compiler Options,” on page 43 chapter in this document):

NOOBJECT

This compile performs an IPA compile (since -c was specified). This option

specifies that only IPA objects should be generated by the IPA compile step.

The optional traditional object should not be generated. The NOOBJECT

option should be used unless the traditional object is needed for debugging

purposes or the object file may be passed in a non-IPA link. NOOBJECT

significantly shortens the overall compile time.

LIST This option tells IPA to save enough information that a listing with source

file and line number information can be generated during the IPA(LINK)

phase.

 hello3.c:

 #include <stdio.h>

 int seen_func3;

 int seen_unused1;

 int unused1(int x) {

 seen_unused1++;

 return x+ seen_unused1;

 }

 int func3(char * string2) {

 seen_func3++;

 printf("%s\n",string2);

 return seen_func3;

 }

Figure 28. hello3.c example source code

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 327

|

Note: -2 was specified on the IPA compile step. While it is not strictly

necessary, it does allow for faster code to be generated in some

cases.

 The second c89 command does the IPA Link processing. Since -WI and Wl,I were

specified with .o files, c89 automatically turns on the LINK suboption of IPA.

IPA(LINK), or -WI,LINK, does not need to be specified when compiling with c89.

The -WI suboptions within this command are those that are valid for IPA(LINK):

MAP Generates some extra breakdown that shows where variables and data

came from

LEVEL(2)

Specifies the maximum level of IPA optimization is to be used

 The -Wl,I option keyword specifies that these are compiler options that are to be

passed to the IPA(LINK) step. Chapter 4, “Compiler Options,” on page 43

documents the compiler options and whether they are valid during the IPA Link

step. INLRPT triggers an inline report showing what inlining was done by IPA. LIST

triggers a pseudo assembly listing for each partition.

Notes:

1. In this case, the name of the output file for the listing was provided as a

suboption.

2. Even with IPA, the -2 or -3 option should be used to specify the opt level that

the traditional optimizer should be called with.

This example shows the advantage of using discrete listing options (MAP, LIST,

INLRPT) over using -V. -V may give you so much information that it creates a huge

file. By using the individual options, you get more control and (with LIST) the ability

to route the listing to the location of your choice without redirecting the output of

your c89 command.

Building example 1. in batch

For this example the following table shows the mapping of SCCNSAM data set

members to given file names:

 SCCNSAM member name Name used in this example

CCNGHI1 IPA.SOURCE(HELLO1)

CCNGHI2 IPA.SOURCE(HELLO2)

CCNGHI3 IPA.SOURCE(HELLO3)

The following JCL can be used to create an object deck that can be linked to create

the module (the link JCL is omitted for brevity):

/USERID1A JOB (127A,0329),’MEM’,

// MSGLEVEL=(2,0),MSGCLASS=S,CLASS=A,

// NOTIFY=USERID1,REGION=1024M

//PROC JCLLIB ORDER=(CBC.SCCNPRC)

//*---

//* IPA Compile Step for hello1.c

//*---

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO1)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLO1),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,LIST) RENT LONG OPT(2)

328 z/OS V1R7.0 XL C/C++ User’s Guide

/*

//*---

//* IPA Compile Step for hello2.c

//*---

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO2)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLO2),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,LIST) RENT LONG OPT(2)

/*

//*---

//* IPA Compile Step for hello3.c

//*---

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO3)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLO3),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,LIST) RENT LONG OPT(2)

/*

//*---

//* IPA Link Step for the hello module

//*---

//C001F336 EXEC EDCI,

// OUTFILE=’USERID1.IPALINK.OBJECT(HELLO),DISP=SHR’,

// IPARM=’OPTFILE(DD:OPTIONS)’

//* The following line sets up an input file that just includes all

//* the IPA Compile Step object files.

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(HELLO1,HELLO2,HELLO3)

/>

//* The following line redirects the listing

//SYSCPRT DD DSN=USERID1.IPA.LISTING(HELLO),DISP=SHR

//* These are the options used

//OPTIONS DD DATA,DLM=’/>’

 IPA(LINK,MAP,LEVEL(2)) OPT(2) INLRPT LIST RENT LONGNAME

/>

//* The following line gives the object library

//OBJECT DD DSN=USERID1.IPA.OBJECT,DISP=SHR

The options used are the same as those given in the UNIX System Services

example above with the exception that IPA(LINK) should be explicitly specified, and

RENT, and LONGNAME are not the default for C in batch so they also need to be

specified. This sample JCL was created using the standard cataloged procedures

shipped with the z/OS XL C/C++ compiler.

The generated file hello.lst is as follows:

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 329

5694-A01 V1.7 z/OS XL C/C++ IPA DD:SYSIN 01/14/2005 11:28:51 Page 1

 * * * * * P R O L O G * * * * *

 Compile Time Library : 41070000

 Command options:

 Primary input name. : DD:SYSIN

 Compiler options. : *IPA(LINK,MAP,NOREFMAP,LEVEL(2),DUP,ER,NONCAL,NOUPCASE,NOPDF1,NOPDF2,NOPDFNAME,NOCONTROL)

 : *NOGONUMBER *NOALIAS *TERMINAL *LIST *NOXREF *NOATTR *NOOFFSET

 : *MEMORY *NOCSECT *LIBANSI *FLAG(I)

 : *NOTEST(NOSYM,NOBLOCK,NOLINE,NOPATH,HOOK) *OPTIMIZE(2)

 : *INLINE(AUTO,REPORT,1000,8000) *OPTFILE(DD:OPTIONS) *NOSERVICE *NOOE

 : *NOLOCALE *HALT(16) *NOGOFF

 * * * * * E N D O F P R O L O G * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA DD:SYSIN 01/14/2005 11:28:51 Page 2

 * * * * * O B J E C T F I L E M A P * * * * *

*ORIGIN IPA FILE ID FILE NAME

 P 1 //DD:SYSIN

 PI Y 2 USERID1.IPA.OBJECT(HELLO1)

 PI Y 3 USERID1.IPA.OBJECT(HELLO2)

 PI Y 4 USERID1.IPA.OBJECT(HELLO3)

 L 5 TSCTEST.CEEZ170.SCEELKED(PRINTF)

 L 6 TSCTEST.CEEZ170.SCEELKED(CEESG003)

ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE IN=internal

 A=automatic call U=UPCASE automatic call R=RENAME card L=C Library

 * * * * * E N D O F O B J E C T F I L E M A P * * * * *

Figure 29. Example of an IPA listing (Part 1 of 8)

330 z/OS V1R7.0 XL C/C++ User’s Guide

5694-A01 V1.7 z/OS XL C/C++ IPA DD:SYSIN 01/14/2005 11:28:51 Page 3

 * * * * * C O M P I L E R O P T I O N S M A P * * * * *

 SOURCE FILE ID COMPILE OPTIONS

 1 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *RENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 2 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *RENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 3 *AGGRCOPY(NOOVERLAP) *NOALIAS *ANSIALIAS *ARCH(5) *ARGPARSE

 *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS *NODLL(NOCALLBACKANY) *ENV(MVS)

 *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGONUMBER *NOIGNERRNO *ILP32 *NOINITAUTO

 *IPA(NOLINK,NOOBJECT,COMPRESS) *NOLIBANSI *NOLIST *NOLOCALE *LONGNAME

 *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST) *REDIR *RENT *NOROCONST *SPILL(128)

 *NOSTART *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5) *NOXPLINK *NOXREF

 * * * * * E N D O F C O M P I L E R O P T I O N S M A P * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA DD:SYSIN 01/14/2005 11:28:51 Page 4

 * * * * * I N L I N E R E P O R T * * * * *

 IPA Inline Report (Summary)

 Reason: P : #pragma noinline was specified for this routine

 F : #pragma inline was specified for this routine

 A : Automatic inlining

 C : Partition conflict

 N : Not IPA Object

 - : No reason

 Action: I : Routine is inlined at least once

 L : Routine is initially too large to be inlined

 T : Routine expands too large to be inlined

 C : Candidate for inlining but not inlined

 N : No direct calls to routine are found in file (no action)

 U : Some calls not inlined due to recursion or parameter mismatch

 - : No action

 Status: D : Internal routine is discarded

 R : A direct call remains to internal routine (cannot discard)

 A : Routine has its address taken (cannot discard)

 E : External routine (cannot discard)

 - : Status unchanged

 Calls/I : Number of calls to defined routines / Number inline

 Called/I : Number of times called / Number of times inlined

 Reason Action Status Size (init) Calls/I Called/I Name

 A I D 0 (40) 2/1 1/1 func2

 A I D 0 (32) 1/0 1/1 func3

 A N - 38 (28) 1/1 0 main

 N - E 0 0 2/0 PRINTF

 Mode = AUTO Inlining Threshold = 1000 Expansion Limit = 8000

Figure 29. Example of an IPA listing (Part 2 of 8)

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 331

5694-A01 V1.7 z/OS XL C/C++ IPA DD:SYSIN 01/14/2005 11:28:51 Page 5

 IPA Inline Report (Call Structure)

 Defined Subprogram : main

 Calls To(1,1) : func2(1,1)

 Called From : 0

 Defined Subprogram : func2

 Calls To(2,1) : func3(1,1)

 PRINTF(1,0)

 Called From(1,1) : main(1,1)

 Defined Subprogram : PRINTF

 Calls To : 0

 Called From(2,0) : func3(1,0)

 func2(1,0)

 Defined Subprogram : func3

 Calls To(1,0) : PRINTF(1,0)

 Called From(1,1) : func2(1,1)

 * * * * * E N D O F I N L I N E R E P O R T * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 01/14/2005 11:28:51 Page 6

 * * * * * P A R T I T I O N M A P * * * * *

PARTITION 0

PARTITION CSECT NAMES:

 Code: none

 Static: none

 Test: none

PARTITION DESCRIPTION:

 Initialization data partition

COMPILER OPTIONS FOR PARTITION 0:

 *AGGRCOPY(NOOVERLAP) *NOALIAS *ARCH(5) *ARGPARSE *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS

 *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGOFF *NOGONUMBER *NOIGNERRNO *ILP32

 *NOINITAUTO *IPA(LINK) *LIBANSI *LIST *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST)

 *REDIR *RENT *NOROCONST *SPILL(128) *START *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5)

 *NOXPLINK *XREF

SYMBOLS IN PARTITION 0:

 *TYPE FILE ID SYMBOL

 D 1 string1

 D 2 string2

 D 1 seen_main

 D 1 seen_unused3

 D 2 seen_func2

 D 2 seen_unused2

 D 3 seen_func3

 D 3 seen_unused1

 TYPE: F=function D=data

SOURCE FILES FOR PARTITION 0:

 *ORIGIN FILE ID SOURCE FILE NAME

 P 1 //’USERID1.IPA.SOURCE(HELLO1)’

 P 2 //’USERID1.IPA.SOURCE(HELLO2)’

 P 3 //’USERID1.IPA.SOURCE(HELLO3)’

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 29. Example of an IPA listing (Part 3 of 8)

332 z/OS V1R7.0 XL C/C++ User’s Guide

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 01/14/2005 11:28:51 Page 7

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

000000 F2F0 F0F5 =C’2005’ Compiled Year

000004 F0F1 F1F4 =C’0114’ Compiled Date MMDD

000008 F1F1 F2F8 F4F3 =C’112843’ Compiled Time HHMMSS

00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

 Constant Area

000018 C8859393 96000000 A6969993 845A00 |Hello...world!. |

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 01/14/2005 11:28:51 Page 8

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 0 01/14/2005 11:28:51 Page 9

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 TYPE ID ADDR LENGTH NAME

 SD 1 000000 000028 @STATICP

 PR 2 000000 000004 string1

 PR 3 000000 000004 string2

 PR 4 000000 000004 seen_main

 PR 5 000000 000004 seen_unused3

 PR 6 000000 000004 seen_func2

 PR 7 000000 000004 seen_unused2

 PR 8 000000 000004 seen_func3

 PR 9 000000 000004 seen_unused1

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 10

 * * * * * P A R T I T I O N M A P * * * * *

PARTITION 1 OF 1

PARTITION SIZE:

 Actual: 3800

 Limit: 1572864

PARTITION CSECT NAMES:

 Code: none

 Static: none

 Test: none

PARTITION DESCRIPTION:

 Primary partition

COMPILER OPTIONS FOR PARTITION 1:

 *AGGRCOPY(NOOVERLAP) *NOALIAS *ARCH(5) *ARGPARSE *CHARSET(BIAS=EBCDIC,LIB=EBCDIC) *NOCOMPACT *NOCOMPRESS

 *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,AFP) *NOGOFF *NOGONUMBER *NOIGNERRNO *ILP32

 *NOINITAUTO *IPA(LINK) *LIBANSI *LIST *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(2) *PLIST(HOST)

 *REDIR *RENT *NOROCONST *SPILL(128) *START *STRICT *NOSTRICT_INDUCTION *NOTEST *TUNE(5)

 *NOXPLINK *XREF

SYMBOLS IN PARTITION 1:

 *TYPE FILE ID SYMBOL

 F 1 main

 TYPE: F=function D=data

SOURCE FILES FOR PARTITION 1:

 *ORIGIN FILE ID SOURCE FILE NAME

 P 1 //’USERID1.IPA.SOURCE(HELLO1)’

 P 2 //’USERID1.IPA.SOURCE(HELLO2)’

 P 3 //’USERID1.IPA.SOURCE(HELLO3)’

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 29. Example of an IPA listing (Part 4 of 8)

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 333

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 11

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 Timestamp and Version Information

000000 F2F0 F0F5 =C’2005’ Compiled Year

000004 F0F1 F1F4 =C’0114’ Compiled Date MMDD

000008 F1F1 F2F8 F4F3 =C’112843’ Compiled Time HHMMSS

00000E F0F1 F0F7 F0F0 =C’010700’ Compiler Version

 Timestamp and Version End

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1: main 01/14/2005 11:28:51 Page 12

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

000018 000010 | 1 main DS 0D

000018 47F0 F022 000010 | 1 B 34(,r15)

00001C 01C3C5C5 CEE eyecatcher

000020 000000A8 DSA size

000024 000000B8 =A(PPA1-main)

000028 47F0 F001 000010 | 1 B 1(,r15)

00002C 58F0 C31C 000010 | 1 L r15,796(,r12)

000030 184E 000010 | 1 LR r4,r14

000032 05EF 000010 | 1 BALR r14,r15

000034 00000000 =F’0’

000038 07F3 000010 | 1 BR r3

00003A 90E4 D00C 000010 | 1 STM r14,r4,12(r13)

00003E 58E0 D04C 000010 | 1 L r14,76(,r13)

000042 4100 E0A8 000010 | 1 LA r0,168(,r14)

000046 5500 C314 000010 | 1 CL r0,788(,r12)

00004A 4130 F03A 000010 | 1 LA r3,58(,r15)

00004E 4720 F014 000010 | 1 BH 20(,r15)

000052 58F0 C280 000010 | 1 L r15,640(,r12)

000056 90F0 E048 000010 | 1 STM r15,r0,72(r14)

00005A 9210 E000 000010 | 1 MVI 0(r14),16

00005E 50D0 E004 000010 | 1 ST r13,4(,r14)

000062 18DE 000010 | 1 LR r13,r14

000064 End of Prolog

000064 5820 C1F4 000010 | 1 L r2,_CEECAA_(,r12,500)

000068 58E0 306A 000010 | 1 L r14,=Q(string1)(,r3,106)

00006C C040 0000 002E 000000 | LARL r4,F’46’

000072 58F0 306E 000013 | 2 + L r15,=V(printf)(,r3,110)

000076 4110 D098 000013 | 2 + LA r1,#MX_TEMP1(,r13,152)

00007A 580E 2000 000010 | 1 L r0,string1(r14,r2,0)

00007E 5040 D098 000013 | 2 + ST r4,#MX_TEMP1(,r13,152)

000082 5000 D09C 000013 | 2 + ST r0,#MX_TEMP1(,r13,156)

000086 05EF 000013 | 2 + BALR r14,r15

000088 58E0 3072 000013 | 2 + L r14,=Q(string2)(,r3,114)

00008C 4100 4004 000017 | 3 + LA r0,+CONSTANT_AREA(,r4,4)

000090 58F0 306E 000017 | 3 + L r15,=V(printf)(,r3,110)

000094 4110 D098 000017 | 3 + LA r1,#MX_TEMP1(,r13,152)

000098 58EE 2000 000013 | 2 + L r14,string2(r14,r2,0)

00009C 5000 D098 000017 | 3 + ST r0,#MX_TEMP1(,r13,152)

0000A0 50E0 D09C 000017 | 3 + ST r14,#MX_TEMP1(,r13,156)

0000A4 05EF 000017 | 3 + BALR r14,r15

0000A6 41F0 0000 000015 | 1 LA r15,0

0000AA 000015 | 1 @1L3 DS 0H

0000AA Start of Epilog

0000AA 180D 000016 | 1 LR r0,r13

0000AC 58D0 D004 000016 | 1 L r13,4(,r13)

0000B0 58E0 D00C 000016 | 1 L r14,12(,r13)

0000B4 9824 D01C 000016 | 1 LM r2,r4,28(r13)

0000B8 051E 000016 | 1 BALR r1,r14

0000BA 0707 000016 | 1 NOPR 7

0000BC Start of Literals

0000BC 00000000 =Q(string1)

0000C0 00000000 =V(printf)

0000C4 00000000 =Q(string2)

Figure 29. Example of an IPA listing (Part 5 of 8)

334 z/OS V1R7.0 XL C/C++ User’s Guide

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1: main 01/14/2005 11:28:51 Page 13

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

0000C8 End of Literals

 *** General purpose registers used: 1111100000001111

 *** Floating point registers used: 1111111100000000

 *** Size of register spill area: 128(max) 0(used)

 *** Size of dynamic storage: 168

 *** Size of executable code: 164

 Constant Area

0000C8 6CA24000 6CA21500 |%s .%s.. |

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 14

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

 PPA1: Entry Point Constants

0000D0 1CCEA106 =F’483303686’ Flags

0000D4 000000F8 =A(PPA2-main)

0000D8 00000000 =F’0’ No PPA3

0000DC 00000000 =F’0’ No EPD

0000E0 FE000000 =F’-33554432’ Register save mask

0000E4 00000000 =F’0’ Member flags

0000E8 90 =AL1(144) Flags

0000E9 000000 =AL3(0) Callee’s DSA use/8

0000EC 0040 =H’64’ Flags

0000EE 0012 =H’18’ Offset/2 to CDL

0000F0 00000000 =F’0’ Reserved

0000F4 50000052 =F’1342177362’ CDL function length/2

0000F8 FFFFFF48 =F’-184’ CDL function EP offset

0000FC 38260000 =F’942014464’ CDL prolog

000100 40090049 =F’1074331721’ CDL epilog

000104 00000000 =F’0’ CDL end

000108 0004 **** AL2(4),C’main’

 PPA1 End

 PPA2: Compile Unit Block

000110 0300 2202 =F’50340354’ Flags

000114 FFFF FEF0 =A(CEESTART-PPA2)

000118 0000 0000 =F’0’ No PPA4

00011C FFFF FEF0 =A(TIMESTMP-PPA2)

000120 0000 0000 =F’0’ No primary

000124 0000 0000 =F’0’ Flags

 PPA2 End

Figure 29. Example of an IPA listing (Part 6 of 8)

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 15

 E X T E R N A L S Y M B O L D I C T I O N A R Y

 TYPE ID ADDR LENGTH NAME

 SD 1 000000 000128 @STATICP

 LD 0 000018 000001 main

 ER 2 000000 CEESG003

 PR 3 000000 000000 string1

 ER 4 000000 PRINTF

 PR 5 000000 000000 string2

 ER 6 000000 CEESTART

 SD 7 000000 000008 @@PPA2

 SD 8 000000 00000C CEEMAIN

 ER 9 000000 EDCINPL

Figure 29. Example of an IPA listing (Part 7 of 8)

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 335

After a traditional compile, there are three object files, six external functions, and

eight external variables. Without a global view of the application, the compiler looks

at hello1.c and cannot tell that unused3 is really unused and that stringU1 is never

referenced. So the compiler has to keep all of the code and variables. IPA has the

global view so it can remove the unused functions. As you can see from listing file

above, only the main function remains. The other functions were inlined, and

because they were not exported, and their address was not taken, they were

removed.

Example 2. all C parts built with XPLINK

The second example is a variation of the first example. The purpose of this

example is to show how easy it is to build an application with both XPLINK and IPA.

To simplify the options even more, this example will not generate any listings.

Please refer to the appropriate sections of “Example 1. all C parts” on page 325 to

map the given names to the members of the SCCNSAM data set.

Building example 2. under UNIX System Services

The only addition to the IPA compile step is the required addition of the XPLINK

option. The GOFF option has also been added (this option defaults on when XPLINK

is specified) for convenience purposes.

c89 -c -2 -WI,NOOBJECT -Wc,XPLINK,GOFF hello1.c hello2.c hello3.c

For the IPA Link step, the changes are similar to the compile step, and the basic

changes that must be done to use XPLINK under UNIX System Services. The option

-Wl,XPLINK is added to guide c89 to include the XPLINK libraries in the IPA link

step.

c89 -2 -WI,LEVEL\(2\) -Wl,XPLINK -o hello hello1.o

 hello2.o hello3.o

Building example 2. in batch

In batch, the same basic changes are made. XPLINK and GOFF are added to the IPA

Compile steps and the XPLINK proc EDCXI is used instead of EDCI. A few extra

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 16

 * * * * * S O U R C E F I L E M A P * * * * *

 OBJECT SOURCE

 *ORIGIN FILE ID FILE ID SOURCE FILE NAME

 P 2 1 //’USERID1.IPA.SOURCE(HELLO1)’

 - Compiled by 15637A01 1700

 on 01/14/2005 11:28:43

 P 3 2 //’USERID1.IPA.SOURCE(HELLO2)’

 - Compiled by 15637A01 1700

 on 01/14/2005 11:28:46

 P 4 3 //’USERID1.IPA.SOURCE(HELLO3)’

 - Compiled by 15637A01 1700

 on 01/14/2005 11:28:49

 ORIGIN: P=primary input PI=primary INCLUDE

 * * * * * E N D O F S O U R C E F I L E M A P * * * * *

5694-A01 V1.7 z/OS XL C/C++ IPA Partition 1 01/14/2005 11:28:51 Page 17

 * * * * * M E S S A G E S U M M A R Y * * * * *

TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL

 (U) (S) (E) (W) (I)

 0 0 0 0 0 0

 * * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

 * * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 29. Example of an IPA listing (Part 8 of 8)

336 z/OS V1R7.0 XL C/C++ User’s Guide

includes (CELHS003,CELHS001) are placed in the IPA input to allow IPA to resolve

XPLINK library references. This job will result in an object deck that can then be

linked to create the module.

//USERID1A JOB (127A,0329),’MEM’,

// MSGLEVEL=(2,0),MSGCLASS=S,CLASS=A,

// NOTIFY=USERID1,REGION=1024M

//PROC JCLLIB ORDER=(CBC.SCCNPRC)

//*--

//* IPA Compile Step for hello1.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO1)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX1),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) RENT LONG OPT(2) XPLINK GOFF

/*

//*--

//* IPA Compile Step for hello2.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO2)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX2),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) RENT LONG OPT(2) XPLINK GOFF

/*

//*--

//* IPA Compile Step for hello3.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO3)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX3),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) RENT LONG OPT(2) XPLINK GOFF

/*

//*--

//* IPA Link Step for the hello module

//*--

//C001F336 EXEC EDCXI,

// OUTFILE=’USERID1.IPALINK.OBJECT(HELLOXP),DISP=SHR’,

// IPARM=’OPTFILE(DD:OPTIONS)’

//* The following line sets up an input file that just includes all

//* the IPA Compile Step object files.

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(HELLOX1,HELLOX2,HELLOX3)

 INCLUDE SYSLIB(CELHS003,CELHS001)

/>

//* These are the options used

//OPTIONS DD DATA,DLM=’/>’

 IPA(LINK,LEVEL(2)) OPT(2) RENT LONGNAME

 XPLINK GOFF

/>

//* The following line gives the object library

//OBJECT DD DSN=USERID1.IPA.OBJECT,DISP=SHR

Creating a DLL with IPA

This section gives several examples, which describe the aspects of building a

simple DLL, as well as how to use some of IPAs advanced features to build a faster

DLL. By default, IPA will try to remove unused code and variables (even global

variables). In DLL situations, (or with exported variables) this ability becomes

limited. For modules with a main function, IPA can build a function call tree and

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 337

determine which functions are or may be called. This list of functions is used to

remove unused functions and variables. For DLLs, IPA must treat the list of

exported functions as potential entry points, and all exported variables as used. For

this reason, the use of the EXPORTALL compiler option is not recommended. IPA

provides a control file option that allows you to specify exactly which functions and

variables you wish to be exported. This gives the programmer who cannot change

the source another way to avoid EXPORTALL. For an example of this, please see

“Example 2. using the IPA control file” on page 340.

Example 1. a mixture of C and C++

For this example, the following table shows the mapping of SCCNSAM data set

members to given file names. The main program is provided to allow the user to

run the created DLL, it is not used in the following example.

 SCCNSAM member name Name used in this example

CCNGID1 GlobInfo.h

CCNGID2 UserInt.h

CCNGID3 UserInterface.C

CCNGID4 c_DLL.c

CCNGID5 c_DLL.h

CCNGID6 cpp_DLL.C

CCNGID7 cpp_DLL.h

CCNGIDM main.C

This example involves the creation of a C/C++ DLL. The DLL is built from one C

source file and two C++ source files. For your convenience, a main

SCCNSAM(CCNGIDM) is provided so that the program can be executed. Instructions to

build the main will not be given in this example. In general, IPA DLLs are created in

the same manner as IPA modules with the extra commands for DLLs added in for

the IPA Link step.

Building example 1. under UNIX System Services

First, IPA must compile each source file. Since NOOBJECT is the default, it is not

specifically mentioned in this example. -WI is specified to trigger an IPA compile.

c89 -c -2 -WI -Wc,"FLAG(I),DLL" c_DLL.c

c++ -c -2 -WI -Wc,"FLAG(I)" -+ cpp_DLL.C

c++ -c -2 -WI -Wc,"FLAG(I),EXPORTALL" -+ UserInterface.C

If you are using the xlc utility, the same IPA compile is invoked by the following

command lines:

c89 -c -O2 -qipa -qflag=i -qdll c_DLL.c

c++ -c -O2 -qipa -qflag=i -+ cpp_DLL.C

c++ -c -O2 -qipa -qflag=i -qexportall -+ UserInterface.C

Next, the IPA Link step is performed. In this case, IPA level(1) optimizations are

used:

c++ -2 -WI,"LEVEL(1)" -Wl,I,DLL -Wl,DLL -o mydll

 UserInterface.o c_DLL.o cpp_DLL.o

The LEVEL(1) suboption is fed to IPA. The DLL option is given to the traditional

optimizer using -Wl,I,DLL and the usual linker command for DLLs is given.

338 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|
|

|
|
|

|
|

|
|

If you are using the xlc utility, the same IPA Link is invoked by the following

command line:

c++ -O2 -qipa=level=1 -qdll -Wl,DLL -o mydll

 UserInterface.o c_DLL.o cpp_DLL.o

Building example 1. under batch

For this example, the following table shows the mapping of SCCNSAM data set

members to given PDS member names. The main program is provided to allow the

user to run the created DLL, it is not used in the following example.

 SCCNSAM member name Name used in this example

CCNGID1 IPA.H(GLOBINFO)

CCNGID2 IPA.H(USERINT)

CCNGID3 IPA.SOURCE(USERINT)

CCNGID4 IPA.SOURCE(CDLL)

CCNGID5 IPA.H(C@DLL)

CCNGID6 IPA.SOURCE(CPPDLL)

CCNGID7 IPA.H(CPP@DLL)

CCNGIDM IPA.SOURCE(MAIN)

//USERID1A JOB (127A,0329),’MEM’,

// MSGLEVEL=(2,0),MSGCLASS=S,CLASS=A,

// NOTIFY=USERID1,REGION=1024M

//PROC JCLLIB ORDER=(CBC.SCCNPRC)

//*--

//* IPA Compile Step for CDLL

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(CDLL)’,

// OUTFILE=’USERID1.IPA.OBJECT(CDLL),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) RENT LONG OPT(2) DLL

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

/*

//*--

//* IPA Compile Step for CPPDLL

//*--

//C001F336 EXEC CBCC,

// INFILE=’USERID1.IPA.SOURCE(CPPDLL)’,

// OUTFILE=’USERID1.IPA.OBJECT(CPPDLL),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) OPT(2)

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

/*

//*--

//* IPA Compile Step for USERINT

//*--

//C001F336 EXEC CBCC,

// INFILE=’USERID1.IPA.SOURCE(USERINT)’,

// OUTFILE=’USERID1.IPA.OBJECT(USERINT),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) OPT(2) EXPORTALL

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

/*

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 339

|
|

|
|

|

//*--

//* IPA Link Step for the hello module

//*--

//C001F336 EXEC CBCI,

// OUTFILE=’USERID1.IPALINK.OBJECT(MYDLL),DISP=SHR’,

// IPARM=’OPTFILE(DD:OPTIONS)’

//* The following line sets up an input file that just includes all

//* the IPA Compile Step object files.

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(USERINT,CDLL,CPPDLL)

 INCLUDE SYSLIB(C128,IOSTREAM,COMPLEX)

/>

//* These are the options used

//OPTIONS DD DATA,DLM=’/>’

 IPA(LINK,MAP,LEVEL(1)) OPT(2) RENT LONGNAME

/>

//* The following line gives the object library

//OBJECT DD DSN=USERID1.IPA.OBJECT,DISP=SHR

Example 2. using the IPA control file

The following example uses the IPA control file to choose which functions should be

exported from UserInterface.C. This allows the IPA compile step to be done

without the EXPORTALL option. The first step is to construct an IPA control file. The

function names appearing in the IPA control file must be mangled names if the

names in the source file are going to be mangled by the compiler. The file content

is as follows:

export=get_user_input__7UIclassFv,

 get_user_sort_method__7UIclassFRi,

 call_user_sort_method__7UIclassFi,

 print_sort_result__7UIclassFv

Please refer to the appropriate sections of “Example 1. a mixture of C and C++” on

page 338 to map the given names to the members of the SCCNSAM data set.

Building example 2. under UNIX System Services

First, IPA must compile each source file using the following commands:

c89 -c -2 -WI -Wc,"FLAG(I),DLL" c_DLL.c

c++ -c -2 -WI -Wc,"FLAG(I)" -+ cpp_DLL.C

c++ -c -2 -WI -Wc,"FLAG(I)" -+ UserInterface.C

If you are using the xlc utility, the same IPA compile is invoked by the following

command lines:

c89 -c -O2 -qipa -qflag=i -qdll c_DLL.c

c++ -c -O2 -qipa -qflag=i -+ cpp_DLL.C

c++ -c -O2 -qipa -qflag=i -+ UserInterface.C

Next, the IPA Link step is run to specify a control file:

c++ -2 -WI,"LEVEL(1),CONTROL(mydll.cntl)" -Wl,I,DLL -Wl,DLL -o mydll

 UserInterface.o c_DLL.o cpp_DLL.o

If you are using the xlc utility, the same IPA Link is invoked by the following

command line:

c++ -O2 -qipa=level=1 -qipa=control=mydll.cntl -qdll -Wl,DLL -o mydll

 UserInterface.o c_DLL.o cpp_DLL.o

This creates a DLL where only the specified functions are exported from

UserInterface.C.

340 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|
|
|

|
|

|
|

|
|

|

Building example 2. in batch

//USERID1A JOB (127A,0329),’MEM’,

// MSGLEVEL=(2,0),MSGCLASS=S,CLASS=A,

// NOTIFY=USERID1,REGION=1024M

//PROC JCLLIB ORDER=(CBC.SCCNPRC)

//*--

//* IPA Compile Step for CDLL

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(CDLL)’,

// OUTFILE=’USERID1.IPA.OBJECT(CDLL),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) RENT LONG OPT(2) DLL

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

/*

//*--

//* IPA Compile Step for CPPDLL

//*--

//C001F336 EXEC CBCC,

// INFILE=’USERID1.IPA.SOURCE(CPPDLL)’,

// OUTFILE=’USERID1.IPA.OBJECT(CPPDLL),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT) OPT(2)

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

/*

//*--

//* IPA Compile Step for USERINT

//*--

 //C001F336 EXEC CBCC,

 // INFILE=’USERID1.IPA.SOURCE(USERINT)’,

 // OUTFILE=’USERID1.IPA.OBJECT(USERINT),DISP=SHR’,

 // CPARM=’OPTFILE(DD:OPTIONS)’

 //OPTIONS DD *

 IPA(NOOBJECT) OPT(2)

 LSEARCH(’USERID1.IPA.+’)

 SEARCH(’CEE.SCEEH.+’)

 /*

 //*--

 //* IPA Link Step for the hello module

 //*--

 //C001F336 EXEC CBCI,

 // OUTFILE=’USERID1.IPALINK.OBJECT(MYDLL),DISP=SHR’,

 // IPARM=’OPTFILE(DD:OPTIONS)’

 //* The following line sets up an input file that just includes all

 //* the IPA Compile Step object files.

 //SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(USERINT,CDLL,CPPDLL)

 INCLUDE SYSLIB(C128,IOSTREAM,COMPLEX)

 />

 //* These are the options used

 //OPTIONS DD DATA,DLM=’/>’

 IPA(LINK,LEVEL(1),CONTROL(’USERID1.ipa.cntl(dllex)’))

 OPT(2) RENT LONGNAME

 />

 //* The following line gives the object library

 //OBJECT DD DSN=USERID1.IPA.OBJECT,DISP=SHR

In the resultant object deck (MYDLL), only functions that are explicitly exported using

#pragma export and the four functions given in the control file are exported.

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 341

Using Profile-Directed Feedback (PDF)

In any large application, there are sections of code that are not often executed,

such as code for error-handling. A traditional compiler cannot tell what these low

frequency sections of code or functions are, and may spend a lot of time optimizing

code that will never be executed. Profile-Directed Feedback (PDF) can be used to

collect information about the way the program is really used and the compiler can

use this information when optimizing the code. PDF also enables you to receive

estimates on how many times loops are iterated.

Steps for utilizing PDF optimization

Perform the following four steps to utilize the PDF optimization:

1. Compile some or all of the source files in a program with the IPA PDF1

suboption. The OPTIMIZE(2) option, or preferably the OPTIMIZE(3) option, as

well as the IPA(LEVEL(1|2)) option should be specified for optimization. Special

attention should be paid to the compiler options that are used to compile the

files because the same options (other than IPA(PDF1)) must be used later.

In a large application, the use of the PDF1 suboption should be concentrated on

those areas of the code that can benefit most from optimization. You do not

need to compile all of the application’s code with the PDF1 suboption but you do

need to compile the main function with the PDF1 suboption.

2. Preallocate the PDF data set using RECFM = U and LRECL = 0 if you are using

an MVS data set for your PDF file.

3. Run the program built from step 1 with typical input data. The program records

profiling information when it finishes. The program can be run multiple times

with different input data sets, and the profiling information is accumulated to

provide an accurate count of how often branches are taken and blocks of code

are executed. It is critically important that the data used is representative of the

data that will be used during a normal run of the finished program.

4. Re-build your program using the identical set of source files with the identical

compiler options that you used in step 1, but change the PDF1 suboption to

PDF2. In this second stage, the accumulated profiling information is used to

fine-tune the optimizations. The resulting program contains no profiling

overhead and runs at full speed.

Specifically, the following JCL can be used to perform a PDF1 compile of the hello

world program that is shown above (see “Example 1. all C parts” on page 325).

//USERID1A JOB (127A,0329),’MEM’,

// MSGLEVEL=(2,0),MSGCLASS=S,CLASS=A,

// NOTIFY=USERID1,REGION=1024M

//PROC JCLLIB ORDER=(CBC.SCCNPRC)

//*--

//* IPA Compile Step for hello1.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO1)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX1),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,PDF1) RENT LONG OPT(2) XPLINK GOFF

/*

342 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

//*--

//* IPA Compile Step for hello2.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO2)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX2),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,PDF1) RENT LONG OPT(2) XPLINK GOFF

/*

//*--

//* IPA Compile Step for hello3.c

//*--

//C001F336 EXEC EDCC,

// INFILE=’USERID1.IPA.SOURCE(HELLO3)’,

// OUTFILE=’USERID1.IPA.OBJECT(HELLOX3),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD *

 IPA(NOOBJECT,LIST,PDF1) RENT LONG OPT(2) XPLINK GOFF

/*

//*--

//* IPA Link Step for the hello module

//*--

//C001F336 EXEC EDCXI,

// OUTFILE=’USERID1.IPALINK.OBJECT(HELLOXP),DISP=SHR’,

// IPARM=’OPTFILE(DD:OPTIONS)’

//* The following line sets up an input file that just includes all

//* the IPA Compile Step object files.

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(HELLOX1,HELLOX2,HELLOX3)

 INCLUDE SYSLIB(CELHS003,CELHS001)

/>

//* These are the options used

//OPTIONS DD DATA,DLM=’/>’

 IPA(LINK,LEVEL(2),MAP,PDF1,PDFNAME(//’USERID1.MY.PDF’))

 OPT(2) RENT LONGNAME LIST

 XPLINK GOFF

/>

//* The following line gives the object library

//OBJECT DD DSN=USERID1.IPA.OBJECT,DISP=SHR

//*--

//* LINK the hello module

//*--

//C001F336 EXEC CCNXPD1B,

// INFILE=’USERID1.IPALINK.OBJECT(HELLOXP)’,

// OUTFILE=’USERID1.DEV.LOAD1(HELLOXP),DISP=SHR’

Note: The IPA(PDF1) option is specified on each of the IPA compiles, and the

PDFNAME suboption is specified on the IPA Link step. This PDFNAME suboption

gives the name of the file where the statistics about the program will be

stored, this file is referred to as the PDF file. While it is not strictly required

to preallocate the PDF file, when using a PS or PDS file, the data set may

be required to preallocate to ensure the file is large enough. If the PDF file is

preallocated, it should be allocated with an LRECL of 0 and a RECFM of U.

Finally, instead of using a traditional link proc, the link of the PDF1 code should be

done with the CCNPD1B proc (for non-XPLINK code) or CCNXPD1B proc (for XPLINK

code). This proc provides all the libraries necessary to allow the object file created

by the IPA Link step to be linked with the PDF run-time function that stores the

statistical information.

A PDF2 IPA compile job looks very similar to the above except the:

v PDF2 suboption is used in every place that PDF1 is used above

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 343

v Traditional EDCB proc can be used to bind the object created during the IPA Link

step into a module

Steps for building a module in UNIX System Services using PDF

Perform the following steps in UNIX System Services to build a module using the

PDF process:

1. Build the PDF1 module using the following commands:

c89 -c -2 -WI,PDF1 hello1.c hello2.c hello3.c

c89 -2 -Wl,PDF1 -WI,PDF1,PDFNAME\(./hello.pdf\),LEVEL\(2\) -o

 hello hello1.o hello2.o hello3.o

If you are using the xlc utility, the command line syntax is:

c89 -c -O2 -qipa=pdf1 hello1.c hello2.c hello3.c

c89 -O2 -qipa=pdf1 -qipa=level=2 -qipa=pdfname=./hello.pdf -o

 hello hello1.o hello2.o hello3.o

2. Run the module, to create hello.pdf:

hello

3. Rebuild the module using the information in hello.pdf using the following

commands:

c89 -c -2 -WI,PDF2 hello1.c hello2.c hello3.c

c89 -2 -WI,PDF2,PDFNAME\(./hello.pdf\),LEVEL\(2\) -o hello hello1.o

 hello2.o hello3.o

If you are using the xlc utility, the command line syntax is:

c89 -c -O2 -qipa=pdf2 hello1.c hello2.c hello3.c

c89 -O2 -qipa=pdf2 -qipa=level=2 -qipa=pdfname=./hello.pdf -o

 hello hello1.o hello2.o hello3.o

Reference Information

The following section provides reference information concerning the IPA Link step

control file, and object file directives understood by IPA.

IPA Link step control file

The IPA Link step control file is a fixed-length or variable-length format file that

contains additional IPA processing directives. The CONTROL suboption of the IPA

compiler option identifies this file.

The IPA Link step issues an error message if any of the following conditions exist in

the control file:

v The control file directives have invalid syntax.

v There are no entries in the control file.

v Duplicate names exist in the control file.

You can specify the following directives in the control file.

csect=csect_names_prefix

Supplies information that the IPA Link step uses to name the

CSECTs for each partition that it creates. The csect_names_prefix

parameter is a comma-separated list of tokens that is used to

construct CSECT names.

344 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|
|
|

|

|
|
|
|

The behavior of the IPA Link steps varies depending upon whether

you specify the CSECT option with a qualifier.

v If you do not specify the CSECT option with a qualifier, the IPA

Link step does the following:

– Truncates each name prefix or pads it at the end with @

symbols, if necessary, to create a 7 character token

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as follows:

C code

S static data

T test

v If you specify the CSECT option with a non-null qualifier, the IPA

Link step does the following:

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as follows where

qualifier is the qualifier you specified for CSECT and nameprefix

is the name you specified in the IPA Link Step Control File:

qualifier#nameprefix#C code

qualifier#nameprefix#S static data

qualifier#nameprefix#T test

v If you specify the CSECT option with a null qualifier, the IPA Link

step does the following:

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as follows where

nameprefix is the name you specified in the IPA Link Step

Control File:

nameprefix#C code

nameprefix#S static data

nameprefix#T test

The IPA Link step issues an error message if you specify the CSECT

option but no control file, or did not specify any csect directives in

the control file. In this situation, IPA generates a CSECT name and

an error message for each partition.

 The IPA Link step issues a warning or error message (depending

upon the presence of the CSECT option) if you specify CSECT name

prefixes, but the number of entries in the csect_names list is fewer

than the number of partitions that IPA generated. In this situation,

for each unnamed partition, the IPA Link step generates a CSECT

name prefix with format @CSnnnn, where nnnn is the partition

number. If you specify the CSECT option, the IPA Link step also

generates an error message for each unnamed partition. Otherwise,

the IPA Link step generates a warning message for each unnamed

partition.

noexports Removes the ″export″ flag from all symbols (functions and

variables) in IPA and non-IPA input files.

export=name[,name]

Specifies a list of symbols (functions and variables) to export by

setting the symbol ″export″ flag. Note: Only symbols defined within

IPA objects can be exported using this directive.

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 345

inline=name[,name]

Specifies a list of functions that are desirable for the compiler to

inline. The functions may or may not be inlined.

inline=name[,name] from name[,name]

Specifies a list of functions that are desirable for the compiler to

inline, if the functions are called from a particular function or list of

functions. The functions may or may not be inlined.

noinline=name[,name]

Specifies a list of functions that the compiler will not inline.

noinline=name[,name] from name[,name]

Specifies a list of functions that the compiler will not inline, if the

functions are called from a particular function or list of functions.

exits=name[,name]

Specifies names of functions that represent program exits. Program

exits are calls that can never return, and can never call any

procedure that was compiled with the IPA Compile step.

lowfreq=name[,name]

Specifies names of functions that are expected to be called

infrequently. These functions are typically error handling or trace

functions.

partition=small|medium|large|unsigned-integer

Specifies the size of each program partition that the IPA Link step

creates. When partition sizes are large, it usually takes longer to

complete the code generation, but the quality of the generated code

is usually better.

 For a finer degree of control, you can use an unsigned-integer

value to specify the partition size. The integer is in ACUs (Abstract

Code Units), and its meaning may change between releases. You

should only use this integer for very short term tuning efforts, or

when the number of partitions (and therefore the number of

CSECTs in the output object module) must remain constant.

 The size of a CSECT cannot exceed 16 MB with the XOBJ format.

Large CSECTs require the GOFF option.

 The default for this directive is medium.

partitionlist=partition_number[,partition_number]

Used to reduce the size of an IPA Link listing. If the IPA Link control

file contains this directive and the LIST option is active, a

pseudo-assembly listing is generated for only these partitions.

 partition_number is a decimal number representing an unsigned

int.

safe=name[,name]

Specifies a list of "safe" functions that are not compiled as IPA

objects. These are functions that do not call a visible (not missing)

function either through a direct call or a function pointer. Safe

functions can modify global variables, but may not call functions

that are not compiled as IPA objects.

isolated=name[,name]

Specifies a list of "isolated" functions that are not compiled as IPA

objects. Neither isolated functions nor functions within their call

346 z/OS V1R7.0 XL C/C++ User’s Guide

chain can refer to global variables. IPA assumes that functions that

are bound from shared libraries are isolated.

pure=name[,name]

Specifies a list of "pure" functions that are not compiled as IPA

objects. These are functions that are ″safe″ and ″isolated″ and do

not indirectly alter storage accessible to visible functions. A "pure"

function has no observable internal state nor has side-effects,

defined as potentially altering any data visible to the caller. This

means that the returned value for a given invocation of a function is

independent of any previous or future invocation of the function.

unknown=name[,name]

Specifies a list of "unknown" functions that are not compiled as IPA

objects. These are functions that are not safe, isolated, or pure.

This is the default for all functions defined within non-IPA objects.

Any function specified as ″unknown″ can make calls to other parts

of the program compiled as IPA objects and modify global variables

and dummy arguments. This option greatly restricts the amount of

interprocedural optimization for calls to ″unknown″ functions.

missing=attribute

 Specifies the characteristics of "missing" functions. There are two

types of "missing" functions:

v Functions dynamically linked from another DLL (defined using an

IPA Link IMPORT control statement)

v Functions that are statically available but not compiled with the

IPA option

IPA has no visibility to the code within these functions. You must

ensure that all user references are resolved at IPA Link time with

user libraries or run-time libraries.

 The default setting for this directive is unknown. This instructs IPA to

make pessimistic assumptions about the data that may be used

and modified through a call to such a missing function, and about

the functions that may be called indirectly through it.

 You can specify the following attributes for this directive:

safe Specifies that the missing functions are "safe". See

the description for the safe directive, above.

isolated Specifies that the missing functions are "isolated".

See the description for the isolated directive,

above.

pure Specifies that the missing functions are "pure". See

the description for the pure directive, above.

unknown Specifies that the missing functions are "unknown".

See the description for the unknown directive, above.

This is the default attribute.

retain=symbol-list

Specifies a list of exported functions or variables that the IPA Link

step retains in the final object module. The IPA Link step does not

prune these functions or variables during optimization.

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 347

Note: In the listed directives, name can be a regular expression. Thus, name can

match multiple symbols in your application through pattern matching. The

regular expression syntax supported by the IPA control file processor is as

follows:

 Table 34. Syntax rules for specifying regular expressions

Expression Description

string Matches any of the characters specified in string. For example, test will

match testimony, latest, and intestine.

^string Matches the pattern specified by string only if it occurs at the beginning

of a line.

string$ Matches the pattern specified by string only if it occurs at the end of a

line.

str.ing The period (.) matches any single character. For example, t.st will

match test, tast, tZst, and t1st.

string\special_char The backslash (\) can be used to escape special characters. For

example, assume that you want to find lines ending with a period.

Simply specifying the expression .$ would show all lines that had at

least one character of any kind in it. Specifying \.$ escapes the period (

.), and treats it as an ordinary character for matching purposes.

[string] Matches any of the characters specified in string. For example,

t[a-g123]st matches tast and test, but not t-st or tAst.

[^string] Does not match any of the characters specified in string. For example,

t[^a-zA-Z] st matches t1st, t-st, and t,st but not test or tYst.

string* Matches zero or more occurrences of the pattern specified by string. For

example, te*st will match tst, test, and teeeeeest.

string+ Matches one or more occurrences of the pattern specified by string. For

example, t(es)+t matches test, tesest, but not tt.

string? Matches zero or one occurrences of the pattern specified by string. For

example, te?st matches either tst or test.

string{m,n} Matches between m and n occurrence(s) of the pattern specified by

string. For example, a{2} matches aa, and b{1,4} matches b, bb, bbb,

and bbbb.

string1 | string2 Matches the pattern specified by either string1 or string2. For example, s

| o matches both characters s and o.

Object file directives understood by IPA

IPA recognizes and acts on the following binder object control directives:

v INCLUDE

v LIBRARY

v IMPORT

Some other linkage control statements (such as NAME, RENAME and ALIAS) are

accepted and passed through to the linker.

Troubleshooting

It is strongly recommended that you resolve all warnings that occur during the IPA

Link step. Resolution of these warnings often removes seemingly unrelated

problems.

348 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

||

||

||
|

||
|

||
|

||
|

||
|
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|
|

||
|
|

The following list provides frequently asked questions (Q) and their respective

answers (A):

v Q - I am running out of memory while using IPA. Are there any options for

reducing its use of memory?

A - IPA reacts to the NOMEMORY option, and the code generator will react to the

MAXMEM option. If this does not give you sufficient memory, consider running IPA

from batch where more memory can be accessed. Before switching to batch,

verify with your system programmer that you have access to the maximum

possible memory (both in batch and in UNIX System Services). The user could

also reduce the level of IPA processing via the IPA LEVEL suboption.

v Q - I am receiving a ″partition too large″ warning. How do I fix it?

A - Use the IPA Control file to specify a different partition size.

v Q - My IPA compile time is too long. Are there any options?

A - Using a lower IPA compilation level (0 or 1 instead of 2) will reduce the

compile time. To minimize the compile time, ensure you are using the

IPA(NOOBJECT) option for your IPA compiles. A smaller partition size, specified in

the control file, may minimize the amount of time spent in the code generator.

Limiting inlining, may improve your compile time, but it will decrease your

performance gain significantly and should only be done selectively using the IPA

control file. Use the IPA control file to specify little used functions as low

frequency so that IPA does not spend too much time trying to optimize them.

v Q - Can I tune the IPA automatic inlining like I can for the regular inliner?

A - Yes. Use the INLINE option for the IPA Link step.

v Q - I am using IPA(PDF1) and my program will not bind. What do I do?

A - Under UNIX System Services, specify -Wl,PDF1 when linking with c89 or C++.

Under MVS batch, use the CCNPD1B or CCNXPD1B PROCS.

Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs 349

|
|

350 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 9. Binding z/OS XL C/C++ programs

This chapter describes how to bind your programs using the binder (the

DFSMS/MVS® program management binder) in the z/OS batch, z/OS UNIX System

Services, and TSO environments.

When you can use the binder

The output of the binder is a program object. You can store program objects in a

PDSE member or in an HFS file. Depending on the environment you use, you can

produce binder program objects as follows:

v For c89:

If the targets of your executables are HFS files, you can use the binder. If the

targets of your executables are PDSs, you must use the prelinker, followed by

the binder. If the targets of your executables are PDSEs, you can use the binder

alone.

v For z/OS batch or TSO:

If you can use PDSEs, you can use the binder. If you want to to use PDSs, you

must use the prelinker for the following:

– C++ code

– C code compiled with the LONGNAME, RENT, or DLL options

v For GOFF and XPLINK:

If you have compiled your program with the GOFF, XPLINK, or LP64 compiler

options, you must use the binder.

For more information on the prelinker, see Appendix A, “Prelinking and linking z/OS

XL C/C++ programs,” on page 527.

When you cannot use the binder

The following are the restrictions to using the binder to produce a program object.

Your output is a PDS, not a PDSE

If you are using z/OS batch or TSO, and your output must target a PDS instead of

a PDSE, you cannot use the binder.

CICS

Prior to CICS 1.3, PDSEs are not supported. From CICS Transaction Server 1.3

onwards, there is support in CICS for PDSEs. Please refer to CICS Transaction

Server for z/OS Release Guide, where there are several references to PDSEs, and

a list of prerequisite APAR fixes.

MTF

MTF does not support PDSEs. If you have to target MTF, you cannot use the

binder.

IPA

Object files that are generated by the IPA Compile step using the compiler option

IPA(NOLINK,OBJECT) may be given as input to the binder. Such an object file is a

© Copyright IBM Corp. 1996, 2005 351

combination of an IPA object module, and a regular compiler object module. The

binder processes the regular compiler object module, ignores the IPA object

module, and no IPA optimization is done.

Object files that are generated by the IPA Compile step using compiler option

IPA(NOLINK,NOOBJECT) should not be given as input to the binder. These are IPA

only object files, and do not contain a regular compiler object module.

The IPA Link step will not accept a program object as input. IPA Link can process

load module (PDS) input files, but not program object (PDSE) input files.

Using different methods to bind

This section shows you how to use different methods to bind your application:

Single Final Bind

Compile all your code and then perform a single final bind of all the object

modules.

Bind Each Compile Unit

Compile and bind each compilation unit, then perform a final bind of all the

partially bound program objects.

Build and Use DLLs

Build DLLs and programs that use those DLLs.

Rebind a Changed Compile Unit

Recompile only changed compile units, and rebind them into a program

object without needing other unchanged compile units.

Single final bind

You can use the method that is shown in Figure 30 on page 353 to build your

application executable for the first time. With this method, you compile each source

code unit separately, then bind all of the resultant object modules together to

produce an executable program object.

352 z/OS V1R7.0 XL C/C++ User’s Guide

Bind each compile unit

If you have changed the source in a compile unit, you can use the method that is

shown in Figure 31 on page 354. With this method, you compile and bind your

changed compile unit into an intermediate program object, which may have

unresolved references. Then you bind all your program objects together to produce

a single executable program object.

source source source

object module

program object

object module object module

Binder

compilercompiler compiler

Figure 30. Single final bind

Chapter 9. Binding z/OS XL C/C++ programs 353

Build and use a DLL

You can use the method that is shown in Figure 32 on page 355 to build a DLL. To

build a DLL, the code that you compile must contain symbols which indicate that

they are exported. You can use the compiler option EXPORTALL or the #pragma

export directive to indicate symbols in your C or C++ code that are to be exported.

For C++, you can also use the _Export keyword.

When you build the DLL, the bind step generates a DLL and a file of IMPORT

control statements which lists the exported symbols. This file is known as a

definition side-deck. The binder writes one IMPORT control statement for each

exported symbol. The file that contains IMPORT control statements indicates symbol

names which may be imported and the name of the DLL from which they are

imported.

OS/390 Binder

source

program object

program object

program object program object

object module

(intermediate program objects,
may have unresolved references)

(final program object,
references are fully resolved)

compiler

Binder

Binder

Figure 31. Bind each compile unit

354 z/OS V1R7.0 XL C/C++ User’s Guide

You can use the method that is shown in Figure 33 to build an application that uses

a DLL. To build a program which dynamically links symbols from a DLL during

application run time, you must have C++ code, or C code that is compiled with the

DLL option. This allows you to import symbols from a DLL. You must have an

IMPORT control statement for each symbol that is to be imported from a DLL. The

IMPORT control statement controls which DLL will be used to resolve an imported

function or variable reference during execution. The bind step of the program that

imports symbols from the DLL must include the definition side-deck of IMPORT

control statements that the DLLs build generated.

The binder does not take an incremental approach to the resolution of DLL-linkage

symbols. When binding or rebinding a program that uses a DLL, you must always

specify the DYNAM(DLL) option, and must provide all IMPORT control statements. The

binder does not retain these control statements for subsequent binds.

object module
or program object

Binder

Program Object DLL Definition
side-deck

object module
or program object

object module
or program object

Figure 32. Build a DLL

object
module

Binder

object
module

Program Object

Definition
side-deck

object
module

Figure 33. Build an application that uses a DLL

Chapter 9. Binding z/OS XL C/C++ programs 355

Rebind a changed compile unit

You can use the method shown in Figure 34 to rebind an application after making

changes to a single compile unit. Compile your changed source file and then rebind

the resultant object module with the complete program object of your application.

This will replace the binder sections that are associated with the changed compile

unit in the program.

You can use this method to maintain your application. For example, you can change

a source file and produce a corresponding object module. You can then ship the

object module to your customer, who can bind the new object module with the

complete program object for the application. If you use this method, you have fewer

files to maintain: just the program object for the application and your source code.

Binding under z/OS UNIX System Services

The c89 and c++ utilities are the interface to the compiler and the binder for z/OS

UNIX System Services C/C++ applications. You can use c89 and c++, to compile

and bind a program in one step, or to bind application object modules after

compilation.

The default, for the above utilities, is to invoke the binder alone, without first

invoking the prelinker. That is, since the OS/390 V2R4 level of OS/390 Language

modified source

program object

original complete program object
object module

Binder

compiler

Figure 34. Rebinding a changed compile unit

356 z/OS V1R7.0 XL C/C++ User’s Guide

Environment and DFSMS 1.4, if the output file (-o executable) is not a PDS

member, then the binder will be invoked. To modify your environment to run the

prelinker, refer to the description of the prefix_STEPS environment variable in

“Environment variables” on page 480.

Typically, you invoke the c89 and c++ utilities from the z/OS shell. For more

information on these utilities, see Chapter 18, “c89 — Compiler invocation using

host environment variables,” on page 465 or the z/OS UNIX System Services

Command Reference.

To bind your XPLINK module, specify -Wl,xplink on the c89/c++ command.

z/OS UNIX System Services example

The example source files unit0.c, unit1.c, and unit2.c that are shown in

Figure 35, are used to illustrate all of the z/OS UNIX System Services examples

that follow.

Steps for single final bind using c89

Before you begin: Compile each source file and then perform a single final bind.

Perform the following steps to perform a single final bind using c89:

1. Compile each source file to generate the object modules unit0.o, unit1.o, and

unit2.o as follows:

c89 -c -W c,"CSECT(myprog)" unit0.c

c89 -c -W c,"CSECT(myprog)" unit1.c

c89 -c -W c,"CSECT(myprog)" unit2.c

2. Perform a final single bind to produce the executable program myprog. Use the

c89 utility as follows:

c89 -o myprog unit0.o unit1.o unit2.o

 /* file: unit0.c */

 #include <stdio.h>

 extern int f1(void);

 extern int f4(void);

 int main(void) {

 int rc1;

 int rc4;

 rc1 = f1();

 rc4 = f4();

 if (rc1 != 1) printf("fail rc1 is %d\n",rc1);

 if (rc4 != 40) printf("fail rc4 is %d\n",rc4);

 return 0;

 }

 /* file: unit1.c */

 int f1(void) { return 1; }

 /* file: unit2.c */

 int f2(void) { return 20;}

 int f3(void) { return 30;}

 int f4(void) { return f2()*2; /* 40 */ }

Figure 35. Example source files

Chapter 9. Binding z/OS XL C/C++ programs 357

|

The -o option of the c89 command specifies the name of the output executable.

The c89 utility recognizes from the file extension .o that unit0.o, unit1.o and

unit2.o are not to be compiled but are to be included in the bind step.

Example: The following is an example of a makefile to perform a similar build:

 For more information on makefiles, see z/OS UNIX System Services Programming

Tools.

Advantage

This method is simple, and is consistent with existing methods of building

applications, such as makefiles.

Steps for binding each compile unit using c89

Before you begin: Compile each source file and also bind it.

Perform the following steps to complete a final bind of all the partially bound units:

1. Compile each source file to its object module (.tmp). Bind each object module

into a partially bound program object (.o), which may have unresolved

references. In this example, references to f1() and f4() in unit0.o are

unresolved. When the partially bound programs are created, remove the object

modules as they are no longer needed. Use c89 to compile each source file, as

follows:

c89 -c -W c,"CSECT(myprog)" -o unit0.tmp unit0.c

c89 -r -o unit0.o unit0.tmp

rm unit0.tmp

c89 -c -W c,"CSECT(myprog)" -o unit1.tmp unit1.c

c89 -r -o unit1.o unit1.tmp

rm unit1.tmp

c89 -c -W c,"CSECT(myprog)" -o unit2.tmp unit2.c

c89 -r -o unit2.o unit2.tmp

rm unit2.tmp

The -r option supports rebindability by disabling autocall processing.

2. Perform the final single bind to produce the executable program myprog by

using c89:

c89 -o myprog unit0.o unit1.o unit2.o

Example: The following is an example of a makefile for performing a similar build:

PGM = myprog

SRCS = unit0.c unit1.c unit2.c

OBJS = $(SRCS:b:+".o")

COPTS = -W c,"CSECT(myprog)"

$(PGM) : ($OBJS)

 c89 -o $(PGM) $(OBJS)

%.o : %.c

 c89 -c -o $@ $(COPTS) $<

358 z/OS V1R7.0 XL C/C++ User’s Guide

�1� Export the environment variable _C89_EXTRA_ARGS so c89 will process

files with non-standard extensions. Otherwise c89 will not recognize

unit0.tmp, and the makefile will fail

�2� name of executable

�3� list of source files

�4� list of partly bound parts

�5� executable depends on parts

�6� make .tmp file from .c

�7� make .o from .tmp

 In this example, make automatically removes the intermediate .tmp files after the

makefile completes, since they are not marked as PRECIOUS. For more

information on makefiles, see z/OS UNIX System Services Programming Tools.

Advantage

Binding a set of partially bound program objects into a fully bound program object is

faster than binding object modules into a fully bound program object for NOGOFF

objects. For example, a central build group can create the partially bound program

objects. Developers can then use these program objects and their changed object

modules to create a development program object.

Steps for building and using a DLL using c89

Before you begin: Build unit1.c and unit2.c into DLL onetwo, which exports

functions f1(), f2(), f3(), and f4(). Then build unit0.c into a program which

dynamically links to functions f1() and f4() defined in the DLL.

Perform the following steps to build and use a DLL using c89:

1. Compile unit1.c and unit2.c to generate the object modules unit1.o and

unit2.o which have functions to be exported. Use the c89 utility as follows:

 c89 -c -W c,"EXPORTALL,CSECT(myprog)" unit1.c

 c89 -c -W c,"EXPORTALL,CSECT(myprog)" unit2.c

2. Bind unit1.o and unit2.o to generate the DLL onetwo:

 c89 -Wl,dll -o onetwo unit1.o unit2.o

When you bind code with exported symbols, you should specify the DLL binder

option (-W l,dll).

In addition to the DLL onetwo being generated, the binder writes a list of

IMPORT control statements to onetwo.x. This list is known as the definition

side-deck. One IMPORT control statement is written for each exported symbol.

_C89_EXTRA_ARGS=1

.EXPORT : _C89_EXTRA_ARGS �1�

PGM = myprog �2�

SRCS = unit0.c unit1.c unit2.c �3�

OBJS = $(SRCS:b:+".o") �4�

COPTS = -W c,"CSECT(myprog)"

$(PGM) : $(OBJS) �5�

 c89 -o $(PGM) $(OBJS)

%.tmp : %.c �6�

 c89 -c -o $@ $(COPTS) $<

%.o : %.tmp �7�

 c89 -r -o $@ $<

Chapter 9. Binding z/OS XL C/C++ programs 359

These generated control statements will be included later as input to the bind

step of an application that uses this DLL, so that it can import the symbols.

3. Compile unit0.c with the DLL option -W c,DLL, so that it can import unresolved

symbols. Bind the object module, with the definition side-deck onetwo.x from

the DLL build:

 c89 -c -W c,DLL unit0.c

 c89 -o dll12usr unit0.o onetwo.x

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL

with the changed code in it. You do not need to rebuild all applications that use the

DLL in order to use the changed code.

Steps for rebinding a changed compile unit using c89

Before you begin: Rebuild an application after making a change to a single source

file.

Perform the following steps to rebind a changed compile unit using c89:

1. Recompile the single changed source file. Use the compile time option CSECT to

ensure that each section is named for purposes of rebindability. For example,

assume that you have made a change to unit1.c. Recompile unit1.c by using

c89 as follows:

c89 -o unit1.o -W c,"CSECT(myprog)" unit1.c

2. Rebind only the changed compile unit into the executable program, which

replaces its corresponding binder sections in the program object:

cp -m myprog myprog.old

c89 -o myprog unit1.o myprog

The cp command is optional. It saves a copy of the old executable in case the

bind fails in such a way as to damage the executable. myprog is overwritten

with the result of the bind of unit1.o. Like named sections in unit1.o replace

those in the myprog executable.

The following is an example of a makefile to perform a similar build:

�1� allow filenames with non-standard suffixes

�2� list of source files

�3� do not delete myprog if the make fails

�4� compile source files newer than the executable, and bind

_C89_EXTRA_ARGS=1

.EXPORT : _C89_EXTRA_ARGS �1�

SRCS = unit0.c unit1.c unit2.c �2�

myprog.PRECIOUS : $(SRCS) �3�

 @if [-e $@]; then OLD=$@; else OLD=; fi;\

 CMD="$(CC) -Wc,csect $(CFLAGS) $(LDFLAGS) -o $@ $? $$OLD";\ �4�

 echo $$CMD; $$CMD;

 -@rm -f $(?:b+"$O")

360 z/OS V1R7.0 XL C/C++ User’s Guide

The attribute .PRECIOUS ensures that such parts are not deleted if make fails. $?

are the dependencies which are newer than the target.

Note:

v You need the .PRECIOUS attribute to avoid removing the current

executable, since you depend on it as subsequent input.

v If more than one source part changes, and any compiles fail, then on

subsequent makes, all compiles are redone.

For a complete description of all c89 options see Chapter 18, “c89 — Compiler

invocation using host environment variables,” on page 465. For a description of

make, see z/OS UNIX System Services Command Reference and for a make

tutorial, see z/OS UNIX System Services Programming Tools.

Advantage

Rebinds are fast because most of the program is already bound. Also, none of the

intermediate object modules need to be retained because they are available from

the program itself.

Using the non-XPLINK version of the Standard C++ Library and c89

A non-XPLINK Standard C++ Library DLL is available that provides Standard C++

Library support for CICS and IMS. The CICS and IMS subsystems do not support

XPLINK linkage, rendering the XPLINK Standard C++ Library DLL supplied with the

compiler inoperable under both subsystems. The non-XPLINK Standard C++ Library

DLL allows support for the Standard C++ Library in the CICS and IMS subsystems,

as of z/OS V1R2. Since CICS and IMS do not support XPLINK linkage, and there

are no plans to support XPLINK linkage, a non-XPLINK DLL enables the Standard

C++ Library under these subsystems.

To use the non-XPLINK Standard C++ Library DLL, you must first link your object

modules with the non-XPLINK system definition side-deck. Use the _CXX_PSYSIX

environment variable to pass the non-XPLINK side deck information to c++/cxx. The

_CXX_PSYSIX environment variable specifies the system definition side-deck list to be

used to resolve symbols during the non-XPLINK link-editing phase. The following

concatenation should be used:

export _CXX_PSYSIX=\

"_CXX_PLIB_PREFIX.SCEELIB(C128N)":\

"_CXX_CLIB_PREFIX.SCLBSID(IOSTREAM,COMPLEX)"

where _CXX_PLIB_PREFIX and _CXX_CLIB_PREFIX are set to a default (for example,

CEE and CBC, respectively) during custom installation, or using user overrides.

It is only necessary to specify _CXX_PSYSIX in order to use the non-XPLINK side

deck with IPA. Corresponding non-XPLINK IPA link step environment variables

default to the value of _CXX_PSYSIX. To run a program with the non-XPLINK DLL,

ensure that the SCEERUN data set containing the non-XPLINK DLL is in the MVS

search path; that is, either specified in your STEPLIB or already loaded into LPA.

Peformance

Due to peformance differences between XPLINK and non-XPLINK linkages, it is

expected that an XPLINK program using the XPLINK Standard C++ Library DLL will

outperform a non-XPLINK program using the non-XPLINK Standard C++ Library

DLL.

Chapter 9. Binding z/OS XL C/C++ programs 361

|

|

|
|
|

|

|

|

It is possible to use the non-XPLINK DLL with an XPLINK application, although this

is not preferred. A call to a function of different linkage than the callee will result in a

performance degradation due to the overhead cost required to swap from one stack

type to the other.

Using the non-XPLINK version of the Standard C++ Library and xlc

To use the non-XPLINK Standard C++ Library DLL with xlc, the exportlist attribute

in the configuration file must include the c128n (instead of c128) member of the

CEE.SCEELIB data set.

Peformance

Due to peformance differences between XPLINK and non-XPLINK linkages, it is

expected that an XPLINK program using the XPLINK Standard C++ Library DLL will

outperform a non-XPLINK program using the non-XPLINK Standard C++ Library

DLL.

It is possible to use the non-XPLINK DLL with an XPLINK application, although this

is not preferred. A call to a function of different linkage than the callee will result in a

performance degradation due to the overhead cost required to swap from one stack

type to the other.

Binding under z/OS batch

You can use the following procedures, which the z/OS XL C/C++ compiler supplies,

to invoke the binder:

 Procedure name Description

CEEXL C bind an XPLINK 32-bit program

CEEXLR C bind and run an XPLINK 32-bit program

EDCCB C compile and bind a non-XPLINK 32-bit program

EDCCBG C compile, bind, and run a non-XPLINK 32-bit program

EDCXCB C compile and bind an XPLINK 32-bit program

EDCXCBG C compile, bind, and run an XPLINK 32-bit program

EDCXLDEF Create C Source from a locale, compile, and bind the XPLINK

32-bit program

CBCB C++ bind a non-XPLINK 32-bit program

CBCBG C++ bind and run a non-XPLINK 32-bit program

CBCCB C++ compile and bind a non-XPLINK 32-bit program

CBCCBG C++ compile, bind, and run a non-XPLINK 32-bit program

CBCXB C++ bind an XPLINK 32-bit program

CBCXBG C++ bind and run an XPLINK 32-bit program

CBCXCB C++ compile and bind an XPLINK 32-bit program

CBCXCBG C++ compile, bind, and run an XPLINK 32-bit program

CCNPD1B C or C++ bind an object compiled using the IPA(PDF1) and

NOXPLINK options

CCNXPD1B C or C++ bind an object compiled using the IPA(PDF1) and

XPLINK options

EDCQB C bind a 64-bit program

EDCQBG C bind and run a 64-bit program

EDCQCB C compile and bind a 64-bit program

EDCQCBG C compile, bind, and run a 64-bit program

CBCQB C++ bind a 64-bit program

CBCQBG C++ bind and run a 64-bit program

CBCQCB C++ compile and bind a 64-bit program

CBCQCBG C++ compile, bind, and run a 64-bit program

362 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

Procedure name Description

CCNQPD1B C or C++ bind a 64-bit object compiled using the IPA(PDF1) and

LP64 options

CBCLG Prelink, link, and run a 31-bit non-XPLINK program

If you want to generate DLL code, you must use the binder DYNAM(DLL) option. All

the z/OS XL C/C++ supplied cataloged procedures that invoke the binder use the

DYNAM(DLL) option. For C++, these cataloged procedures use the DLL versions of

the IBM-supplied class libraries by default; the IBM-supplied definition side-deck

data set for class libraries, SCLBSID, is included in the SYSLIN concatenation.

z/OS batch example

Figure 36 shows the example source files USERID.PLAN9.C(UNIT0),

USERID.PLAN9.C(UNIT1), and USERID.PLAN9.C(UNIT2), which are used to illustrate all

of the z/OS batch examples that follow.

Steps for single final bind under z/OS batch

Before you begin: Compile each source file.

Perform the following steps to complete a final single bind of everything:

1. Compile each source file to generate the object modules

USERID.PLAN9.OBJ(UNIT0), USERID.PLAN9.OBJ(UNIT1), and

USERID.PLAN9.OBJ(UNIT2). Use the EDCC procedure as follows:

/* file: USERID.PLAN9.C(UNIT0) */

#include <stdio.h>

extern int f1(void);

extern int f4(void);

int main(void) {

int rc1;

int rc4;

rc1 = f1();

rc4 = f4();

if (rc1 != 1) printf("fail rc1 is %d\n",rc1);

if (rc4 != 40) printf("fail rc4 is %d\n",rc4);

return 0;

}

/* file: USERID.PLAN9.C(UNIT1) */

int f1(void) { return 1; }

/* file: USERID.PLAN9.C(UNIT2) */

int f2(void) { return 20;}

int f3(void) { return 30;}

int f4(void) { return f2()*2; /* 40 */ }

Figure 36. Example source files

Chapter 9. Binding z/OS XL C/C++ programs 363

|

|

2. Perform a final single bind to produce the executable program

USERID.PLAN9.LOADE(MYPROG). Use the CBCB procedure as follows:

The OUTFILE parameter along with the NAME control statement specify the name

of the output executable to be created.

Advantage

This method is simple, and is consistent with existing methods of building

applications, such as makefiles.

Steps for binding each compile unit under z/OS batch

Before you begin: Compile each source file and also bind it.

Perform the following steps to complete a final bind of all the partially bound units:

1. Compile and bind each source file to generate the partially bound program

objects USERID.PLAN9.LOADE(UNIT0), USERID.PLAN9.LOADE(UNIT1), and

USERID.PLAN9.LOADE(UNIT2), which may have unresolved references. In this

example, references to f1() and f4() in USERID.PLAN9.LOADE(UNIT0) are

unresolved. Compile and bind each unit by using the EDCCB procedure as

follows:

//COMP0 EXEC EDCC,

// INFILE=’USERID.PLAN9.C(UNIT0)’,

// OUTFILE=’USERID.PLAN9.OBJ,DISP=SHR’,

// CPARM=’LONG,RENT’

//COMP1 EXEC EDCC,

// INFILE=’USERID.PLAN9.C(UNIT1)’,

// OUTFILE=’USERID.PLAN9.OBJ,DISP=SHR’,

// CPARM=’LONG,RENT’

//COMP2 EXEC EDCC,

// INFILE=’USERID.PLAN9.C(UNIT2)’,

// OUTFILE=’USERID.PLAN9.OBJ,DISP=SHR’,

// CPARM=’LONG,RENT’

//BIND EXEC CBCB,OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//OBJECT DD DSN=USERID.PLAN9.OBJ,DISP=SHR

//SYSIN DD *

 INCLUDE OBJECT(UNIT0)

 INCLUDE OBJECT(UNIT1)

 INCLUDE OBJECT(UNIT2)

 NAME MYPROG(R)

/*

364 z/OS V1R7.0 XL C/C++ User’s Guide

The CALL(NO) option prevents autocall processing.

2. Perform the final single bind to produce the executable program MYPROG by

using the CBCB procedure:

You have two methods for building the program.

a. Explicit include: In this method, when you invoke the CBCB procedure, you

use include cards to explicitly specify all the program objects that make up

this executable. Automatic library call is done only for the non-XPLINK data

sets CEE.SCEELKED, CEE.SCEELKEX, and CEE.SCEECPP because

those are the only libraries pointed to by ddname SYSLIB. Using CBCXB for

XPLINK, automatic library is done only for CEE.SCEEBIND. For example:

b. Library search: In this method, you specify the compile unit that contains

your main() function, and allocate your object library to ddname SYSLIB. The

binder performs a library search and includes additional members from your

object library, and generates the output program object. You invoke the

binder as follows:

Advantage

Binding a set of partially bound program objects into a fully bound program object is

faster than binding object modules into a fully bound program object. For example,

//COMP0 EXEC EDCCB,

// CPARM=’CSECT(MYPROG)’,

// BPARM=’LET,CALL(NO),ALIASES(ALL)’,

// INFILE=’USERID.PLAN9.C(UNIT0)’,

// OUTFILE=’USERID.PLAN9.LOADE(UNIT0),DISP=SHR’

//COMP1 EXEC EDCCB,

// CPARM=’CSECT(MYPROG)’,

// BPARM=’LET,CALL(NO),ALIASES(ALL)’,

// INFILE=’USERID.PLAN9.C(UNIT1)’,

// OUTFILE=’USERID.PLAN9.LOADE(UNIT1),DISP=SHR’

//COMP2 EXEC EDCCB,

// CPARM=’CSECT(MYPROG)’,

// BPARM=’LET,CALL(NO),ALIASES(ALL)’,

// INFILE=’USERID.PLAN9.C(UNIT2)’,

// OUTFILE=’USERID.PLAN9.LOADE(UNIT2),DISP=SHR’

//BIND EXEC CBCB,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//INPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR

//SYSIN DD *

 INCLUDE INPGM(UNIT0)

 INCLUDE INPGM(UNIT1)

 INCLUDE INPGM(UNIT2)

 NAME MYPROG(R)

/*

//BIND EXEC CBCB,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//INPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR

//SYSLIB DD

// DD

// DD

// DD DSN=USERID.PLAN9.LOADE,DISP=SHR

//SYSIN DD *

 INCLUDE INPGM(UNIT0)

 NAME MYPROG(R)

/*

Chapter 9. Binding z/OS XL C/C++ programs 365

a central build group can create the partially bound program objects. Developers

can then use these program objects and their changed object modules to create a

development program object.

Steps for building and using a DLL under z/OS batch

Perform the following steps to build USERID.PLAN9.C(UNIT1) and

USERID.PLAN9.C(UNIT2) into DLL USERID.PLAN.LOADE(ONETWO), which exports

functions f1(), f2(), f3() and f4(). Build USERID.PLAN9.C(UNIT0) into a program which

dynamically links to functions f1() and f4() defined in the DLL build and use a DLL

under z/OS batch.

1. Compile USERID.PLAN9.C(UNIT1) and USERID.PLAN9.C(UNIT2) to generate the

object modules USERID.PLAN9.OBJ(UNIT1) and USERID.PLAN9.OBJ(UNIT2), which

define the functions to be exported. Use the EDCC procedure as follows:

2. Bind USERID.PLAN9.OBJ(UNIT1) and USERID.PLAN9.OBJ(UNIT2) to generate the

DLL ONETWO:

When you bind code with exported symbols, you must specify the binder option

DYNAM(DLL). You must also allocate the definition side-deck DD SYSDEFSD to

define the definition side-deck where the IMPORT control statements are to be

written.

In addition to the DLL being generated, a list of IMPORT control statements is

written to DD SYSDEFSD. One IMPORT control statement is written for each

exported symbol. These generated control statements will be included later as

input to the bind step of an application that uses this DLL, so that it can import

the symbols.

//* Compile UNIT1

//CC1 EXEC EDCC,

// CPARM=’OPTF(DD:OPTIONS)’,

// INFILE=’USERID.PLAN9.C(UNIT1)’,

// OUTFILE=’USERID.PLAN9.OBJ(UNIT1),DISP=SHR’

//COMPILE.OPTIONS DD *

 LIST RENT LONGNAME EXPORTALL

*/

//* Compile UNIT2

//CC2 EXEC EDCC,

// CPARM=’OPTF(DD:OPTIONS)’,

// INFILE=’USERID.PLAN9.C(UNIT2)’,

// OUTFILE=’USERID.PLAN9.OBJ(UNIT2),DISP=SHR’

//COMPILE.OPTIONS DD *

 LIST RENT LONGNAME EXPORTALL

*/

//* Bind the DLL

//BIND1 EXEC CBCB,

// BPARM=’CALL,DYNAM(DLL)’,

// OUTFILE=’USERID.PLAN9.LOADE(ONETWO),DISP=SHR’

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

//SYSDEFSD DD DISP=SHR,DSN=USERID.PLAN9.IMP(ONETWO)

//SYSLIN DD *

 INCLUDE INOBJ(UNIT1)

 INCLUDE INOBJ(UNIT2)

 NAME ONETWO(R)

/*

366 z/OS V1R7.0 XL C/C++ User’s Guide

3. Compile USERID.PLAN9.C(UNIT0) so that it may import unresolved symbols, and

bind with the file of IMPORT control statements from the DLLs build:

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL

with the changed code in it. You do not need to rebuild all applications that use the

DLL in order to use the changed code.

Build and use a 64-bit application under z/OS batch

Creating a 64-bit application under z/OS Batch is similar to creating a 31-bit

application. There are, however, some subtle differences, which the following C++

example demonstrates.

As of z/OS C/C++ V1R6, new PROCs are available for binding and running with

64-bit applications. There are no new PROCs for a 64-bit compile (without binding

or running) but you can use the previously existing C and C++ PROCs, along with

the LP64 compiler option, to create 64-bit object files that can then be used with the

new 64-bit enabled PROCs. Then, rather than using the regular binding PROCs

(such as CBCB and EDCCBG), you need to use the new 64-bit PROCs for binding; for

example, CBCQB and EDCQCBG.

Example: The following example will now show you how to implement the above

instructions. In this example, we use the CBCC PROC and the LP64 compiler option

for our first 64-bit compile, and the CBCQCBG PROC to compile another source file in

64-bit mode, bind it (along with the first object file we produced), and finally run the

resulting load module.

#include <iostream>

void lp64_function() {

#ifdef _LP64

 std::cout << "Hello World, z/OS has 64-bit programs now!" << std::endl;

#else

 std::cout << "Uh oh, someone didn’t compile this file with LP64" << std::endl;

#endif

 }

//* Compile the DLL user

//CC1 EXEC EDCC,

// CPARM=’OPTF(DD:OPTIONS)’,

// INFILE=’USERID.PLAN9.C(UNIT0)’,

// OUTFILE=’USERID.PLAN9.OBJ(UNIT0),DISP=SHR’

//COMPILE.OPTIONS DD *

 LIST RENT LONGNAME DLL

/*

//* Bind the DLL user with input IMPORT statements from the DLL build

//BIND1 EXEC CBCB,

// BPARM=’CALL,DYNAM(DLL)’,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

//IMP DD DISP=SHR,DSN=USERID.PLAN9.IMP

//SYSLIN DD *

 INCLUDE INOBJ(UNIT0)

 INCLUDE IMP(ONETWO)

 ENTRY CEESTART

 NAME DLL12USR(R)

/*

Chapter 9. Binding z/OS XL C/C++ programs 367

HELLO2.C

void lp64_function();

int main() {

 lp64_function();

}

//USERID JOB (641A,2317),’Programmer Name’,REGION=128M,

// CLASS=B,MSGCLASS=S,NOTIFY=&SYSUID;,MSGLEVEL=(1,1)

//ORDER JCLLIB ORDER=(CBC.SCCNPRC)

//*---

//* C++ Compile using LP64 compiler option

//*---

//COMPILE EXEC CBCC,

// INFILE=’USERID.LP64.SOURCE(HELLO1)’,

// OUTFILE=’USERID.LP64.OBJECT(HELLO1),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//OPTIONS DD DATA,DLM=’/>’

 LP64

/>

//*---

//* C++ 64-bit Compile, Bind, and Go Step

//*---

//COBINDGO EXEC CBCQCBG,

// INFILE=’USERID.LP64.SOURCE(HELLO2)’,

// OUTFILE=’USERID.LP64.LOAD(HELLO),DISP=SHR’

//BIND.SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(HELLO1)

/>

//OBJECT DD DSN=USERID.LP64.OBJECT,DISP=SHR

Build and use a 64-bit application with IPA under z/OS batch

Example: This example shows you how to IPA Compile both a C source file and a

C++ source file in 64-bit mode, then IPA Link them, bind them (in 64-bit mode), and

run the resulting load module.

This example also shows that when you want to create an IPA optimized program

that makes use of calls to standard library functions, you need to explicitly let IPA

know where to find the libraries that it will link with. The location of the standard

library functions is not included by default in the IPA Link PROCs because if you do

not actually ever call a standard library function, IPA will spend time analyzing the

unused libraries before realizing your program does not need them, thereby

unnecessarily slowing down your compilation time. If you are building a C++

program and do not tell IPA where to find the libraries it needs at IPA Link time, the

IPA Linker will complain about the unresolved symbols it cannot find. You can tell

IPA where the standard libraries are by adding the following lines to the CBCXI or

EDCXI job steps in your JCL:

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(HELLO)

 INCLUDE SYSLIB(C64,IOSX64)

 INCLUDE SYSLIB(CELQSCPP,CELQS003)

/>

//SYSLIB DD DSN=CEE.SCEEBND2,DISP=SHR

// DD DSN=CEE.SCEELIB,DISP=SHR

// DD DSN=CBC.SCLBSID,DISP=SHR

//OBJECT DD DSN=USER.TEST.OBJECT,DISP=SHR

Note: The USER.TEST.OBJECT data set and the HELLO PDS member are meant

to represent the object file(s) for your application, which you should have

created using a previous IPA Compile step.
Example: The following example will now show you how to implement the above

instructions.

368 z/OS V1R7.0 XL C/C++ User’s Guide

//USERID JOB (641A,2317),’Programmer Name’,REGION=128M,

// CLASS=B,MSGCLASS=S,NOTIFY=&SYSUID;,MSGLEVEL=(1,1)

//ORDER JCLLIB ORDER=(CBC.SCCNPRC)

//*---

//* 64-bit C IPA Compile

//*---

//IPACOMP1 EXEC EDCC,

// OUTFILE=’USERID.IPA.LP64.OBJECT(OBJECT1),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//SYSIN DD DATA,DLM=’/>’

#include <time.h>

#include <string.h>

int get_time_of_day(char* output) {

 time_t time_val;

 struct tm* time_struct;

 char* time_string;

 if (-1 != time(&time_val;)) {

 time_struct = localtime(&time_val;);

 if (NULL != time_struct) {

 time_string = asctime(time_struct);

 if (NULL != time_string) {

 strcpy(output, time_string);

 output[strlen(output) - 1] = 0;

 return 0;

 }

 }

 }

 return 1;

}

/>

//OPTIONS DD DATA,DLM=’/>’

 IPA(NOOBJECT,NOLINK) LP64 LONGNAME OPT

/>

//*---

//* 64-bit C++ IPA Compile with very high optimization

//*---

//IPACOMP2 EXEC CBCC,

// OUTFILE=’USERID.IPA.LP64.OBJECT(OBJECT2),DISP=SHR’,

// CPARM=’OPTFILE(DD:OPTIONS)’

//SYSIN DD DATA,DLM=’/>’

#include <iostream>

#include <string>

using std::cout;

using std::endl;

using std::string;

extern "C" int get_time_of_day(char*);

int main() {

 char* tod;

 tod = new char[100];

Chapter 9. Binding z/OS XL C/C++ programs 369

if (0 == get_time_of_day(tod)) {

 cout << "The current time is: " << tod << endl;

 } else {

 cout << "Error: Could not determine the time" << endl;

 }

 delete tod;

 return 0;

}

/>

//OPTIONS DD DATA,DLM=’/>’

 IPA(NOOBJECT,NOLINK) LP64 OPT(3)

/>

//*---

//* 64-bit C++ IPA Link

//*---

//IPALINK EXEC CBCXI,

// OUTFILE=’USERID.IPALINK.LP64.OBJECT(IPAOBJ),DISP=SHR’,

// IPARM=’IPA(LEVEL(2),MAP) LONGNAME’

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(OBJECT1)

 INCLUDE OBJECT(OBJECT2)

 INCLUDE SYSLIB(C64,IOSX64)

 INCLUDE SYSLIB(CELQSCPP,CELQS003)

/>

//SYSLIB DD DSN=CEE.SCEEBND2,DISP=SHR

// DD DSN=CEE.SCEELIB,DISP=SHR

// DD DSN=CBC.SCLBSID,DISP=SHR

//OBJECT DD DSN=USERID.IPA.LP64.OBJECT,DISP=SHR

//*---

//* C++ 64-bit Bind and Go Step

//*---

//BINDGO EXEC CBCQBG,

// INFILE=’USERID.IPALINK.LP64.OBJECT(IPAOBJ)’,

// OUTFILE=’USERID.LP64.LOAD(FINALEXE),DISP=SHR’

//SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(IPAOBJ)

/>

//OBJECT DD DSN=USERID.IPA.LP64.OBJECT,DISP=SHR

Using the non-XPLINK version of the Standard C++ Library and z/OS

batch

A non-XPLINK Standard C++ Library DLL is available that provides Standard C++

Library support for CICS and IMS. The CICS and IMS subsystems do not support

XPLINK linkage, rendering the XPLINK Standard C++ Library DLL supplied with the

compiler inoperable under both subsystems. The non-XPLINK Standard C++ Library

DLL allows support for the Standard C++ Library in the CICS and IMS subsystems,

as of z/OS V1R2. Since CICS and IMS do not support XPLINK linkage, and there

are no plans to support XPLINK linkage, a non-XPLINK DLL enables the Standard

C++ Library under these subsystems.

All non-XPLINK C++ PROCs containing bind and pre-link steps need to be invoked

with the STDLIBSD PROC variable set to c128n, or overridden in order to use the

non-XPLINK Standard C++ Library DLL. These PROCs are: CBCB, CBCBG,

CBCCB, CBCCBG, CBCCL, CBCCLG, CBCL, CBCLG and CCNPD1B.

The appropriate DD statements in these PROCs must be overridden:

370 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|

v For a bind step, the non-XPLINK side deck must override the XPLINK side-deck

or the SYSLIN concatenation.

v For a pre-link step, the non-XPLINK side deck must override the XPLINK side

deck or the SYSIN concatenation.

The following concatenations added to the calling JCL will override the appropriate

DD statement of the corresponding CBC PROC:

CBCB, CBCBG

//SYSLIN DD

// DD DSN=&LIBPRFX..SCEELIB(C128N),DISP=SHR

CBCCB, CBCCBG

//BIND.SYSLIN DD

// DD DSN=&LIBPRFX..SCEELIB(C128N),DISP=SHR

CBCL, CBCLG

//SYSLIN DD

// DD DSN=&LIBPRFX..SCEELIB(C128N),DISP=SHR

CBCCL, CBCCLG

//PLKED.SYSLIN DD

// DD DSN=&LIBPRFX..SCEELIB(C128N),DISP=SHR

 The following concatenation added to the calling JCL will override the appropriate

DD statement of the corresponding CCN PROC. Note that CICS does not support

PDF.

CCNPD1B

//SYSLIN DD

// DD DSN=&LIBPRFX..SCEELIB(C128N),DISP=SHR

Restrictions concerning use of non-XPLINK Standard C++

Library DLL

The following is a list of restrictions:

v No Enhanced ASCII Functionality Support:

The non-XPLINK Standard C++ Library DLL does not provide enhanced ASCII

functionality support as ASCII run-time functions require XPLINK linkage. Classes

and functions sensitive to character encoding are provided in EBCDIC alone in

the non-XPLINK DLL.

v No PDF PROC Support for CICS:

CICS does not support Profile Directed Feedback (PDF). The non-XPLINK PDF

PROC, CCNPD1B, cannot be used with CICS. The XPLINK PDF CCNXPD1B

PROC and the 64-bit PDF CCNQPD1B PROC cannot be used with CICS as

well.

Steps for rebinding a changed compile unit under z/OS batch

Before you begin: Make a change to a single source file and rebuild the

application.

Perform the following steps to recompile the single changed source file and make a

replacement of its binder sections in the program:

1. Recompile the single changed source file. Use the compile time option CSECT to

ensure that each section is named for purposes of rebindability. For example,

assume that you have made a change to USERID.PLAN9.C(UNIT1). Recompile

the source file using the EDCC procedure as follows:

Chapter 9. Binding z/OS XL C/C++ programs 371

|
|

|
|

|
|

|
|

|
|

2. Rebind only the changed compile unit into the executable program, which

replaces its corresponding binder sections in the program object:

Advantage

Rebinds are fast because most of the program is already bound, and none of the

intermediate object modules are retained.

Writing JCL for the binder

You can use cataloged procedures rather than supply all the JCL required for a job

step. However, you can use JCL statements to override the statements of the

cataloged procedure.

Use the EXEC statement in your JCL to invoke the binder. The EXEC statement to

invoke the binder is:

 //BIND EXEC PGM=IEWL

Use PARM parameter for the EXEC statement to select one or more of the optional

facilities that the binder provides.

Example: You can specify the OPTIONS option on the PARM parameter to read binder

options from the ddname OPTS, as follows:

 In the example above, object module P1, which was compiled NOXPLINK, is bound

using the IOSTREAM DLL definition side-deck. The Language Environment

//* Compile UNIT1 user

//CC EXEC EDCC,

// CPARM=’OPTF(DD:OPTIONS)’,

// INFILE=’USERID.PLAN9.C(UNIT1)’,

// OUTFILE=’USERID.PLAN9.OBJ(UNIT1),DISP=SHR’

//COMPILE.OPTIONS DD *

 LIST RENT LONGNAME DLL CSECT(MYPROG)

/*

//BIND EXEC CBCB,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//OLDPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR

//NEWOBJ DD DSN=USERID.PLAN9.OBJ,DISP=SHR

//SYSIN DD *

 INCLUDE NEWOBJ(UNIT1)

 INCLUDE OLDPGM(MYPROG)

 NAME NEWPGM(R)

/*

//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’

//OPTS DD *

 AMODE=31,MAP

 RENT,DYNAM=DLL

 CASE=MIXED,COMPAT=CURR

/*

//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKEX

// DD DISP=SHR,DSN=CEE.SCEELKED

// DD DISP=SHR,DSN=CEE.SCEECPP

//SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(P1)

// DD DISP=SHR,DSN=CBC.SCLBSID(IOSTREAM)

//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE(PROG1)

//SYSPRINT DD SYSOUT=*

372 z/OS V1R7.0 XL C/C++ User’s Guide

non-XPLINK run-time libraries SCEELKED, SCEELKEX, and SCEECPP are

statically bound to produce the program object PROG1.

Example: If the object module P1 was compiled XPLINK, then the JCL would be:

 Example: If the object module P1 was compiled LP64, then the JCL would be:

//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’

//OPTS DD *

AMODE=64,MAP

RENT,DYNAM=DLL

CASE=MIXED,COMPAT=CURR

LIST=NOIMP

/*

//SYSLIB DD DSN=CEE.SCEEBIND,DISP=SHR

//SYSLIN DD DSN=USRID.PLAN9.OBJ(P1),DISP=SHR

// DD DSN=CEE.SCEELIB(CELQHSCPP),DISP=SHR

// DD DSN=CEE.SCEELIB(CELQHS003),DISP=SHR

// DD DSN=CBC.SCLBSID(IOSX64),DISP=SHR

// DD DISP=SHR,DSN=CBC.SCLBSID(IOSTREAM)

//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE(PROG1)

//SYSPRINT DD SYSOUT=*

For more information on the files given, please refer to “LP64 libraries” on page

383.

The binder always requires three standard data sets. You must define these data

sets on DD statements with the ddnames SYSLIN, SYSLMOD, and SYSPRINT.

Example: A typical sequence of job control statements for binding an object module

into a program object is shown below. In the following non-XPLINK example, the

binder control statement NAME puts the program object into the PDSE USER.LOADE

with the member name PROGRAM1.

//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’

//OPTS DD *

AMODE=31,MAP

RENT,DYNAM=DLL

CASE=MIXED,COMPAT=CURR

LIST=NOIMP

/*

//SYSLIB DD DSN=CEE.SCEEBIND,DISP=SHR

//SYSLIN DD DSN=USERID.PLAN9.OBJ(P1),DISP=SHR

// DD DSN=CEE.SCEELIB(CELHSCPP),DISP=SHR

// DD DSN=CEE.SCEELIB(CELHS003),DISP=SHR

// DD DSN=CEE.SCEELIB(CELHS001),DISP=SHR

// DD DISP=SHR,DSN=CBC.SCLBSID(IOSTREAM)

//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE(PROG1)

//SYSPRINT DD SYSOUT=*

Chapter 9. Binding z/OS XL C/C++ programs 373

You can explicitly include members from a data set like USERID.PLAN.OBJ, as is

done above. If you want to be more flexible and less explicit, include only one

member, typically the one that contains the entry point (e.g. main()). Then you can

add USERID.PLAN.OBJ to the SYSLIB concatenation so that a library search brings in

the remaining members.

Binding under TSO using CXXBIND

This section describes how to bind your z/OS XL C++ or z/OS XL C program in

TSO by invoking the CXXBIND REXX EXEC. This REXX EXEC invokes the binder

and creates an executable program object.

Note: This REXX EXEC does not support 64-bit binding. You must use the PROCs

or c89, cc, c++, or cxx commands under UNIX System Services to perform

64-bit binding.

If you specify a data set name in an option, and the high-level qualifier of the data

set is not the same as your user prefix, you must use the fully qualified name of the

data set and place single quotation marks around the entire name.

If you specify an HFS filename in an option, it must be an absolute filename; it must

begin with a slash (/). You can include commas and special characters in filenames,

but you must enclose filenames that contain special characters or commas in single

quotes. If a single quote is part of the filename, you must specify the quote twice.

The syntax for the CXXBIND EXEC is:

��

CXXBIND

�

 ,

OBJ

(

input-object

)

'input-object'

�

�

�

,

OPT

(

binder_option;

)

 �

//BIND EXEC PGM=IEWL,PARM=’MAP’

//SYSPRINT DD * << out: binder listing

//SYSDEFSD DD DUMMY << out: generated IMPORTs

//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE << out: PDSE of executables

//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED << in: autocall libraries to search

// DD DISP=SHR,DSN=CEE.SCEELKEX

// DD DISP=SHR,DSN=CEE.SCEECPP

//INOBJ DD DISP=SHR,DSN=USERID.PLAN.OBJ << in: compiler object code

//SYSLIN DD*

 INCLUDE INOBJ(UNIT0)

 INCLUDE INOBJ(UNIT1)

 INCLUDE INOBJ(UNIT2)

 ENTRY CEESTART

 NAME PROGRAM1(R)

/*

374 z/OS V1R7.0 XL C/C++ User’s Guide

�

�

,

LIB

(

search-library-name

)

'search-library-name'

 �

�
LOAD

(

output_program_object

)

'output_program_object'

 �

�
IMP

(

file_of_generated_imports

)

'file_of_generated_imports'

 �

�
LIST

(

output_listing

)

'output_listing'

XPLINK
 ��

OBJ You must always specify the input file names by using the OBJ

keyword parameter. Each input file must be one of the following:

v An object module that can be a PDS member, a sequential data

set, or an HFS file

v A load module that is a PDS member

v A program object that can be a PDSE member or an HFS file

v A text file that contains binder statements. The file can be a PDS

member, a sequential data set, or an HFS file

OPT Use the OPT keyword parameter to specify binder options. For

example, if you want the binder to use the MAP option, specify the

following:

 CXXBIND OBJ(PLAN9.OBJ(PROG3)) OPT(’MAP’)...

LIB Use the LIB keyword parameter to specify the PDS and PDSE

libraries that the binder should search to resolve unresolved

external references during a library search of the DD SYSLIB.

 The default libraries that are used when the XPLINK option is not

specified are the C/C++ libraries CEE.SCEELKED,

CEE.SCEELKEX, CEE.SCEECPP and the C++ class library

CBC.SCLBSID. The default libraries that are used when the XPLINK

option is specified are the C/C++ libraries CEE.SCEEBIND,

CEE.SCEELIB and the C++ class library CBC.SCLBSID. The

default library names are added to the ddnameSYSLIB

concatenation if library names are specified with the LIB keyword

parameter.

LOAD Use the LOAD keyword parameter to specify where the resultant

executable program object (which must be a PDSE member, or an

HFS file) should be stored.

IMP Use the IMP keyword parameter to specify where the generated

IMPORT control statements should be written.

Chapter 9. Binding z/OS XL C/C++ programs 375

LIST Use the LIST keyword parameter to specify where the binder listing

should be written. If you specify *, the binder directs the listing to

your console.

XPLINK Use the XPLINK keyword parameter when you are building an

XPLINK executable program object. Specifying XPLINK will change

the default libraries as described under the LIB option.

TSO example

Figure 37 shows the example source files PLAN9.C(UNIT0), PLAN9.C(UNIT1), and

PLAN9.C(UNIT2), that are used to illustrate all of the TSO examples that follow.

Steps for single final bind under TSO

Before you begin: Compile each source file.

Perform the following steps to complete a single final bind of everything:

1. Compile each unit to generate the object modules PLAN9.OBJ(UNIT0),

PLAN9.OBJ(UNIT1), and PLAN9.OBJ(UNIT2). Use the CC REXX exec as follows:

CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

2. Perform a final single bind to produce the executable program

PLAN9.LOADE(MYPROG). Use the CXXBIND REXX exec as follows:

CXXBIND OBJ(PLAN9.OBJ(UNIT0),PLAN9.OBJ(UNIT1),PLAN9.OBJ(UNIT2))

 LOAD(PLAN9.LOADE(MYPROG))

Advantage

This method is simple, and is consistent with existing methods of building

applications, such as makefiles.

/* file: USERID.PLAN9.C(UNIT0) */

#include <stdio.h>

extern int f1(void);

extern int f4(void);

int main(void) {

int rc1;

int rc4;

rc1 = f1();

rc4 = f4();

if (rc1 != 1) printf("fail rc1 is %d\n",rc1);

if (rc4 != 40) printf("fail rc4 is %d\n",rc4);

return 0;

}

/* file: USERID.PLAN9.C(UNIT1) */

int f1(void) { return 1; }

/* file: USERID.PLAN9.C(UNIT2) */

int f2(void) { return 20;}

int f3(void) { return 30;}

int f4(void) { return f2()*2; /* 40 */ }

Figure 37. Example Source Files

376 z/OS V1R7.0 XL C/C++ User’s Guide

Steps for binding each compile unit under TSO

Before you begin: Compile and bind each source file.

Perform the following steps to complete a final bind of all the partially bound units:

1. Compile and bind each source file to generate the partially bound program

objects PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1), and PLAN9.LOADE(UNIT2),

which may have unresolved references. In this example, references to f1() and

f4() in PLAN9.LOADE(UNIT0) are unresolved. Compile and bind each unit by

using the CC and CXXBIND REXX execs as follows:

CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

CXXBIND OBJ(PLAN9.OBJ(UNIT0)) OPT(’LET,CALL(NO)’)

 LOAD(PLAN9.LOADE(UNIT0))

CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

CXXBIND OBJ(PLAN9.OBJ(UNIT1)) OPT(’LET,CALL(NO)’)

 LOAD(PLAN9.LOADE(UNIT1))

CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

CXXBIND OBJ(PLAN9.OBJ(UNIT2)) OPT(’LET,CALL(NO)’)

 LOAD(PLAN9.LOADE(UNIT1))

The CALL(NO) option prevents autocall processing.

2. Perform the final single bind to produce the executable program MYPROG by

using the CXXBIND REXX exec:

CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1), PLAN9.LOADE(UNIT2))

 LOAD(PLAN9.LOADE(MYPROG))

Advantage

Binding a set of partially bound program objects into a fully bound program object is

faster than binding object modules into a fully bound program object. For example,

a central build group can create the partially bound program objects. Developers

can then use these program objects and their changed object modules to create a

development program object.

Steps for building and using a DLL under TSO

Perform the following steps to build PLAN9.C(UNIT1) and PLAN9.C(UNIT2) into DLL

PLAN9.LOADE(ONETWO) which exports functions f1(), f2(), f3() and f4(). Then build

PLAN9.C(UNIT0) into a program which dynamically links to functions f1() and f4()

defined in the DLL.

1. Compile PLAN9.C(UNIT1) and PLAN9.C(UNIT2) to generate the object modules

PLAN9.OBJ(UNIT1) and PLAN9.OBJ(UNIT2) which have functions to be exported.

Use the CC REXX exec as follows:

CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) EXPORTALL,LONGNAME,DLL,CSECT(MYPROG)

CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) EXPORTALL,LONGNAME,DLL,CSECT(MYPROG)

2. Bind PLAN9.OBJ(UNIT1) and PLAN9.OBJ(UNIT2) to generate the DLL

PLAN9.LOADE(ONETWO):

CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1)) IMP (PLAN9.IMP(ONETWO))

 LOAD(PLAN9.LOADE(ONETWO))

When you bind code with exported symbols, you must specify the binder option

DYNAM(DLL). You must also use the CXXBIND IMP option to define the definition

side-deck where the IMPORT control statements are to be written.

Chapter 9. Binding z/OS XL C/C++ programs 377

3. Compile PLAN9.C(UNIT0) so that it may import unresolved symbols, and bind

with PLAN9.IMP(ONETWO), which is the definition side-deck containing IMPORT

control statements from the DLL build:

CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG),DLL

CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.IMP(ONETWO)) LOAD(PLAN9.LOADE(DLL12USR))

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL

with the changed code in it. You do not need to rebuild all applications that use the

DLL in order to use the changed code.

Steps for rebinding a changed compile unit under TSO

Before you begin: Make a change to a single source file and rebuild the

application.

Perform the following steps to recompile the single changed source file and make a

replacement of its binder sections in the program:

1. Recompile the single changed source file. Use the compile time option CSECT to

ensure that each section is named for purposes of rebindability. For example,

assume that you have made a change to PLAN9.C(UNIT1). Recompile

PLAN9.C(UNIT1) by using the CC REXX exec as follows:

CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

2. Rebind only the changed source file into the executable program, which

replaces its corresponding binder sections in the program object:

CXXBIND OBJ(PLAN9.OBJ(UNIT1), PLAN9.LOADE(MYPROG))

 LOAD(PLAN9.LOADE(NEWPROG)

Advantage

Rebinds are fast because most of the program is already bound, and none of the

intermediate object modules are retained.

378 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 10. Binder processing

You can bind any z/OS XL C/C++ object module or program object.

Object files with long name symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application. You can always rebind if you don’t require this additional processing.

You can also re-bind if you used the binder for this additional processing and

produced a program object (in other words, you didn’t use the prelinker). If you

used the prelinker and performed this additional processing, you cannot later

rebind. If you have done additional processing and output it to a PDS, you cannot

rebind it. For further information, refer to “About prelinking, linking, and binding” on

page 10.

Various limits have been increased from the linkage-editor. For example, the V1R6

binder supports variable and function names up to 32767 characters long.

For the Writable Static Area (WSA), the binder assigns relative offsets to objects in

the Writable Static Area and manages initialization information for objects in the

Writable Static Area. The Writable Static Area is not loaded with the code.

Language Environment runtime requests it.

For C++, the binder collects constructor calls and destructor calls for static C++

objects across multiple compile units. C++ linkage names appear with the full

signature in the binder listing. A cross reference of mangled versus demangled

names is also provided.

For DLLs, the binder collects static DLL initialization information across multiple

compile units. It then generates a function descriptor in the Writable Static Area for

each DLL-referenced function, and generates a variable descriptor for each

DLL-referenced variable. It accepts IMPORT control statements in its input to resolve

dynamically linked symbols, and generates an IMPORT control statement for each

exported function and variable.

The C++ compiler may generate internal symbols that are marked as exported.

These symbols are for use by the run-time environment only and are not required

by any user code. When these symbols are generated, if the binder option is

DYNAM=DLL and the definition side-deck is not defined for the binder, the binder

issues a message indicating the condition. If you are not building a DLL, you can

use DYNAM=NO or you can ignore the message; or you can define a dummy side

deck for the binder and then ignore the generated side deck.

Note: When using the C++ shell utility, use -Wl,DLL.

z/OS UNIX System Services HFS support allows library search of archive libraries

that were created with the ar utility. HFS files can be specified on binder control

statements.

C/C++ code is rebindable, provided all the sections are named. You can use the

CSECT compiler option or the #pragma csect directive to name a section. If the GOFF

option is active, then your CSECTs will automatically be named. See “CSECT |

NOCSECT” on page 81.

© Copyright IBM Corp. 1996, 2005 379

Note: If you do not name all the sections and you try to rebind, the binder cannot

replace private or unnamed sections. The result is a permanent

accumulation of dead code and of duplicate functions.

The RENAME control statement may rename specified unresolved function references

to a definition of a different name. This is especially helpful when matching function

names that should be case insensitive. The RENAME statement does not apply to

rebinds. If you rebind updated code with the original name, you will need another

RENAME control statement to make references match their definitions.

The binder starts its processing by reading object code from primary input (DD

SYSLIN). It accepts the following inputs:

v Object modules (compiler output from C/C++ and other languages)

v Load modules (previously link-edited by the Linkage-Editor)

v Program Objects (previously bound by the binder)

v Binder control statements

v Generalized Object File Format (GOFF) files

During the processing of primary input, control statements can control the binder

processing. For example, the INCLUDE control statement will cause the binder to

read and include other code.

Among other processing, the binder records whether or not symbols (external

functions and variables) are currently defined. During the processing of primary

input, the AUTOCALL control statement causes a library to be immediately searched

for members that contain a definition for an unresolved symbol. If such a member is

found, the binder reads it as autocall input before it processes more primary or

secondary input.

After the binder processes primary input, it searches the libraries that are included

in DD SYSLIB for definitions of unresolved symbols, unless you specified the options

NOCALL or NORES. This is final autocall processing. The binder may read library

members that contain the sought definition as autocall input.

Final autocall processing drives DD SYSLIB autocall resolution one or two times. After

the first DD SYSLIB autocall resolution is complete, symbols that are still unresolved

are subject to renaming. If renaming is done, DD SYSLIB autocall is driven a second

time to resolve the renamed symbols.

After the binder completes final autocall (if autocall takes place), it processes the

IMPORT control statements that were read in to match unresolved DLL type

references. It then marks those symbols as being resolved from DLLs.

Finally, the binder generates an output program object. It stores the program object

in an HFS file, or as a member of the program library (PDSE) specified on the DD

SYSLMOD statement. The Program Management Loader can load this program object

into virtual storage to be run. The binder can generate a listing. It can also generate

a file of IMPORT control statements for symbols exported from the program that are

to be used to build other applications that use this DLL.

Linkage considerations

The binder will check that a statically bound symbol reference and symbol definition

have compatible attributes. If a mismatch is detected, the binder will issue a

diagnostic message. This attribute information is contained within the binder input

files, such as object files, program objects, and load modules.

380 z/OS V1R7.0 XL C/C++ User’s Guide

For C and C++, the default attribute is based on the XPLINK, NOXPLINK, LP64 and

ILP32 options.

The attributes can also be set for assembly language. Refer to the HLASM

Language Reference, SC26-4940 for further information.

Primary input processing

The binder obtains its primary input from the contents of the data sets that are

defined by the DD SYSLIN.

Primary input to the binder can be a sequential data set, a member of a partitioned

data set, or an instream data set. The primary input must consist of one or more

separately compiled program objects, object modules, load modules or binder

control statements.

C or C++ object module as input

The binder accepts object modules generated by the C or C++ compiler (as well as

other compilers or assemblers) as input. All initialization information and relocation

information for both code and the Writable Static Area is retained, which makes

each compile unit fully rebindable.

Secondary input processing

Secondary input to the binder consists of files that are not part of primary input but

are included as input due to the INCLUDE control statement.

The binder obtains its secondary input by reading the members from libraries of

object modules (which may contain control statements), load modules, or program

objects.

Load module as input

The binder accepts a load module that was generated by the Linkage-Editor input,

and converts it into program object format on output.

Note: Object modules that define or refer to writable static objects that were

processed by the prelinker and link-edited into a load module do not contain

relocation information. You cannot rebind these compile units, or use them

as input to the IPA Link step. See “Code that has been prelinked” on page

403 for more information on prelinked code and the binder.

Program object as input

The binder accepts previously bound program objects as input. This means that you

can recompile only a changed compile unit, and rebind it into a program without

needing other unchanged compile units. See “Rebind a changed compile unit” on

page 356 and “Rebindability” on page 397.

You can compile and bind each compile unit to a program object, possibly with

unresolved references. To build the full application, you can then bind all the

separate program objects into a single executable program object.

Chapter 10. Binder processing 381

Autocall input processing (library search)

The library search process is also known as automatic library call, or autocall for

short. Unresolved symbols, including unresolved DLL-type references, may have

their definitions within a library member that is searched during library search

processing.

The library member that is expected to contain the definition is read. This may

resolve the expected symbol, and also other symbols which that library member

may define. Reading in the library member may also introduce new unresolved

symbols.

Incremental autocall processing (AUTOCALL control statement)

Traditionally, autocall has been considered part of the final bind process. However,

through the use of the AUTOCALL control statement, you can invoke autocall at any

time during the include process.

The binder searches the libraries that occur on AUTOCALL control statements

immediately for unresolved symbols and DLL references, before it processes more

primary or secondary input. See z/OS MVS Program Management: User’s Guide

and Reference for further information on the AUTOCALL control statement. After

processing the AUTOCALL statement, if new unresolved symbols are found that

cannot be resolved from within the library being processed, the library will not be

searched again. To search the library again, another AUTOCALL statement or SYSLIB

must indicate the same library.

Final autocall processing (SYSLIB)

The binder performs final autocall processing of DD SYSLIB in addition to incremental

autocall. It performs this processing after it completes the processing of DD SYSLIN.

DD SYSLIB defines the libraries of object modules, load modules, or program objects

that the binder will search after it processes primary and secondary input.

The binder searches each library (PDS or PDSE) in the DD SYSLIB concatenation in

order. The rules for searching for a symbol definition in a PDS or PDSE are as

follows:

v If the library contains a C370LIB directory (@@DC370$ or @@DC390$) that was

created using the C/C++ Object Library Utility, and the directory points to a

member containing the definition for the symbol, that member is read.

v If the library has a member or alias with the same name as the symbol that is

being searched, that member of the library is read.

You can use the LIBRARY control statement to suppress the search of SYSLIB for

certain symbols, or to search an alternate library.

Non-XPLINK libraries

The libraries described here are to be used only for binding non-XPLINK program

modules.

For C and C++, you should include CEE.SCEELKEX and CEE.SCEELKED in your DD

SYSLIB concatenation when binding your program. Those libraries contain the

Language Environment resident routines, which include those for callable services,

initialization, and termination. CEE.SCEELKED has the uppercase (NOLONGNAME),

382 z/OS V1R7.0 XL C/C++ User’s Guide

8-byte-or-less versions of the standard C library routines, for example PRINTF and

@@PT@C. CEE.SCEELKEX has the equivalent case-sensitive long-named routines; for

example, printf, pthread_create.

For C++, you should also include the C++ base library in data set CEE.SCEECPP in

your DD SYSLIB concatenation when binding your program. It contains the C++ base

routines such as global operator new.

XPLINK libraries

The libraries described here are to be used only for binding XPLINK program

modules.

For C and C++, you must include CEE.SCEEBIND in your DD SYSLIB concatenation

when binding your program. This library contains the Language Environment

resident routines, which include those for initialization and termination.

XPLINK C run-time and C++ base libraries are packaged as DLLs. Therefore, the

bindings for those routines resolve dynamically. This is accomplished by providing

definition side-decks (object modules containing IMPORT control statements). This is

done using INCLUDE control statements in the binder primary or secondary input.

Language Environment CEE.SCEELIB side decks reside in the CEE.SCEELIB data set.

The Language Environment routine definitions for callable services are contained in

the CELHS001 member of the data set CEE.SCEELIB. For example, CEEGTST is

contained here.

The C run-time library routine definitions for 32-bit programs are contained in the

CELHS003 member of the data set CEE.SCEELIB, which contains NOLONGNAME

and case-sensitive long-named routines (for example, printf, PRINTF, and

pthread_create are contained here). It also contains the C run-time library global

variables; for example, environ.

For 32-bit C++ programs, you should also include the C++ base library side deck

(member CELHSCPP in data set CEE.SCEELIB). It contains the C++ base routines

such as global operator new.

LP64 libraries

The libraries described below are to be used only for binding LP64 program

modules. LP64 is built upon the XPLINK linkage so the basic elements mentioned

above still apply:

v As described above, in the simple XPLINK case, you must include CEE.SCEEBND2

in your DD SYSLIB concatenation when binding your programs.

v The 64-bit C++ libraries are packaged as DLLs, so INCLUDE statements must

be used to resolve C and C++ runtime references.

v The 64-bit side decks are in the CEE.SCEELIB dataset.

v For 64-bit modules, the C run-time library definitions are contained in the

CELQS003 member of the CEE.SCEELIB data set.

v The C++ base library side deck member for 64-bit is the CELQSCPP member of

the CEE.SCEELIB data set.

v The C++ class libraries are contained in the C64 member of the CEE.SCEELIB

data set.

v There is no 64-bit equivalent for the CELHS001 member.

Chapter 10. Binder processing 383

Rename processing

Rename processing is performed at the end of the first pass of final autocall

processing of DD SYSLIB, when all possible references have been resolved with the

names as they were on input. The binder renaming logic permits the conversion of

unresolved non-DLL external function references and drives the final autocall

process again.

The binder maps names according to the following hierarchy:

1. If the name has ever been mapped due to a pragma map in C++ code, the

name is not renamed.

2. If the name has ever been mapped due to a pragma map in C code that was

compiled with the LONGNAME option, the name is not renamed.

3. If a valid RENAME control statement was read for an unresolved function name,

new-name specified on the applied RENAME statement is chosen, provided that

old-name did not already appear on an applied RENAME statement as either a

new or old name. Syntactically correct RENAME control statements that are not

applied are ignored. See z/OS MVS Program Management: User’s Guide and

Reference for more information on RENAME control statements.

4. If the name corresponds to a Language Environment function, the binder may

map the name according to C/C++ run-time library rules.

5. If the UPCASE(YES) option is in effect and the name is 8 bytes or less, and not

otherwise renamed by any of the previous rules, the name chosen is the same

name but with all alphabetic characters mapped to uppercase, and ’_’ mapped

to ’@’. The binder maps names with the initial characters IBM, CEE, or PLI to

initial characters of IB$, CE$, and PL$, respectively. All names that are different

only in case will map to the same name.

If renamed, the original name is replaced. The original name and the generated

new name appear in the rename table of the binder listing. See “Renamed Symbol

Cross Reference” on page 389.

Generating aliases for automatic library call (library search)

For library search purposes, a member of a library (PDS, PDSE, or archive) can be

an object module, a load module, or a program object. It has one member name,

but may define multiple symbols (variables or functions) within it. To make library

search successful, you must expose these defined symbols as aliases to the binder.

When the binder searches for an unresolved reference, it can find, through the

member name or an alias, the member which contains the definition. It then reads

that member.

You can create aliases in the following ways:

v ALIAS binder control statement

v ALIASES(ALL) binder option

v ar utility for object module archives

v EDCALIAS utility for object module PDS and PDSEs

Note: Aliases that the EDCALIAS utility generates are supported only for migration

purposes. Use the EDCALIAS utility only if you need to provide autocall

libraries to both prelinker and binder users. Otherwise, you should use the

ALIASES(ALL) option, and bind separate compile units.

384 z/OS V1R7.0 XL C/C++ User’s Guide

Dynamic Link Library (DLL) processing

The binder supports the code that is generated by C++, and by C with the DLL

compiler option, as well as code that is generated by C and C++ with the XPLINK

option. Code generated with the XPLINK compiler option, like code generated by

C++ and code generated by C with the DLL option, is always DLL-enabled (that is,

references can be satisfied by IMPORT control statements). The binder option

DYNAM(DLL) controls DLL processing. You must specify DYNAM(DLL) if the program

object is to be a DLL, or if it contains DLL-type references. This section assumes

that you specified the DYNAM(DLL) option. See z/OS MVS Program Management:

User’s Guide and Reference for more information on the DYNAM(DLL) binder option.

You must also specify CASE(MIXED) in order to preserve the case sensitivity of

symbols on IMPORT control statements.

If you are building an application that imports symbol definitions from a DLL, you

must include an IMPORT control statement for each symbol to which your application

expects to dynamically link. Typically, the input to your bind step for your application

should include the definition side-deck of IMPORT control statements that the binder

generated when the DLL was built. For compatibility, the binder accepts definition

side-decks of IMPORT control statements that the Language Environment Prelinker

generated. To use the definition side-decks that are distributed with IBM Class

libraries, you must specify the binder option CASE(MIXED).

After final autocall processing of DD SYSLIB is complete, all DLL-type references that

are not statically resolved are compared to IMPORT control statements. Symbols on

IMPORT control statements are treated as definitions, and cause a matching

unresolved symbol to be considered dynamically rather than statically resolved. A

dynamically resolved symbol causes an entry in the binder class B_IMPEXP to be

created. If the symbol is unresolved at the end of DLL processing, it is not

accessible at run time.

Addresses of statically bound symbols are known at application load time, but

addresses of dynamically bound symbols are not. Instead, the run-time library that

loads the DLL that exports those symbols finds their addresses at application run

time. The run-time library also fixes up the linkage blocks (descriptors) for the

importer in C_WSA during program execution.

The binder builds tables of imported and exported symbols in the class B_IMPEXP,

section IEWBCIE. This element contains the necessary information about imported

and exported symbols to support run-time library dynamic linking and loading.

Statically bound functions

For each DLL-referenced function, the binder will generate a function linkage block

(descriptor) of the same name as a part in the class C_WSA.

Some of the linkage descriptors for XPLINK code are generated by the compiler

rather than the binder. Compiler-generated descriptors are not visible as named

entities at bind time. For XPLINK:

v Functions, which are referenced exclusively in the compilation unit, have

descriptors which are generated by the compiler and have no visible names.

v Functions, which are possibly referenced outside of the compilation unit (either

by function pointer, or because they are exported), have descriptors which are

generated by Language Environment when the DLL is loaded. They are not part

of C_WSA. There will be a pointer to the function descriptor in C_WSA.

Chapter 10. Binder processing 385

v For all other DLL-referenced functions, function descriptors are generated by the

binder as a part with the same name in the class C_WSA (with the exception that

for NORENT compiles, the descriptor will be in B_DESCR rather than C_WSA).

All C++ code and XPLINK code generate DLL references. C code generates DLL

references if you used the DLL compiler option. If a DLL reference to an external

function is resolved at the end of final autocall processing, the binder generates a

function linkage block of the same name in the Writable Static Area, and initializes it

to point to the resolved function. If the DLL reference is to a static function, the

binder generates a function linkage block with a private name, which is initialized to

point to the resolved static function.

Imported variables

For each DLL-referenced external variable in C_WSA that is unresolved at the end

of final autocall processing (DD SYSLIB), if a matching IMPORT control statement was

read in, the variable is considered to be resolved via dynamic linking from the DLL

named on the IMPORT control statement. The binder will generate a variable linkage

block (descriptor) of the same name, as a part in the class C_WSA.

Imported functions

For each DLL-referenced external function that is unresolved at the end of final

autocall processing, if a matching IMPORT control statement was read in, the function

is considered to be resolved via dynamic linking from the DLL named on the IMPORT

control statement. The binder will generate a function linkage block (descriptor) of

the same name, as a part in the class C_WSA.

Output program object

The DD SYSLMOD defines where the binder stores its output program object. You can

store the output program object in one of the following:

v A PDSE member, where the binder stores a single program object

v A PDSE where the binder stores its output program objects (one program object

for each NAME control statement)

v An HFS file or directory

The PDSE must have the attribute RECFM=U.

Output IMPORT statements

The DD SYSDEFSD defines the output sequential data set where the binder writes out

IMPORT control statements. The binder writes one control statement for each

exported external symbol (function or variable), if you specify the option DYNAM(DLL).

The data set must have the attributes RECFM=F or RECFM=FB, and LRECL=80.

You can mark symbols for export by using the #pragmaexport directive or the

EXPORTALL compiler option, or the C++ _Export keyword.

Output listing

This section contains an overview of the binder output listing. The binder creates

the listing when you use the LIST binder option. It writes the listing to the data set

that you defined by the DD SYSPRINT.

386 z/OS V1R7.0 XL C/C++ User’s Guide

The listing consist of a number of categories. Some categories always appear in the

listing, and others may appear depending on the options that you selected, or that

were in effect.

Names that the binder generated appear as $PRIVxxxxxx rather than $PRIVATE.

Private names that appear in the binder listing do not actually have that name in the

program object. Their purpose in the listing is to permit association between various

occurrences of the same private name within the listing. For purposes of

rebindability, it is crucial that no sections have private names.

C++ names that appear in messages and listings are mangled names.

For the example listings in this section, the files USERID.PLAN9.OBJ(CU1) and

/u/userid/plan9/cu2.o were bound together using the JCL shown in Figure 39 on

page 388. Figure 38 shows the corresponding source files:

/* file: USERID.PLAN9.C(CU1) */

/* compile with: LONGNAME RENT EXPORTALL CSECT("cu1")*/

#include <stdio.h>

int Ax=10; /* exported */

int ALongNamedThingVVWhichIsExported=11; /* exported */

static int Az=12;

static int A1(void) {

 return Ax;

}

int ALongNamedThingFFWhichIsExported(void) { /* exported */

 return Ax;

}

int A3(void) { /* exported */

 return Ax + Az;

}

extern int b1(void); /* statically bound, defined in plan9/cu2.C */

main() {

 int i;

 i = b1() + call_a3() + call_b1_in_cu2();

 printf("now returning\n"); /* printf statically bound from SCEELKEX */

 return i;

}

 /* file: cu2.C (C++ file) */

 /* compile with: CSECT(PROJ9) */

 extern b2(void);

 extern "C" c2(void); /* imported from DLLC */

 extern c3(void); /* imported from DLLC */

 extern "C" int b1(void) { /* called from cu1.c */

 return b2();

 }

 int b2(void) {

 return c2() + c3();

 }

Figure 38. Source files for listing example

Chapter 10. Binder processing 387

Header

The heading always appears at the top of each page. It contains the product

number, the binder version and release number, the date and the time the bind step

began, and the entry point name. The heading also appears at the top of each

section.

Input Event Log

This section is a chronological log of events that took place during the input phase

of binding. The binder LIST option controls its presence. See z/OS MVS Program

Management: User’s Guide and Reference for more information on the LIST option.

Module Map

The Module Map is printed only if you specify the binder MAP option. It displays the

attributes of each loadable binder class, along with the storage layout of the parts in

that class.

//BIND1 EXEC CBCB,

// BPARM=’LIST(ALL),MAP,XREF’,

// OUTFILE=’USERID.PLAN9.LOADE(HELLO1),DISP=SHR’

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

//SYSDEFSD DD DISP=SHR,DSN=USERID.PLAN9.IMP

//SYSPRINT DD DISP=SHR,DSN=USERID.PLAN9.LISTINGS(CU1CU2R)

//SYSLIN DD *

 INCLUDE INOBJ(CU1)

 INCLUDE ’/u/userid/plan9/cu2.o’

 IMPORT CODE,DLLC,c1

 IMPORT CODE,DLLC,c2

 IMPORT CODE,DLLC,c3__Fv

 RENAME ’call_a3’ ’A3’

 RENAME ’call_b1_in_cu2’ ’b1’

 ENTRY CEESTART

 NAME CU1CU2(R)

/*

Figure 39. Listing example JCL

IEW2278I B352 INVOCATION PARAMETERS - AMODE=31,MAP,RENT,DYNAM=DLL,CASE=MIXED,

COMPAT=CURR,ALIASES=ALL,LIST(ALL),MAP,XREF

IEW2322I 1220 1 INCLUDE INOBJ(CU1)

IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.

IEW2308I 1112 SECTION PROJ9#CU1#C HAS BEEN MERGED.

IEW2308I 1112 SECTION ALongNamedThingVVWhichIsExported HAS BEEN MERGED.

IEW2308I 1112 SECTION Ax HAS BEEN MERGED.

IEW2308I 1112 SECTION PROJ9#CU1#S HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.

IEW2308I 1112 SECTION PROJ9#CU1#T HAS BEEN MERGED.

IEW2322I 1220 2 INCLUDE ’/u/userid/plan9/cu2.o’

IEW2308I 1112 SECTION PROJ9#cu2.C#C HAS BEEN MERGED.

IEW2308I 1112 SECTION PROJ9#cu2.C#S HAS BEEN MERGED.

IEW2308I 1112 SECTION PROJ9#cu2.C#T HAS BEEN MERGED.

IEW2322I 1220 3 IMPORT CODE ’DLLC’ ’c1’

IEW2322I 1220 4 IMPORT CODE ’DLLC’ ’c2’

IEW2322I 1220 5 IMPORT CODE ’DLLC’ ’c3__Fv’

IEW2322I 1220 6 RENAME ’call_a3’ ’A3’

IEW2322I 1220 7 RENAME ’call_b1_in_cu2’ ’b1’

IEW2322I 1220 8 ENTRY CEESTART

IEW2322I 1220 9 NAME CU1CU2(R)

 :

 :

388 z/OS V1R7.0 XL C/C++ User’s Guide

For C/C++ programmers who use constructed reentrancy, two classes are of

special interest: C_CODE and C_WSA. For LP64, the class names are C_CODE64

and C_WSA64. The C_CODE class exists if C++ code is encountered or if C code

is compiled with LONGNAME or RENT. The C_WSA class exists if any defined writable

static objects are encountered.

Data Set Summary

The Module Map ends with a data set summary table, which associates input files

with a corresponding DDname name and concatenation number.

The binder creates a dummy ddname for each unique HFS file when it processes

HFS pathnames from control statements. For example, on an INCLUDE control

statement. The dummy ddname has the format ″/nnnnnnn″, where nnnnnnn is an

integer assigned by binder, and appears in messages and listings in place of the

HFS filename.

Renamed Symbol Cross Reference

The renamed symbol cross reference is printed only if a name was renamed for

library search purposes, and you specified the MAP binder option.

 *** M O D U L E M A P ***

CLASS C_CODE LENGTH = 5E4 ATTRIBUTES = CAT, LOAD, RMODE=ANY

 SECTION CLASS ------- SOURCE --------

 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 PROJ9#CU1#C CSECT 330 INOBJ 01 CU1

 0 0 PROJ9#CU1#C LABEL

 D0 D0 ALongName-ported LABEL

 190 190 A3 LABEL

 248 248 main LABEL

CLASS C_WSA LENGTH = 68 ATTRIBUTES = MRG, DEFER , RMODE=ANY

 CLASS

 OFFSET NAME TYPE LENGTH

 0 c3() DESCRIPTOR 20

 20 c2 DESCRIPTOR 20

 40 ALongName#000001 PART 4

 44 Ax PART 4

 48 $PRIV000011 PART 18

 60 $PRIV000014 PART 8

 *** DATA SET SUMMARY ***

DDNAME CONCAT FILE IDENTIFICATION

/0000001 01 /u/userid/plan9/cu2.o

INOBJ 01 USERID.PLAN9.OBJ

SYSLIB 01 CEE.SCEELKEX

SYSLIB 02 CEE.SCEELKED

SYSLIB 03 CEE.SCEECPP

Chapter 10. Binder processing 389

The binder normally processes symbols exactly as received. However, it may

remove certain symbolic references if they are not resolved by the original name

during autocall. See “Rename processing” on page 384. During renaming, the

original reference is replaced. Such replacements, whether resolved or not, appear

in the Rename Table.

The rename table is a listing of each generated new name and its original old

name.

Cross Reference Table

The listing contains a cross-reference table of the program object if you specify the

XREF binder option. Each line in the table contains one address constant in the

program object. The left half of the table shows the location (OFFSET) and

reference type (TYPE) within a defined part (SECT/PART) where a reference

occurs. The right half of the table describes the symbol being referenced.

Imported and Exported Symbols Listing

The Imported and Exported Symbols Listing is part of the Module Summary Report,

and is printed before other module summary information. This section will not

appear if you do not specify the DYNAM(DLL) option, or if you are not importing or

exporting any symbols.

This section follows the cross-reference table in the binder map. The listing shows

the imported or exported symbols, and whether they name code or data. It also

shows the DLL member name for imported symbols.

 *** RENAMED SYMBOL CROSS REFERENCE ***

 RENAMED SYMBOL

 SOURCE SYMBOL

 A3

 call_a3

 b1

 call_b1_in_cu2

 *** END OF RENAMED SYMBOL CROSS REFERENCE ***

 *** E N D O F M O D U L E M A P ***

 C R O S S - R E F E R E N C E T A B L E

TEXT CLASS = C_CODE

--------------- R E F E R E N C E -------------------------- T A R G E T -------------------------------

CLASS ELEMENT | ELEMENT

OFFSET SECT/PART(ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME

 |

 68 PROJ9#CU1#C 68 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA

 70 PROJ9#CU1#C 70 A-CON | CEESTART CEESTART 0 B_TEXT

 138 PROJ9#CU1#C 138 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA

 204 PROJ9#CU1#C 204 Q-CON | $PRIV000011 $NON-RELOCATABLE 48 C_WSA

 208 PROJ9#CU1#C 208 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA

 2E4 PROJ9#CU1#C 2E4 Q-CON | $PRIV000011 $NON-RELOCATABLE 48 C_WSA

 2E8 PROJ9#CU1#C 2E8 V-CON | b1 PROJ9#cu2.C#C 0 C_CODE

 2EC PROJ9#CU1#C 2EC V-CON | A3 PROJ9#CU1#C 190 C_CODE

 2F0 PROJ9#CU1#C 2F0 V-CON | b1 PROJ9#cu2.C#C 0 C_CODE

 2F4 PROJ9#CU1#C 2F4 V-CON | printf printf 0 B_TEXT

 33C CEEMAIN 4 A-CON | main PROJ9#CU1#C 248 C_CODE

 340 CEEMAIN 8 A-CON | EDCINPL EDCINPL 0 B_TEXT

 3C8 PROJ9#cu2.C#C 78 V-CON | b2() PROJ9#cu2.C#C E0 C_CODE

 3D0 PROJ9#cu2.C#C 80 A-CON | CEESTART CEESTART 0 B_TEXT

 4CA PROJ9#cu2.C#C 17A Q-CON | $PRIV000014 $NON-RELOCATABLE 60 C_WSA

 588 PROJ9#cu2.C#C 238 Q-CON | $PRIV000014 $NON-RELOCATABLE 60 C_WSA

 58C PROJ9#cu2.C#C 23C Q-CON | c2 $NON-RELOCATABLE 20 C_WSA

 590 PROJ9#cu2.C#C 240 Q-CON | c3() $NON-RELOCATABLE 0 C_WSA

390 z/OS V1R7.0 XL C/C++ User’s Guide

Descriptors are identified as such in the listing. One of the following generates an

object module that exports symbols:

v Code that is compiled with the C, C++, or COBOL EXPORTALL compiler option

v C/C++ code that contains the #pragma export directive

v C++ code that contains the _Export keyword

The listing format is shown below. All imported symbols appear first, followed by all

exported symbols. Within each group, symbol names appear in alphabetical order.

There are some differences between the two groups:

v The member name or HFS filename for IMPORT is derived from the IMPORT control

statement.

v The member name for exports is always the same as the DLL member name

and does not appear in the listing.

v Symbol and member names that are longer than 16 bytes are abbreviated in the

listing, using a hyphen. If there are duplicates, they are abbreviated using a

number sign and a number. The abbreviation table shows the mapping from the

abbreviated names to the actual names. See “Long Symbol Abbreviation Table”

on page 394.

In the example below, you can see that c2 and c3 are to be dynamically linked from

a DLL named DLLC. Also, this program exports variables Ax and

ALongNamedThingVVWhichIsExported, and functions A3 and

ALongNamedThingFFWhichIsExported.

Mangled to Demangled Symbol Cross Reference

The mangled to demangled name table is similar to the rename table. It

cross-references demangled C++ names in object modules with their corresponding

mangled names.

Note: Mangling is name encoding for C++, which provides type safe linkage.

Demangling is decoding of a mangled name into a human readable format.

 *** I M P O R T E D A N D E X P O R T E D S Y M B O L S ***

 IMPORT/EXPORT TYPE NAME MEMBER

 ------------- ---- ---------------- ----------------

 IMPORT CODE c2 DLLC

 IMPORT CODE c3() DLLC

 EXPORT DATA Ax

 EXPORT CODE ALongName-ported

 EXPORT DATA ALongName#000001

 EXPORT CODE A3

 *** END OF IMPORT/EXPORT ***

Chapter 10. Binder processing 391

The following example is for long mangled names.

Processing Options

The processing options section of the module summary lists values of the binder

options that were in effect during the bind process.

Save Operation Summary

The save summary for a save to a program object lists the blocksize of the target

PDSE. If you specified DYNAM(DLL), and are exporting symbols, the save operation

summary shows the data set name or the HFS pathname of the side file. For

example:

 *** SHORT MANGLED NAMES ***

 MANGLED NAME

 DE-MANGLED NAME

 b2__Fv

 b2()

 c3__Fv

 c3()

 *** END OF MANGLED TO DEMANGLED CROSS REFERENCE ***

 ** A B B R E V I A T I O N / D E M A N G L E D N A M E S **

ABBR/MANGLE NAME LONG SYMBOL

__javCls1-ension :=

__javCls18_java/awt/Dimension

 $$DEMANGLED$$ == java.awt.Dimension

__javCls1-nuItem :=

__javCls17_java/awt/MenuItem

 $$DEMANGLED$$ == java.awt.MenuItem

__jav15_j-ame()V :=

__jav15_java/awt/Button9_buildName()V

 $$DEMANGLED$$ == void java.awt.Button.buildName()

PROCESSING OPTIONS:

 ALIASES ALL

 ALIGN2 NO

 AMODE 31

 CALL YES

 CASE MIXED

 COMPAT PM3

 DCBS NO

 DYNAM DLL

 :

 :

 END OF OPTIONS

392 z/OS V1R7.0 XL C/C++ User’s Guide

Save Module Attributes

The save module attributes section displays the attributes of the program object.

These attributes are saved in the PDSE directory along with the program name, or

saved in the HFS file.

Entry Point and Alias Summary

The entry point and alias summary will show an entry type of ″HIDDEN″ for hidden

aliases. Hidden aliases may not be visible to some system utilities, and are marked

as ″not executable″, to prevent an unintentional load and execution. They are for

autocall purposes only. If you specify the option ALIASES(ALL), the binder generates

hidden aliases.

SAVE OPERATION SUMMARY:

 MEMBER NAME CU1CU2

 LOAD LIBRARY USERID.PLAN9.LOADE

 PROGRAM TYPE PROGRAM OBJECT(FORMAT 3)

 VOLUME SERIAL M06001

 DISPOSITION REPLACED

 TIME OF SAVE 11.13.40 JUN 3, 1997

 SIDEFILE USERID.PLAN9.IMP(CU1CU2)

SAVE MODULE ATTRIBUTES:

 AC 000

 AMODE 31

 DC NO

 EDITABLE YES

 EXCEEDS 16MB NO

 EXECUTABLE YES

 MIGRATABLE NO

 OL NO

 OVLY NO

 PACK,PRIME NO,NO

 PAGE ALIGN NO

 REFR NO

 RENT YES

 REUS YES

 RMODE ANY

 SCTR NO

 SSI

 SYM GENERATED NO

 TEST NO

 XPLINK NO

 MODULE SIZE (HEX) 00001360

Chapter 10. Binder processing 393

Long Symbol Abbreviation Table

The long symbol abbreviation table lists symbol names that do not fit in the space

that is allocated to them in the listing. This is a cross reference of abbreviations to

the actual name. The abbreviation table is printed for symbols greater than 16 bytes

in length, if you specify the MAP(YES) and XREF(YES) binder options.

DDname vs Pathname Cross Reference Table

This section appears only if you specified pathnames on control statements.

The binder creates a dummy ddname for each unique HFS file when it processes

HFS pathnames from control statements. For example, on an INCLUDE control

statement. The dummy ddname has the format ″/nnnnnnn″, where nnnnnnn is an

integer assigned by the binder. The integer nnnnnnn appears in messages and

listings in place of the HFS filename.

The DDname vs Pathname Cross Reference Table shows the correspondence

between the dummy ddname and its corresponding HFS filename. The table

appears only if there is a generated ddname. Pathnames that you specified on JCL

have user-assigned ddnames, and do not appear in this table. The following is the

format of the DDname vs Pathname Cross Reference Table.

 ENTRY POINT AND ALIAS SUMMARY:

 NAME: ENTRY TYPE AMODE C_OFFSET CLASS NAME STATUS

 CEESTART MAIN_EP 31 00000000 B_TEXT

 b1 HIDDEN 00000350 C_CODE REASSIGNED

 b2() HIDDEN 00000430 C_CODE REASSIGNED

 main HIDDEN 00000248 C_CODE REASSIGNED

 Ax HIDDEN 00000044 C_WSA REASSIGNED

 ALongName-ported HIDDEN 000000D0 C_CODE REASSIGNED

 ALongName#000001 HIDDEN 00000040 C_WSA REASSIGNED

 A3 HIDDEN 00000190 C_CODE REASSIGNED

 CEEMAIN HIDDEN 00000338 C_CODE REASSIGNED

 PROJ9#cu2.C#C HIDDEN 00000350 C_CODE REASSIGNED

 PROJ9#cu2.C#S HIDDEN 000005D8 C_CODE REASSIGNED

 PROJ9#cu2.C#T HIDDEN 000005E0 C_CODE REASSIGNED

 PROJ9#CU1#C HIDDEN 00000000 C_CODE REASSIGNED

 PROJ9#CU1#S HIDDEN 00000330 C_CODE REASSIGNED

 PROJ9#CU1#T HIDDEN 00000348 C_CODE REASSIGNED

 ***** E N D O F R E P O R T *****

*** L O N G S Y M B O L A B B R E V I A T I O N T A B L E ***

 ABBREVIATION LONG SYMBOL

 ALongName-ported := ALongNamedThingFFWhichIsExported

 ALongName#000001 := ALongNamedThingVVWhichIsExported

*** E N D O F L O N G S Y M B O L A B B R E V . T A B L E ***

394 z/OS V1R7.0 XL C/C++ User’s Guide

Message Summary Report

The binder generates a message summary report at the conclusion of each bind

operation. The summary contains information on the types and severity of the

messages that were issued during the bind process. You can search other parts of

the listing to find where the messages were issued.

Binder processing of C/C++ object to program object

The binder recognizes C/C++ object modules and performs special processing for

them.

C/C++ categorizes reentrant programs as natural or constructed. The binder

supports both natural reentrancy and C/C++ constructed reentrancy. However,

programs that contain constructed reentrancy need additional run-time library for

support while executing.

C code is naturally reentrant if it contains no data in the Writable Static Area.

Modifiable data can be one of the following:

v External variables

v Static variables

v Writable strings

v DLL linkage blocks (descriptors) for variables

v DLL linkage blocks (descriptors) for functions

C++ code always has DLL type references for all function references that require a

function descriptor in C_WSA. This means that all C++ programs are made

reentrant via constructed reentrancy.

++

| D D N A M E V S P A T H N A M E C R O S S R E F E R E N C E |

++

 DDNAME PATHNAME

-------- --

/0000001 /u/userid/plan9/cu2.o

 *** END OF DDNAME VS PATHNAME ***

MESSAGE SUMMARY REPORT

 SEVERE MESSAGES (SEVERITY = 12)

 NONE

 ERROR MESSAGES (SEVERITY = 08)

 NONE

 WARNING MESSAGES (SEVERITY = 04)

 NONE

 INFORMATIONAL MESSAGES (SEVERITY = 00)

 2008 2278 2308 2322

 **** END OF MESSAGE SUMMARY REPORT ****

Chapter 10. Binder processing 395

Programs with constructed reentrancy have two areas:

v A modifiable area that contains modifiable objects, seen in the binder class

C_WSA

v A constant or reentrant area that contains executable code and constant data,

seen in the binder classes B_TEXT or C_CODE.

Each user running the program receives a private copy of the C_WSA demand load

class, which is mapped by the binder and is loaded by the run-time library. Multiple

spaces or sessions can share the second part only if it is installed in the link pack

area (LPA) or extended link pack area (ELPA). You must install PDSEs dynamically

in the LPA.

To generate reentrant C/C++ code, follow these steps:

1. Compile your source files to generate code with constructed reentrancy as

follows:

v Compile your C source files with the RENT compiler option to generate code

with constructed reentrancy.

v Compile your C++ source files with whatever options you require. The

compiler will generate C++ code with constructed reentrancy.
2. Use the binder to combine all input object modules into a single output program

object.

Each compile unit maps to a number of sections, which belong to the C_CODE,

C_WSA, or B_TEXT binder classes. Named binder sections may be replaced and

make the code potentially rebindable. You can name your C/C++ sections with

either the CSECT compiler option, or with the use of the #pragma csect directive. The

name of a section should not be the same as one of your functions or variables, as

this will cause duplicate symbols.

Each section owns one or more parts. The names of the parts are the names that

resolve references. The names of functions appear as labels, which also resolve

references. Some parts that are owned by a section may be unnamed. Each part

belongs to a binder class.

Each externally named object in the Writable Static Area appears as a part that is

owned by a section of the same name in the program object. Such parts belong to

the C_WSA binder class. The binder section that owns an object also owns the

initialization information for the object in the Writable Static Area. A rebind replaces

this initialization information.

The code parts belong to the binder class of C_CODE or B_TEXT. The code parts

consist of assembly instructions, constants and literals, and potentially read only

variables that are not in the Writable Static Area. The following example will

produce two sections, i and CODE1:

 #pragma code(csect,"CODE1")

 int i=10;

 int foo(void) { return i; }

v The section named i is in class C_WSA, and has associated with it the

initialization information to initialize ’i’ to 10.

v The section named CODE1 is in class C_CODE, and has associated with it the

entry point for function foo() and the machine instructions for the function.

When rebound, both sections i and CODE1 are replaced along with any information

that is associated with them.

396 z/OS V1R7.0 XL C/C++ User’s Guide

The names in the C_WSA class and in the C_CODE class are in the same

namespace. A variable and a function cannot have the same name.

C++ constructor calls and destructor calls that need to be collected across compile

units are collected in the class C_@@STINIT.

DLL initialization information, which needs to be collected across compile units, is

collected in the class C_@@DLLI.

Note: The information in this section is applicable to GOFF object modules and is

not applicable to XOBJ.

Rebindability

If the binder processes duplicate sections, it keeps only the first one. This feature

is particularly important when rebinding. You must include the changed parts first

and the old program object second. This is how you replace the changed sections.

The binder can process each object module separately so that you only need to

recompile and rebind the modules that you have modified. You do not need to

recompile or include the object module for any unchanged modules.

When the binder replaces a named section, it also replaces all of its parts (named

or unnamed). If a section does not have the name you desire, you can change it

with the #pragma csect directive or with the CSECT compiler option. Unnamed parts

typically come from the following:

v Unnamed modifiable static parts in C_WSA (static variables, strings)

v Unnamed static parts in C_CODE that may not be modifiable (static variables,

strings)

v Unnamed code, static, or test part in C_CODE

You should name all sections if you want to rebind. If a section is unnamed (has a

private name) and you attempt to replace it on a rebind, the unnamed section is not

replaced by the updated but corresponding unnamed section. Instead, the binder

keeps both the old and new unnamed sections, causing the program module to

grow in size. All references to functions that are defined by both the old section and

the new section are resolved first to functions in the new section. The program may

run correctly, but you will get warnings about duplicate function definitions at bind

time. These duplicates will never go away on future rebinds because you cannot

replace or delete unnamed sections. You will also accumulate dead code in the

duplicate functions which can never be accessed. This is why it is important to

name all sections if you want to rebind your code.

Example: Suppose that our DLL consists of two compile units, cu3.c and cu4.c,

that are bound using the JCL in Figure 40 on page 398:

/* file: cu3.c */

/* compile with: LONGNAME RENT EXPORTALL*/

#pragma csect(code,"CODE3")

func3(void) { return 4; }

int int3 = 3;

/* file: cu4.c */

/* compile with: LONGNAME RENT EXPORTALL */

#pragma csect(code,"CODE4")

func4(void) { return 4; }

int int4 = 4;

Chapter 10. Binder processing 397

Later, you discover that func3 is in error and should return 3. Change the source

code in cu3.c and recompile. Rebind as follows:

The input event log in the binder listing shows:

BADEXE defines sections int3, CODE3, int4, and CODE4. If the binder sees duplicate

sections, it uses the first one that it reads. Since CU3 defines sections CODE3 and

int3, and is included before BADEXE, both sections are replaced by the newer ones in

CU3 when program object GOODEXE is created.

DLL considerations

Any IMPORT control statements used in the original bind must also be input to the

re-bind, unless the dynamic resolution information is available via an INCLUDE

statement.

Error recovery

This section describes common errors in binding.

//BIND1 EXEC CBCB,

// BPARM=’CALL,MAP,DYNAM(DLL)’,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

//SYSLIN DD *

 INCLUDE INOBJ(CU3)

 INCLUDE INOBJ(CU4)

 ENTRY CEESTART

 NAME BADEXE(R)

/*

Figure 40. JCL to bind cu3.c and cu4.c

//BIND1 EXEC CBCB,

// BPARM=’LIST(ALL),CALL,XREF,LET,MAP,DYNAM(DLL)’,

// OUTFILE=’USERID.PLAN9.LOADE,DISP=SHR’

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

//INPOBJ DD DISP=SHR,DSN=USERID.PLAN9.LOADE

//SYSLIN DD *

 INCLUDE INOBJ(CU3)

 INCLUDE SYSLMOD(BADEXE)

 ENTRY CEESTART

 NAME GOODEXE(R)

/*

IEW2322I 1220 1 INCLUDE INOBJ(CU3)

IEW2308I 1112 SECTION CODE3 HAS BEEN MERGED.

IEW2308I 1112 SECTION int3 HAS BEEN MERGED.

IEW2322I 1220 2 INCLUDE INPOBJ(BADEXE)

IEW2308I 1112 SECTION CODE4 HAS BEEN MERGED.

IEW2308I 1112 SECTION int4 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.

IEW2308I 1112 SECTION CEESG003 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEBETBL HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEBPUBT HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEBTRM HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEBLLST HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEBINT HAS BEEN MERGED.

IEW2308I 1112 SECTION CEETGTFN HAS BEEN MERGED.

IEW2308I 1112 SECTION CEETLOC HAS BEEN MERGED.

IEW2322I 1220 3 ENTRY CEESTART

IEW2322I 1220 4 NAME GOODEXE(R)

398 z/OS V1R7.0 XL C/C++ User’s Guide

Unresolved symbols

Inconsistent reference vs. definition types

A common error is to compile one part of the code with RENT and another with

NORENT. A RENT type reference (Q-CON in the binder listing) must be resolved by a

Writable Static Area definition of a PART or a DESCRIPTOR in class C_WSA. A

NORENT reference (V-CON or A-CON in the binder listing) must be resolved by

CSECT or a LABEL typically in class C_CODE or B_TEXT.

Check the binder map to ensure that objects appear as parts in the expected

classes (C_CODE, B_TEXT, C_WSA ...).

Inconsistent name usage

Another problem is the case sensitivity of the symbol names. Objects in the

Writable Static Area cannot be renamed, but unresolved function references may be

renamed to find a definition of a different name. See “Rename processing” on page

384. Such inconsistencies arise from inconsistent usage of the LONGNAME and

NOLONGNAME compiler options, and from multi-language programs that make symbol

names uppercase.

Example: Compile the file main.c with the options LONG, NORENT, and other.c with

the options NOLONG, RENT:

 /* file: main.c */

 /* compile with LONG, NORENT */

 extern int I2;

 extern int func2(void);

 main() {

 int i;

 i = i2 + func2();

 return i;

 }

/* file: other.c */

/* compile with NOLONG,RENT */

int I2 = 2;

int func2(void) { return 2; }

When you bind the object modules together, the following errors will occur:

v An inconsistent use of the RENT | NORENT C compiler option causes symbol I2 to

be unresolved. The definition of I2 from other.c is a writable static object

because of the RENT option. But a writable static object cannot resolve the

reference to I2 from main.c because it is a NORENT reference. The binder

messages show:

IEW2308I 1112 SECTION I2 HAS BEEN MERGED.

IEW2456E 9207 SYMBOL I2 UNRESOLVED.

v An inconsistent use of the LONG | NOLONG C compiler option causes the symbol

func2 to be unresolved. The function definition in other.c is in uppercase

because of the NOLONG option. But the reference to func2 from main.c is in

lowercase because of the LONG option. The binder listing shows that ’FUNC2’ is a

LABEL, that is a defined entry point; yet the binder messages show:

IEW2456E 9207 SYMBOL func2 UNRESOLVED.

Significance of library search order

The order in which the libraries in SYSLIB are concatenated is significant.

Example: Suppose that functions f1() and f4() are resolved from SYSLIB:

Chapter 10. Binder processing 399

/* file: unit0.c */

 extern int f1(void); /* from member UNIT1 of library LIB1 */

 extern int f4(void); /* from member UNIT2 of library LIB2 */

 int main() {

 int rc1, rc4;

 rc1 = f1();

 rc4 = f4();

 if (rc1 != 1) printf("fail rc1 is %d-n", rc1);

 if (rc4 != 40) printf("fail rc1 is %d-n", rc4);

 return 0;

 }

SYSLIB defines the libraries USERID.LIB1 with members UNIT1 and UNIT2, and

USERID.LIB2 with members of the same name but different contents.

The library members are compiled from the following:

/* member UNIT1 of library LIB1 */

int f1(void) { return 1; }

/* member UNIT2 of library LIB1 */

int f2(void) { return 2; }

/* member UNIT1 of library LIB2 */

int f1(void) { return 10; }

/* member UNIT2 of library LIB2 */

int f2(void) { return 20; }

int f3(void) { return 30; }

int f4(void) { return f2()*2; /* 40 */ }

When bound with ALIASES(ALL), or when the EDCALIAS utility is used, all defined

symbols are seen in a library directory as aliases that indicate the library member

that contains their definition.

There are two definitions of f1(), but library search of SYSLIB for f1 searches library

LIB1 first, and finds alias f1 of member UNIT1. It reads in that member, and the call

to f1() returns 1. Library search of SYSLIB for f4 searches LIB1 first, and does not

find a definition. It then searches LIB2, and finds alias f4 of member UNIT2 of library

LIB2. So UNIT2 of library LIB2 is read in resolving not only f4, but also f2 and f3,

and the call to f4() returns 40. UNIT2 of library LIB1 is not read by mistake because

an alias indicates not only the member name, but also the library in which that

member resides.

If the order of LIB1 and LIB2 is reversed, LIB2 is searched first, and f1() is obtained

from LIB2 instead.

If changing the library search order cannot work for you, use the LIBRARY control

statement. See z/OS MVS Program Management: User’s Guide and Reference for

further information on the LIBRARY control statement.

Duplicates

If the binder processes duplicate sections, it keeps the first one and ignores

subsequent ones, without giving a warning. This feature is used to replace named

sections when rebinding by replacing only changed sections.

If the binder processes functions that have duplicate names, it keeps all definitions,

but all references resolve to the first one. An exception is in the case of C++

400 z/OS V1R7.0 XL C/C++ User’s Guide

template instantiation. The binder takes the first user-defined function (if any) of the

same signature rather than the first compiler-generated definition via template

instantiation.

Example: Compile the following source files doit1.c and doit2.c:

#include <stdio.h>

/* file: doit1.c */

int int1 = 1;

#pragma csect(code,"DO1")

int func2(void) { return 2; }

int func3(void) { return 3; }

extern int func4(void);

int main() {

 int i1,i2,i3,i4;

 i1 = int1;

 i2 = func2();

 i3 = func3();

 i4 = func4();

 printf("%d %d %d %d\n",i1,i2,i3,i4);

 return 0;

}

/* file: doit2.c */

int int1 = 11;

#pragma csect(code,"DO2")

int func3(void) { return 33; }

int func4(void) { return 44; }

Use the LONGNAME compiler option, and bind. The binder sections are int1, DO1 and

int1, DO2. The binder keeps one of the duplicate sections, int1, and does not issue

a warning. But uniquely named sections contain the functions. Section DO1

contains the functions func2 and func3. Section DO2 contains the functions func3

and func4. The binder retains both sections DO1 and DO2, but because both

sections contain function func3, it issues a warning message as follows:

IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A

SYMBOL OF TYPE LD IN SECTION DO1.

It is easier to find the object code with the duplicate if you use multiple INCLUDE

statements rather than DD concatenation.

Example: If you use:

 //INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

 //SYSLIN DD *

 INCLUDE INOBJ(DOIT1)

 INCLUDE INOBJ(DOIT2)

 ENTRY CEESTART

 /*

The members in the binder listing are separated logically. The messages in the

binder listing are:

Chapter 10. Binder processing 401

From the informational messages, it is clear that section DO1 is from

INOBJ(DOIT1), and that DO2 is from INOBJ(DOIT2).

Example: But if you use DD concatenation as follows:

 //INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

 //SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(DOIT1)

 // DD DISP=SHR,DSN=USERID.PLAN9.OBJ(DOIT2)

 // DD *

 ENTRY CEESTART

 /*

 :

 :

Now the messages are:

 It is no longer clear which input file defines which section, and this makes tracking

down duplicates to the originating compile unit more difficult.

Duplicate functions from autocall

If a library member that is expected to contain the definition of a symbol is read, it

may resolve the expected symbol. It may also resolve other symbols because the

library member may define multiple functions. These unexpected definitions that are

pulled in through library search may cause duplicates. Since you cannot always be

sure which one of the duplicate symbols you will resolve with, you should remedy

the situation that is causing the duplicate symbols.

Hunting down references to unresolved symbols

Unresolved requests generate error or warning messages in the binder listing. If a

function or variable is unresolved at the end of binder processing, it can be resolved

at a later rebind.

Example: If you did not expect a symbol to remain unresolved, you can look at the

binder listing to see which parts reference the symbol. If your DD SYSLIN has a large

concatenation, the input is logically concatenated before the binder processes it.

Since the compile units are not logically separated, it is hard to tell which compile

unit defines the part that has the reference; for example:

 //SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM1)

 // DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM2)

 // DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM3)

 :

 :

IEW2322I 1220 1 INCLUDE INOBJ(DOIT1)

IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.

IEW2308I 1112 SECTION DO1 HAS BEEN MERGED.

IEW2308I 1112 SECTION int1 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.

IEW2322I 1220 2 INCLUDE INOBJ(DOIT2)

IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A

SYMBOL OF TYPE LD IN SECTION DO1.

IEW2308I 1112 SECTION DO2 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.

IEW2308I 1112 SECTION DO1 HAS BEEN MERGED.

IEW2308I 1112 SECTION int1 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.

IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A

SYMBOL OF TYPE LD IN SECTION DO1.

IEW2308I 1112 SECTION DO2 HAS BEEN MERGED.

402 z/OS V1R7.0 XL C/C++ User’s Guide

Example: You should consider using multiple INCLUDE control statements, which will

logically separate the compile units for the binder informational messages in the

listing. You can then find the compile unit with the unresolved reference (similar to

finding duplicate function definitions); for example:

 //INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ

 //SYSLIN DD *

 INCLUDE INOBJ(DOIT1)

 INCLUDE INOBJ(DOIT2)

 ENTRY CEESTART

 /*

Incompatible linkage attributes

The binder will check that a statically bound symbol reference and symbol definition

have compatible attributes. If a mismatch is detected, the binder will issue a

diagnostic message. This attribute information is contained within the binder input

files, such as object files, program objects, and load modules.

For C and C++, the default attribute is based on the XPLINK and NOXPLINK options.

Individual symbols can have a different attribute than the default by using the

#pragma OS_UPSTACK, #pragma OS_DOWNSTACK, and #pragma OS_NOSTACK.

The attributes can also be set for assembly language. Refer to the HLASM

Language Reference, SC26-4940 for further information.

Non-reentrant DLL problems

If you bind a DLL with the option REUS(NONE), each load of the DLL causes a

separate load of the code area and the data area (C_WSA). If you split a statically

bound program into mutually dependent DLLs, you will probably not get the desired

result. Function pointers that used to compare the same may not be the same

anymore, because the multiple loads of a DLL have more than one copy of the

function in memory.

The same is true for data. A separate copy of C_WSA is loaded. So, data objects

that are exported from a DLL and modified are not seen as modified by the new

program that uses the DLL. You should bind all DLLs with REUS(RENT), or

REUS(SERIAL) so that a new C_WSA is loaded only once per enclave.

Code that has been prelinked

You cannot bind code that refers to objects in the Writable Static Area and has

been prelinked, and code which refers to objects in the Writable Static Area and

has not been prelinked, in the same program object. This is because the z/OS

prelinker and the binder use different methods to manage the Writable Static Area.

The z/OS prelinker removes relocation information about objects in the Writable

Static Area, making them invisible to the binder. The binder keeps relocation

information and manages the Writable Static Area in the binder class C_WSA.

Chapter 10. Binder processing 403

404 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 11. Running a C or C++ application

This chapter gives an overview of how to run z/OS XL C/C++ programs under z/OS

batch, TSO, and the z/OS Shell.

z/OS Language Environment provides a common run-time environment for C, C++,

COBOL, PL/I, and FORTRAN. For detailed instructions on running existing and new

z/OS XL C/C++ programs under z/OS Language Environment, refer to z/OS

Language Environment Programming Guide. z/OS XL C/C++ Programming Guide

also describes how to run z/OS XL C/C++ programs in a CICS environment.

Setting the region size for z/OS XL C/C++ applications

Prior to running your applications, ensure that you have the required region size to

run the compiler and to run your application.

Note: The current compiler default region size is 48M, but depending on your

program and the degree of optimization you are using (i.e., OPT(2) and/or

IPA), you may require significantly more space.

If your installation does not change the IBM-supplied default limits in the IEALIMIT

or IEFUSI exit routine modules, different values for the region size have the

following results:

 Region Size Value Result

0K or 0M Provides the job step with all the storage that is

available below and above 16 MB. The resulting size

of the region below and above 16 MB is unpredictable.

< 0M ≤ REGION < 16M Establishes the size of the private area below 16 MB.

If the region size specified is not available below 16

MB, the job step terminates abnormally. The extended

region size is the default value of 32 MB.

< 16M ≤ REGION ≤ 32M Provides the job step all the storage available below

16 MB. The resulting size of the region below 16 MB is

unpredictable. The extended region size is the default

value of 32 MB.

< 32M ≤ REGION < 2047M Provides the job step all the storage available below

16 MB. The resulting size of the region below 16 MB is

unpredictable. The extended region size is the

specified value. If the region size specified is not

available above 16 MB, the job step abnormally

terminates.

Assuming that you do not use your own IEFUSI exit to override this, a specification

of REGION=4M provides 4 MB below 16 MB, and a default of 32 MB above 16 MB for

a total of 36 MB of available virtual memory and not just 4 MB.

Specifying REGION=40M provides all available private virtual memory below 16 MB,

most likely around 8 MB to 10 MB, and 40 MB above 16 MB for a total of around

48 MB. This means that a JCL change from REGION=4M to REGION=40M does not

change the virtual storage available to the compiler from 4 MB to 40 MB, but rather

from 36 MB to 48 MB. If the only storage use increase is above 16 MB, then the

actual increase is 8 MB.

© Copyright IBM Corp. 1996, 2005 405

Running an application under z/OS batch

You must have the Language Environment Library SCEERUN available before you try

to run your application under z/OS batch.

If your application was compiled using the XPLINK compiler option you must have

the Language Environment Library SCEERUN2 available before you try to run your

application under z/OS batch.

If your application was bound with the DLL Class Libraries, you must supply

SCLBDLL2 at run time. As of z/OS V1R2, the version of the DLL library is in

CBC.SCLBDLL2. The DLL data set(s) can be in the system libraries, your JOBLIB

statement, or your STEPLIB statement.

The search sequence for library files is in the following order: STEPLIB, JOBLIB,

LINKPACK, and LINKLIST.

Specifying run-time options under z/OS batch

When you run a C or C++ application, you can override the default values for a set

of z/OS XL C/C++ run-time options. These options affect the execution of your

application, including its performance, its error-handling characteristics, and its

production of debugging and tuning information.

For your application to recognize run-time options, either the EXECOPS compiler

option, or the #pragma runopts(execops) directive must be in effect. The default

compiler option is EXECOPS.

You can specify run-time options under z/OS batch as follows:

v In your JCL, in the PARM parameter of the EXEC statement. For more information,

refer to “Specifying run-time options in the EXEC statement” on page 407.

v On the GPARM parameter of the cataloged procedures that are supplied by IBM.

Refer to “Using cataloged procedures” on page 407.

v The #pragma runopts statement in your source code.

v The CEEUOPT facility that is provided by z/OS Language Environment.

v In the assembler user exit. For more information on the assembler user exit, refer

to the z/OS XL C/C++ Programming Guide.

If EXECOPS is in effect, use a slash ’/’ to separate run-time options from arguments

passed to the application. For example:

GPARM=’STORAGE(FE,FE,FE)/PARM1,PARM2,PARM3’

Language Environment interprets the character string that precedes the slash as

run-time options. The character string following the slash is passed to the main()

function of your application as arguments. If a slash does not separate the

arguments, Language Environment interprets the entire string as an argument.

If the NOEXECOPS option is in effect, none of the preceding run-time options will take

effect. In fact, any arguments and options that you specify in the parameter string

(including the slash, if present) are passed as arguments to the main() function. For

a description of run-time options see “Specifying run-time options” on page 281.

You should establish the required settings of the options for all z/OS XL C/C++

programs that you execute on a production basis. Each time the program is run, the

406 z/OS V1R7.0 XL C/C++ User’s Guide

default run-time options that were selected during z/OS XL C/C++ installation apply,

unless you override them by using one of the following:

v Coding a #pragma runopts directive in your source

v Creating a CEEUOPT csect with the CEEXOPT macro and linking this csect into the

program module.

v Specifying run-time options in the EXEC or GPARM statements

Example: The following example shows you how to run your program under z/OS

batch. Partitioned data set member MEDICAL.ILLNESS.LOAD(SYMPTOMS) contains your

z/OS XL C/C++ executable program. The program was compiled with the EXECOPS

compiler option in effect. If you want to use the run-time option RPTOPTS(ON), and to

pass TESTFUNCT as an argument to the function, use the JCL stream as follows:

Specifying run-time options in the EXEC statement

Example: You can specify run-time options in the PARM parameter of the EXEC

statement as follows:

//[stepname] EXEC PGM=program_name,

// PARM=’[runtime options/][program parameters]’

Example: If you want to generate a storage report and run-time options report for

the application PROGRAM1, specify the run-time option RPTOPTS(ON) as follows:

//GO1 EXEC PGM=PROGRAM1,PARM=’RPTOPTS(ON) / ’

Note that the run-time options that are passed to the main routine are followed by a

slash (/) to separate them from program parameters.

Using cataloged procedures

You can use one of the following cataloged procedures that are supplied with the

z/OS XL C/C++ compiler to run your program. Each procedure listed below includes

an execution step:

For z/OS XL C programs:

EDCCBG Compile, bind, and run a C program

EDCCLG Compile, link, and run a C program

EDCCPLG Compile, pre-link, link, and run a C program

EDCQBG Bind and run a 64-bit C program

EDCQCBG Compile, bind, and run a 64-bit C program

EDCXCBG Compile, bind, and execute an XPLINK C Program

For z/OS XL C++ programs:

CBCBG Bind and run a C++ program

CBCCBG Compile, bind, and run a C++ program

CBCCLG Compile, prelink, link, and run a C++ program

CBCG Run a C++ program

CBCLG Prelink, link, and run a C++ program

CBCQBG Bind and run a 64-bit C++ program

CBCQCBG Compile, bind, and run a 64-bit C++ program

//JOBname JOB...

//STEP1 EXEC PGM=SYMPTOMS,PARM='RPTOPTS(ON)/TESTFUNCT' ...
//STEPLIB DD DSN=MEDICAL.ILLNESS.LOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

Figure 41. Running your program under z/OS batch

Chapter 11. Running a C or C++ application 407

||
||
||
||

||

||
||
||

CBCXBG Bind and run an XPLINK C++ program

CBCXCBG Compile, bind, and run an XPLINK C++ program

CBCXG Run an XPLINK C++ program

For more information on these cataloged procedures, see Appendix D, “Cataloged

procedures and REXX EXECs,” on page 583.

Example: If you are using an IBM-supplied cataloged procedure, you must specify

the run-time options on the GPARM parameter of the EXEC statement. Ensure that the

EXECOPS run-time option is in effect.

//STEP EXEC EDCCBG,INFILE=’...’,

// GPARM=’STACK(10K)/’

Example: You can also use the GPARM parameter to pass arguments to the z/OS XL

C/C++ main() function. Place the argument, preceded by a slash, after the run-time

options; for example:

//GO EXEC EDCCBG,INFILE=...,

// GPARM=’STACK(10K)/ARGUMENT’

Example: If you want to pass an argument without specifying run-time options and

EXECOPS is in effect (this is the default), precede it with a slash; for example:

//GO EXEC EDCCBG,...GPARM=’/ARGUMENT’

//GO EXEC EDCCBG,...GPARM=’/HFS file:/u/mike/cloudy.C’

Example: If you want to pass parameters which contain slashes, and you are not

providing run-time options, you must precede the parameters with a slash, as

follows:

//GO EXEC EDCCBG,...GPARM=’/HFS file:/u/mike/cloudy.C’

See also “Specifying run-time options” on page 281.

Running an application under TSO

Before you run your program under TSO, you must have access to the run-time

library CEE.SCEERUN. To ensure that you have access to the run-time library, do one

of the following:

v If you are running under ISPF in the foreground, concatenate the libraries to

ISPLLIB.

v Have your system programmer add the libraries to the LPALST or LPA.

v Have your system programmer add the libraries to the LNKLST.

v Have your system programmer change the LOGON PROC so the libraries are added

to the STEPLIB for the TSO session.

v If your application was compiled using the XPLINK compiler option, you must have

the Language Environment Library SCEERUN2 available before you try to run your

application under TSO.

The TSO CALL command runs a load module under TSO. If data-set-name is the

partitioned data set member that holds the load module, the command to load and

run a specified load module is:

CALL 'data-set-name' ['parameter-string'];

For example, if the load module is stored in partitioned data set member

SAMPLE.CPGM.LOAD(TRICKS), and the default run-time options are in effect, run your

program as follows:

408 z/OS V1R7.0 XL C/C++ User’s Guide

CALL ’SAMPLE.CPGM.LOAD(TRICKS)’

If you specify the unqualified name of the data set, the system assumes the

descriptive qualifier LOAD. If you do not specify a member name, the system

assumes the name TEMPNAME.

You do not need to use the CALL command if the STEPLIB ddname includes the data

set that contains your program. For example, you could call a program PROG1 with

two required parameters PARM1 and PARM2 from the command line:

PROG1 PARM1 PARM2

See the appropriate manual listed in z/OS Information Roadmap for more

information on STEPLIB.

Specifying run-time options under TSO

You can specify run-time options in a #pragma runopts directive or in the

'parameter-string' of the TSO CALL command. The 'parameter-string' contains two

fields that are separated by a slash(/), and takes the form:

'[runtime options/][arguments to main]'

The first field is passed to the program initialization routine as a run-time option list;

the second field is passed to the main() function.

To allow your application to recognize run-time options, EXECOPS must be in effect.

You can specify your additional run-time options on the command line as follows:

specify the options followed by a slash (/), followed by the parameters you want to

pass to the main() function.

For example, to run a load module that is stored in the partitioned data set member

GINGER.HOURLY.LOAD(CHECK), with the run-time option RPTOPTS(ON), use the following

command:

CALL ’GINGER.HOURLY.LOAD(CHECK)’ ’RPTOPTS(ON)/’

If the NOEXECOPS compiler or run-time option is in effect, what you specify on the

command line (including the slash, if present) is passed as arguments to the main()

function. For a description of run-time options see “Specifying run-time options” on

page 281.

If you want to pass your parameters as mixed case, you must use the ASIS run-time

option. See “Passing arguments to the z/OS XL C/C++ application” for more

information on passing mixed case parameters.

Passing arguments to the z/OS XL C/C++ application

The arguments passed to main() are argc and argv. argc is an integer whose value

is the number of arguments that are given when the program is run. argv is an

array of pointers to null terminated character strings, which contain the arguments

for the program. The first argument is the name of the program being run on the

TSO command line. For more information on argc, argv, and main() see

“ARGPARSE | NOARGPARSE” on page 72 or the description in z/OS XL C/C++

Language Reference.

The case of the characters in argv depends on you invoked how your z/OS XL

C/C++ program, as shown in the following table.

Chapter 11. Running a C or C++ application 409

Table 35. Case sensitivity of arguments under TSO

How the z/OS XL C/C++

program is invoked Example Case of argument

As TSO command program args Mixed case (However, if you

pass the arguments entirely in

upper case, the argument will

be changed to lower case.)

By CALL command (with or

without ASIS)

CALL program args Lower case

By CALL command with

control arguments ASIS

CALL program Args ASIS Mixed case (However, if you

pass the arguments entirely in

upper case, the argument will

be changed to as lower

case.)

By CALL command with

control ASIS

CALL program ARGS ASIS The arguments will be

changed to lower case

following ISO C standards.

Running an application under z/OS UNIX System Services

This section discusses how to run your z/OS UNIX System Services XL C/C++

application.

You must have the Language Environment Library SCEERUN available before you try

to run your application under z/OS UNIX System Services. If your application was

compiled using the XPLINK compiler option you must have the Language

Environment Library SCEERUN2 available before you try to run your application under

z/OS UNIX System Services. If your application was bound with the DLL Class

Libraries, you must supply SCLBDLL2 at run time. As of z/OS V1R2, the version of

the DLL library is in CBC.SCLBDLL2.

z/OS UNIX System Services Application environments

You can run your z/OS UNIX System Services XL C/C++ application programs from

the following environments:

v z/OS shell

v z/OS ISPF Shell (ISHELL)

v TSO/E

To call an application program that resides in an HFS file from the TSO/E READY

prompt, you must use the BPXBATCH utility.

v z/OS batch

To run an application program that resides in an HFS file, you must use the

BPXBATCH utility with the JCL EXEC statement.

v z/OS shell through z/OS batch or TSO

By using the IBM-supplied BPXBATCH program, you can run an application

program that resides in an HFS file. You supply the name of the program as an

argument to the BPXBATCH program, which invokes the shell environment. The

BPXBATCH runs under the z/OS batch environment or under TSO.

Specifying run-time options under z/OS UNIX System Services

When invoking a program from the z/OS shell, slash-separated run-time options

arguments syntax is not used. All the arguments always go to the main() routine.

410 z/OS V1R7.0 XL C/C++ User’s Guide

Specify run-time options by using the exported environment variable _CEE_RUNOPTS.

The run-time will only use _CEE_RUNOPTS if the EXECOPS option is in effect.

Restriction on using 24-bit AMODE programs

You cannot run a 24-bit AMODE z/OS XL C/C++ application program that resides in

an HFS file. Any programs you intend to run from the file system must be 31-bit or

64-bit AMODE, problem program state, PSW key 8 programs. If you plan to run a

24-bit AMODE z/OS XL C/C++ program from within an application, ensure that the

executable resides in a PDS or PDSE member.

Any new z/OS UNIX System Services z/OS XL C/C++ applications you develop

should be 31-bit or 64-bit AMODE.

Copying applications between a PDS and HFS

If you have a XL C/C++ application as a PDS member and want to place it in the

HFS, you can use the z/OS UNIX System Services TSO/E command OPUTX to copy

the member into an HFS file.

If you have a XL C/C++ application as an HFS file and want to place it in a PDS,

you can use the z/OS UNIX System Services TSO/E command OGETX to copy the

HFS file into a PDS.

You can also bind directly into a data set member with the c89 or c++ utility by

specifying a data set member name on the -o option, as in:

c89 -o"//loadlib(foo)"

For a description of these commands, see Chapter 18, “c89 — Compiler invocation

using host environment variables,” on page 465. For examples of using these

commands to copy data sets to HFS files, see z/OS UNIX System Services User’s

Guide.

Running a data Set member from the z/OS Shell

If your z/OS UNIX System Services XL C/C++ program resides in data sets and you

must run the executable member from within the shell, you can pass a call to the

program to TSO/E. Type the TSO/E CALL command with the name of the executable

data set member on the shell command line and press the TSO/E function key to

pass the command to TSO/E. Alternatively, you can use the tso command from the

shell. Just precede the CALL with tso on the command line and press the ENTER key.

When the program completes, the shell session is restored.

Running z/OS UNIX System Services applications under z/OS batch

Using the BPXBATCH utility

Use the IBM-supplied BPXBATCH program to run a XL C/C++ application under z/OS

batch from an HFS file. You can invoke the BPXBATCH utility from TSO/E, or by using

JCL. The BPXBATCH utility submits a batch job and performs an initial user login to

run a specified program from the shell environment.

Before you invoke BPXBATCH, you must have the appropriate authority to read from

and write to HFS files. You should also allocate stdout and stderr HFS files for

writing program output such as error messages. Allocate the standard files using

the PATH options on TSO/E ALLOCATE command or the JCL DD statement.

Chapter 11. Running a C or C++ application 411

For more information on the BPXBATCH program, refer to Chapter 17, “BPXBATCH

Utility,” on page 461.

Invoking BPXBATCH from TSO/E

From TSO/E, you can invoke BPXBATCH several ways:

v From the TSO/E READY prompt

v From a CALL command

v From a REXX EXEC

Figure 42 shows a REXX EXEC that does the following:

1. Runs the application program /myap/base_comp from your user ID

2. Directs output to the file /myap/std/my.out

3. Writes error messages to the file /myap/std/my.err

4. Copies the output and error data to data sets

To invoke BPXBATCH, enter the name of the REXX EXEC from the TSO/E READY

prompt. When the REXX EXEC completes, the stdout and stderr allocated files

are deleted.

Invoking BPXBATCH using JCL

To invoke BPXBATCH using JCL, submit a job that executes an application program

and allocates the standard files using DD statements. For example, to run the

application program /myap/base_comp from your user ID, direct its output to the file

/myap/std/my.out, write error messages to the file /myap/std/my.err, and code the

JCL statements as follows:

//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’PGM /u/myu/myap/base_comp’

//STDOUT DD PATH=’/u/myu/myap/std/my.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

//STDERR DD PATH=’/u/myu/myap/std/my.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Submitting a non-HFS z/OS UNIX System Services executable to

run under z/OS batch

If your program requires z/OS UNIX System Services, but has been link edited into

a load module (PDS member) or bound into a non-HFS program object (PDSE

member), it may be executed in the z/OS batch environment. Use the JCL EXEC

statement to submit the executable to run under the batch environment. You must

have the run-time option POSIX in effect, either as #pragma runopts(POSIX(ON)), or

as PARM=’POSIX(ON)/’.

/* base_comp REXX exec */

"Allocate File(STDOUT) Path(’/u/myu/myap/std/my.out’)

 Pathopts(OWRONLY,OCREAT,OTRUNC) Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"Allocate File(STDERR) Path(’/u/myu/myap/std/my.err’)

 Pathopts(OWRONLY,OCREAT,OTRUNC) Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"BPXBATCH PGM /u/myu/myap/base_comp"

"Allocate File(output1) Dataset

(’MYAPPS.STD(BASEOUT)’)"

"Ocopy Indd(STDOUT) Outdd(output1) Text Pathopts(OVERRIDE)"

"Allocate File(output2) Dataset(’MYAPPS.STD(BASEERR)’)"

"Ocopy Indd(STDERR) Outdd(output2) Text Pathopts(OVERRIDE)"

Figure 42. REXX EXEC to Run a Program

412 z/OS V1R7.0 XL C/C++ User’s Guide

Part 4. Utilities and tools

This section contains information about the utilities and tools that you can use

under z/OS.

v Chapter 12, “Object Library Utility,” on page 415

v Chapter 13, “Filter Utility,” on page 427

v Chapter 14, “DSECT Conversion Utility,” on page 433

v Chapter 15, “Coded Character Set and Locale Utilities,” on page 447

© Copyright IBM Corp. 1996, 2005 413

414 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 12. Object Library Utility

This chapter describes how to use the Object Library Utility to update libraries of

object modules. On z/OS, a library is a PDS or PDSE with object modules as

members.

Object libraries (also called Object Library Utility directories) provide convenient

packaging of object modules in MVS data sets, in much the same way as the UNIX

System Services utility ar packaged object modules that reside in HFS files. Using

the Object Library Utility, you can create libraries that contain object modules

compiled with various combinations of compiler options, such as

LONGNAME/NOLONGNAME, XPLINK/NOXPLINK, IPA/NOIPA and LP64/ILP32.

The Object Library Utility keeps track of the attributes of each of its members in two

special members of the library, which are the Basic Directory Member (@@DC370$)

and the Enhanced Directory Member (@@DC390$). The Basic Directory Member is

used to maintain backwards compatibility with Object Library Utility directories that

were created with older versions of the Object Library Utility (pre-z/OS V1R2). The

Enhanced Directory Member was introduced to support object modules that were

compiled with the IPA, XPLINK, or LP64 compiler options, as well as provide more

detailed listing information. If you do have older Object Library Utility directories at

your site, you should consider upgrading them to include the Enhanced Directory

Member by using the DIR command (described later in this chapter).

Commands for this utility allow you to add and delete object modules from a library,

rebuild the Basic and Enhanced Directory Members, and to create a listing of all the

contents in a Object Library Utility directory.

You can create an object library under z/OS batch and TSO, but not from under

UNIX System Services.

Creating an object library under z/OS batch

Under z/OS batch, the following cataloged procedures include an Object Library

Utility step:

EDCLIB Maintain an object library

EDCCLIB Compile and maintain an object library. (C only)

For more information on the data sets that you use with the Object Library Utility,

see “Description of data sets used” on page 588.

To compile the z/OS XL C source file WALTER.SOURCE(SUB1) with the LONGNAME

compiler option, and then add it to the preallocated PDS (or PDSE) data set

WALTER.SOURCE.LIB, use the following JCL. If this is the first time the Object Library

Utility has been used to add an object module to WALTER.SOURCE.LIB, then the Basic

and Enhanced Directory members will be created in this data set. If they already

exist in this data set, then they will be updated to include the information for the

object module created during the compilation.

//COMPILE EXEC EDCCLIB,INFILE=’WALTER.SOURCE(SUB1)’,CPARM=’LO’,

// LIBRARY=’WALTER.SOURCE.LIB’,MEMBER=’SUB1’

If you request a map for the library WALTER.SOURCE.LIB, use the following:

//OBJLIB EXEC EDCLIB,OPARM=’MAP’,LIBRARY=’WALTER.SOURCE.LIB’

© Copyright IBM Corp. 1996, 2005 415

For z/OS XL C++, use the EDCLIB cataloged procedure. You can specify commands

for the Object Library Utility step on the OPARM parameter. You can specify options

for the Object Library Utility step. These options can generate a library directory,

add members or delete members of a directory, or generate a map of library

members and defined external symbols. This section shows you how to specify

these options under z/OS batch.

Example: The following example creates a new Object Library Utility directory. If

the directory already exists, it is updated.

 //DIRDIR EXEC EDCLIB,

 // LIBRARY=’LUCKY13.CXX.OBJMATH’,

 // OPARM=’DIR’

Example: To create a listing of all the object files (members) in an Object Library

Utility directory:

 //MAPDIR EXEC EDCLIB,

 // LIBRARY=’LUCKY13.CXX.OBJMATH’,

 // OPARM=’MAP’

To add new members to an object library, use the ADD option to update the directory.

Example: To add a new member named MA191:

 //ADDDIR EXEC EDCLIB,

 // LIBRARY=’LUCKY13.CXX.OBJMATH’,

 // OPARM=’ADD MA191’,

 // OBJECT=’DSNAME=LUCKY13.CXX.OBJ(OBJ191),DISP=SHR’

To delete a member from an object library, use the DEL option to keep the directory

up to date.

Example: To delete a member named OLDMEM:

 //DELDIR EXEC EDCLIB,

 // LIBRARY=’LUCKY13.CXX.OBJMATH’,

 // OPARM=’DEL OLDMEM’

Creating an object library under TSO

The Object Library Utility has the following syntax:

�� C370LIB ADD LIB (libname(membername))

OBJ

(objname)

DEL

LIB

(libname(membername))

MAP

LIB

(libname)

LIST

(map)

MAP370

LIB

(libname)

LIST

(map)

MAP390

LIB

(libname)

LIST

(map)

DIR

LIB

(libname)

DIR390

LIB

(libname)

 ��

where:

ADD Adds (or replaces) an object module to an object

library.

 If you use ADD to insert an object module to a

member of a library that already exists, the previous

member is deleted prior to the insert. If the source

416 z/OS V1R7.0 XL C/C++ User’s Guide

data set is the same as the target data set, ADD

does not delete the member, and only updates the

Object Library Utility directory.

DEL Deletes an object module from an object library.

MAP Lists the names (entry points) of object library

members in the Enhanced Directory Member if it is

available; otherwise in the Basic Directory Member.

You will only see object library members that were

compiled with the options IPA(NOOBJECT), XPLINK or

LP64 in the listing if the Enhanced Directory

Member is available.

MAP370 Lists the names (entry points) of all object library

members in the Basic Directory Member.

MAP390 Lists the names (entry points) of all object library

members in the Enhanced Directory Member.

DIR Builds the Object Library Utility directory member.

The Object Library Utility directory contains the

names (entry points) of library members. The DIR

function is only necessary if object modules were

previously added or deleted from the library without

using the Object Library Utility.

DIR390 As of z/OS V1R2, the DIR and DIR390 commands

are aliases of each other, and can be used

interchangeably.

LIB(libname(membername)) Specifies the target data set for the ADD and DEL

functions. The data set name must contain a

member specification to indicate which member

Object Library Utility should create, replace, or

delete.

OBJ(objname) Specifies the source data set that contains the

object module that is to be added to the library. If

you do not specify a data set name, the Object

Library Utility uses the target data set that you

specified in LIB(libname(membername)) as the

source.

LIB(libname) Specifies the object library for which a map is to be

produced or for which an Object Library Utility

directory is to be built.

LIST(map) Specifies the data set that is to contain the Object

Library Utility listing. If you specified an asterisk (*),

the listing is directed to your terminal. If you do not

specify a data set name, a name is generated using

the library name and the qualifier MAP. If TEST.OBJ is

the input library data set, and your user prefix is

FRANK, the data set name for the listing is

FRANK.TEST.OBJ.MAP.

Under TSO, for z/OS XL C you can use either the C370LIB REXX EXEC or the CC

REXX EXEC with the parameter C370LIB. The C370LIB parameter of the CC REXX

EXEC specifies that, if the object module from the compile is directed to a PDS

member, the Object Library Utility directory is to be updated. This step is the

Chapter 12. Object Library Utility 417

equivalent to a compile and C370LIB ADD step. If the C370LIB parameter is specified,

and the object module is not directed to a member of a PDS, the C370LIB

parameter is ignored.

Object Library Utility Map

The Object Library Utility produces a listing for a given library when you specify the

MAP, MAP370, or MAP390 command. MAP370 displays the listing using only the

information in the Basic Directory Member. It assumes that all the extended

attributes are set as zero, which provides backward compatibility with earlier

versions of the Object Library Utility. MAP390 displays the listing using only the

information in the Enhanced Directory Member. MAP is the preferred way of getting a

listing. It generates a listing based on the Enhanced Directory Member if it’s

available, otherwise it generates a listing based on the Basic Directory Member. It

provides additional attribute information on symbols when the information is

available.

Example: The example that follows is produced by the Object Library Utility for a

given library when you specify the MAP or MAP390 command. The listing contains

information on each member of the library.

418 z/OS V1R7.0 XL C/C++ User’s Guide

==

|�1� Object Library Utility Map |

| |

|C370LIB:5694A01 V1.7 IBM Language Environment 2004/01/14 14:27:41|

==

 Library Name: USERID.PROJECT.LIB

--

*�2� Member Name: CGOFF (P) 2004/01/14 13:26:41 *

* 5694A01 V1 R06 *

--

�3�

 User Comment:

AGGRCOPY(NOOVERLAP) NOALIAS ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

CSECT() NODEBUG NODLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX,

FOLD, AFP) GOFF NOGONUMBER NOIGNERRNO ILP32 NOINITAUTO NOINLINE NOIPA

LANGLVL(*EXTENDED) NOLIBANSI NOLOCALE LONGNAME MAXMEM(2097152)

NOOPTIMIZE PLIST(HOST) REDIR NORENT NOROCONST ROSTRING NOSERVICE

SPILL(128) START STRICT NOSTRICT_INDUCTION TARGET(LE, zOSV1R6) NOTEST

TUNE(5) UNROLL(AUTO) NOUPCONV NOXPLINK COMPILED_ON_MVS

�4�(L) Function Name: @InStream@#C

 (L) Function Name: foo

 (WL) External Name: @InStream@#S

 (WL) External Name: @InStream@#T

 (WL) External Name: this_int_is_in_writable_static_and_will_wrap_b

 ecause_it_is_too_long

--

* Member Name: CPPIPANO (P) 2004/01/14 14:27:44 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

NOCSECT CVFT NODEBUG DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX

FOLD,AFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE(NOAUTO

NOREPORT,100,1000) IPA(NOLINK, NOOBJECT, NOOBJONLY, OPTIMIZE, NOGONUM

NOPDF1 NOPDF2 NOATTRIBUTE NOXREF) LANGLVL(ANONSTRUCT, ANONUNION,

ANSIFOR, DBCS, NODOLLARINNAMES, EMPTYSTRUCT, ILLPTOM, IMPLICITINT,

LIBEXT, LONGLONG, OFFSETNONPOD, NOOLDDIGRAPH, OLDFRIEND, NOOLDMATH,

OLDTEMPACC, NOOLDTMPLALIGN, OLDTMPLSPEC, TRAILENUM, TYPEDEFCLASS, NOUCS

 ZEROEXTARRAY) NOLIBANSI NOLOCALE LONGNAME ILP32 MAXMEM(2097152)

OBJECTMODEL(COMPAT) NOOPTIMIZE PLIST(HOST) REDIR ROCONST ROSTRING

ROUND(Z) NORTTI NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

TARGET(LE, zOSV1R6) TEMPLATERECOMPILE NOTEMPLATEREGISTRY TMPLPARSE(NO)

NOTEST(HOOK) TUNE(5) UNROLL(AUTO) NOXPLINK(NOBACKCHAIN,NOCALLBACK

NOGUARD,OSCALL(UPSTACK),NOSTOREARGS) COMPILED_ON_MVS

 (I L) Function Name: myclass::myclass()

 (I L) External Name: another_global

 (I L) Function Name: myclass::foo(float,double)

 (I L) Function Name: some_function(char)

 (I L) External Name: some_global

Chapter 12. Object Library Utility 419

--

* Member Name: CPPNOIPA (P) 2004/01/14 14:27:47 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

NOCSECT CVFT NODEBUG DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX

FOLD,AFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE(NOAUTO

NOREPORT,100,1000) NOIPA LANGLVL(ANONSTRUCT, ANONUNION, ANSIFOR, DBCS,

NODOLLARINNAMES, EMPTYSTRUCT, ILLPTOM, IMPLICITINT, LIBEXT, LONGLONG,

OFFSETNONPOD, NOOLDDIGRAPH, OLDFRIEND, NOOLDMATH, OLDTEMPACC,

NOOLDTMPLALIGN, OLDTMPLSPEC, TRAILENUM, TYPEDEFCLASS, NOUCS,

ZEROEXTARRAY) NOLIBANSI NOLOCALE LONGNAME ILP32 MAXMEM(2097152)

OBJECTMODEL(COMPAT) NOOPTIMIZE PLIST(HOST) REDIR ROCONST ROSTRING

ROUND(Z) NORTTI NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

TARGET(LE, zOSV1R6) TEMPLATERECOMPILE NOTEMPLATEREGISTRY TMPLPARSE(NO)

NOTEST(HOOK) TUNE(5) UNROLL(AUTO) NOXPLINK(NOBACKCHAIN,NOCALLBACK

NOGUARD,OSCALL(UPSTACK),NOSTOREARGS) COMPILED_ON_MVS

 (L) Function Name: myclass::myclass()

 (L) Function Name: myclass::foo(float,double)

 (L) Function Name: some_function(char)

 (WL) External Name: another_global

 (WL) External Name: some_global

--

* Member Name: CPPLP64 (P) 2004/01/14 13:26:49 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

NOCSECT CVFT NODEBUG DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX

FOLD,AFP) GOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE(NOAUTO

NOREPORT,100,1000) NOIPA LANGLVL(ANONSTRUCT, ANONUNION, ANSIFOR, DBCS,

NODOLLARINNAMES, EMPTYSTRUCT, ILLPTOM, IMPLICITINT, LIBEXT, LONGLONG,

OFFSETNONPOD, NOOLDDIGRAPH, OLDFRIEND, NOOLDMATH, OLDTEMPACC,

NOOLDTMPLALIGN, OLDTMPLSPEC, TRAILENUM, TYPEDEFCLASS, NOUCS,

ZEROEXTARRAY) NOLIBANSI NOLOCALE LONGNAME LP64 MAXMEM(2097152)

OBJECTMODEL(IBM) NOOPTIMIZE PLIST(HOST) REDIR ROCONST ROSTRING ROUND(Z)

NORTTI NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION TARGET(LE,

zOSV1R6) TEMPLATERECOMPILE NOTEMPLATEREGISTRY TMPLPARSE(NO)

NOTEST(HOOK) TUNE(5) UNROLL(AUTO) XPLINK(NOBACKCHAIN,NOCALLBACK,GUARD

OSCALL(UPSTACK),NOSTOREARGS) COMPILED_ON_MVS

 (6 X L) Function Name: myclass::myclass()

 (6 X L) Function Name: myclass::foo(float,double)

 (6 X L) Function Name: some_function(char)

 (6 XWL) External Name: another_global

 (6 XWL) External Name: some_global

420 z/OS V1R7.0 XL C/C++ User’s Guide

--

* Member Name: CIPA64 (P) 2004/01/14 14:27:51 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) NOALIAS ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

CSECT() NODEBUG NODLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX,

FOLD, AFP) GOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE IPA(NOLINK,

NOOBJ, COM, OPT, NOGONUM) LANGLVL(*EXTENDED) NOLIBANSI NOLOCALE

LONGNAME LP64 MAXMEM(2097152) NOOPTIMIZE PLIST(HOST) REDIR RENT

NOROCONST ROSTRING NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

TARGET(LE, zOSV1R6) NOTEST TUNE(5) UNROLL(AUTO) NOUPCONV

XPLINK(NOBACKCHAIN, NOSTOREARGS, NOCALLBACK, GUARD, OSCALL(NOSTACK))

COMPILED_ON_MVS

 (6IX L) Function Name: foo

 (6IX L) External Name: this_int_is_in_writable_static_and_will_wrap_b

 ecause_it_is_too_long

==

| Symbol Definition Map |

==

--

| �5� Symbol Name: @InStream@#C |

--

 �6� From member: CGOFF Type: Function (L)

--

| Symbol Name: this_int_is_in_writable_static_and_will_wrap_because_i |

| t_is_too_long |

--

 From member: CGOFF Type: External (WL)

 From member: CIPA64 Type: External (6IX L)

--

| Symbol Name: foo |

--

 From member: CGOFF Type: Function (L)

 From member: CIPA64 Type: Function (6IX L)

--

| Symbol Name: @InStream@#T |

--

 From member: CGOFF Type: External (WL)

--

| Symbol Name: @InStream@#S |

--

 From member: CGOFF Type: External (WL)

--

| Symbol Name: some_function(char) |

--

 From member: CPPNOIPA Type: Function (L)

 From member: CPPLP64 Type: Function (6 X L)

 From member: CPPIPANO Type: Function (I L)

Chapter 12. Object Library Utility 421

The Object Library Utility produces a listing for a given library when the MAP370

command is specified. The listing produced by MAP370 will only contain information

from the Object Library Utility directory members that are in the XOBJ object file

format. In other words, files compiled with the GOFF compiler option (which includes

all XPLINK and LP64 compiled object files) will not appear in the MAP370 listing. Also,

IPA(NOOBJECT) compiled files will not appear in the MAP370 listing either.

--

| Symbol Name: myclass::myclass() |

--

 From member: CPPNOIPA Type: Function (L)

 From member: CPPIPANO Type: Function (I L)

--

| Symbol Name: myclass::foo(float,double) |

--

 From member: CPPNOIPA Type: Function (L)

 From member: CPPIPANO Type: Function (I L)

--

| Symbol Name: some_global |

--

 From member: CPPNOIPA Type: External (WL)

 From member: CPPLP64 Type: External (6 XWL)

 From member: CPPIPANO Type: External (I L)

--

| Symbol Name: another_global |

--

 From member: CPPNOIPA Type: External (WL)

 From member: CPPLP64 Type: External (6 XWL)

 From member: CPPIPANO Type: External (I L)

--

| Symbol Name: myclass::myclass() |

--

 From member: CPPLP64 Type: Function (6 X L)

--

| Symbol Name: myclass::foo(float,double) |

--

 From member: CPPLP64 Type: Function (6 X L)

========= E N D O F O B J E C T L I B R A R Y M A P ==========

422 z/OS V1R7.0 XL C/C++ User’s Guide

==

|�1� Object Library Utility Map |

| |

|C370LIB:5694A01 V1 R6 M0 IBM Language Environment 2004/01/14 14:27:41|

==

 �2� Library Name: USERID.PROJECT.LIB

--

*�3� Member Name: CGOFF (P) 2004/01/14 13:26:41 *

--

--

* Member Name: CPPIPANO (P) 2004/01/14 14:27:44 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

NOCSECT CVFT NODEBUG DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX

FOLD,AFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE(NOAUTO

NOREPORT,100,1000) IPA(NOLINK, NOOBJECT, NOOBJONLY, OPTIMIZE, NOGONUM

NOPDF1 NOPDF2 NOATTRIBUTE NOXREF) LANGLVL(ANONSTRUCT, ANONUNION,

ANSIFOR, DBCS, NODOLLARINNAMES, EMPTYSTRUCT, ILLPTOM, IMPLICITINT,

LIBEXT, LONGLONG, OFFSETNONPOD, NOOLDDIGRAPH, OLDFRIEND, NOOLDMATH,

OLDTEMPACC, NOOLDTMPLALIGN, OLDTMPLSPEC, TRAILENUM, TYPEDEFCLASS, NOUCS

 ZEROEXTARRAY) NOLIBANSI NOLOCALE LONGNAME ILP32 MAXMEM(2097152)

OBJECTMODEL(COMPAT) NOOPTIMIZE PLIST(HOST) REDIR ROCONST ROSTRING

ROUND(Z) NORTTI NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

TARGET(LE, zOSV1R6) TEMPLATERECOMPILE NOTEMPLATEREGISTRY TMPLPARSE(NO)

NOTEST(HOOK) TUNE(5) UNROLL(AUTO) NOXPLINK(NOBACKCHAIN,NOCALLBACK

NOGUARD,OSCALL(UPSTACK),NOSTOREARGS) COMPILED_ON_MVS

 �4� (L) External Name: another_global

 (L) External Name: some_global

 (L) Function Name: myclass::myclass()

 (L) Function Name: myclass::foo(float,double)

 (L) Function Name: some_function(char)

Chapter 12. Object Library Utility 423

--

* Member Name: CPPNOIPA (P) 2004/01/14 14:27:47 *

* 5694A01 V1 R06 *

--

 User Comment:

AGGRCOPY(NOOVERLAP) ANSIALIAS ARCH(5) ARGPARSE NOASCII

BITFIELD(UNSIGNED) CHARS(UNSIGNED) NOCOMPACT NOCOMPRESS NOCONVLIT

NOCSECT CVFT NODEBUG DLL(NOCALLBACKANY) EXECOPS NOEXPORTALL FLOAT(HEX

FOLD,AFP) NOGOFF NOGONUMBER NOIGNERRNO NOINITAUTO NOINLINE(NOAUTO

NOREPORT,100,1000) NOIPA LANGLVL(ANONSTRUCT, ANONUNION, ANSIFOR, DBCS,

NODOLLARINNAMES, EMPTYSTRUCT, ILLPTOM, IMPLICITINT, LIBEXT, LONGLONG,

OFFSETNONPOD, NOOLDDIGRAPH, OLDFRIEND, NOOLDMATH, OLDTEMPACC,

NOOLDTMPLALIGN, OLDTMPLSPEC, TRAILENUM, TYPEDEFCLASS, NOUCS,

ZEROEXTARRAY) NOLIBANSI NOLOCALE LONGNAME ILP32 MAXMEM(2097152)

OBJECTMODEL(COMPAT) NOOPTIMIZE PLIST(HOST) REDIR ROCONST ROSTRING

ROUND(Z) NORTTI NOSERVICE SPILL(128) START STRICT NOSTRICT_INDUCTION

TARGET(LE, zOSV1R6) TEMPLATERECOMPILE NOTEMPLATEREGISTRY TMPLPARSE(NO)

NOTEST(HOOK) TUNE(5) UNROLL(AUTO) NOXPLINK(NOBACKCHAIN,NOCALLBACK

NOGUARD,OSCALL(UPSTACK),NOSTOREARGS) COMPILED_ON_MVS

 (L) Function Name: myclass::myclass()

 (L) Function Name: myclass::foo(float,double)

 (L) Function Name: some_function(char)

 (WL) External Name: another_global

 (WL) External Name: some_global

--

* Member Name: CPPLP64 (P) 2004/01/14 13:26:49 *

--

--

* Member Name: CIPA64 (P) 2004/01/14 14:27:51 *

--

==

| �5� Symbol Definition Map |

==

--

| �6� Symbol Name: some_function(char) |

--

 From member: CPPIPANO Type: Function (L)

 From member: CPPNOIPA Type: Function (L)

424 z/OS V1R7.0 XL C/C++ User’s Guide

�1� Map Heading

The heading contains the product number, the library version and release

number, and the date and the time the Object Library Utility step began.

The name of the library immediately follows the heading. To the right of the

library name is the start time of the last Object Library Utility step that

updated the Object Library Utility directory.

�2� Member Heading

The name of the object module member is immediately followed by the

Timestamp field presented in yyyy/mm/dd format. The meaning of the

timestamp is enclosed in parentheses. The Object Library Utility retains a

timestamp for each member and selects the time according to the following

hierarchy:

(P) indicates that the compile timestamp is extracted from the object

module.

(D) indicates that the timestamp is based on the time that the Object

Library Utility DIR command was last issued.

(T) indicates that the timestamp is the time that the ADD command was

issued for the member.

The next line contains the ID of the processor that produced the object

module. If the processor ID is not present, the Processor ID field is not

listed.

�3� User Comments

Displays any comments that were specified in the object module with the

#pragma comment directive. It is possible to manually add such comments to

the END records of an object member and have them displayed in the listing.

These comments are extracted from the END record. The compile time

options are stored in the same area as user comments and are displayed

here as well.

--

| Symbol Name: myclass::myclass() |

--

 From member: CPPIPANO Type: Function (L)

 From member: CPPNOIPA Type: Function (L)

--

| Symbol Name: myclass::foo(float,double) |

--

 From member: CPPIPANO Type: Function (L)

 From member: CPPNOIPA Type: Function (L)

--

| Symbol Name: some_global |

--

 From member: CPPIPANO Type: External (L)

 From member: CPPNOIPA Type: External (WL)

--

| Symbol Name: another_global |

--

 From member: CPPIPANO Type: External (L)

 From member: CPPNOIPA Type: External (WL)

========= E N D O F O B J E C T L I B R A R Y M A P ==========

Chapter 12. Object Library Utility 425

�4� Symbol Information

Immediately following Member Heading and user comments is a list of the

defined objects that the member contains. Each symbol is prefixed by Type

information that is enclosed in parentheses and either External Name or

Function Name. Function Name will appear, provided the object module was

compiled with the LONGNAME option and the symbol is the name of a defined

external function. In all other cases, External Name is displayed. The Type

field gives the following additional information on each symbol:

6 indicates that the object was compiled with LP64

I indicates that the name is compiled IPA(NOOBJECT).

L indicates that the name is a long name. A long name is an external

C++ name in an object module or an external non-C++ name in an

object module produced by compiling with the LONGNAME option.

S indicates that the name is a short name. A short name is an

external non-C++ name in an object module produced by compiling

with the NOLONGNAME option. Such a name is up to 8 characters long

and single case.

W indicates that this is a writable static object. If it is not present, then

this is not a writable static object.

X indicates that the name was compiled with the XPLINK option.

�5� Symbol Definition Map

This section of the listing has an entry for each unique symbol name that

appeared in the previous half of the listing. Any duplicate symbol names

that appear in the entire Object Library Utility directory are grouped here for

cross-reference purposes. This allows you to quickly determine which

attributes a particular symbol name possesses within this Object Library

Utility directory.

�6� Symbol Source List

Displays the object module(s) found by the given symbol. Symbol attributes

(described under “Symbol Information” above) immediately follow the

names of the source objects.

426 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 13. Filter Utility

This chapter describes how to use the CXXFILT utility to convert C++ mangled

names to demangled names, which are human-readable.

When z/OS XL C++ compiles one of your source files, it does not place the function

and class names appearing in that file verbatim in the object file, as would occur if

you were compiling a z/OS XL C program. Instead, it ″mangles″ them, which means

it encodes your function names with their type and scoping information. This

process is required to support the more advanced features of C++ such as

inheritance and function overloading. Mangled names are used to ensure type-safe

linking.

Use the CXXFILT utility to convert these mangled names to demangled names. The

utility copies the characters from either a given file or from standard input, to

standard output. It replaces all mangled names with their corresponding demangled

names.

The CXXFILT utility demangles any of the following classes of mangled names when

the appropriate options are specified.

regular names

Names that appear within the context of a function name or a member

variable.

 Example: The mangled name __ls__7ostreamFPCc is demangled as

ostream::operator<<(const char*).

class names

Includes stand-alone class names that do not appear within the context of a

function name or a member variable.

 Example: For example, the stand-alone class name Q2_1X1Y is demangled

as X::Y

special names

Special compiler-generated class objects.

 Example: For example, the compiler-generated symbol name __vft1X is

demangled as X::virtual-fn-table-ptr.

�� CXXFILT

filename

�

,

(

options

 ��

options:

 NOSYMMAP

SYMMAP

 NOSIDEBYSIDE

SIDEBYSIDE

 NOWIDTH

WIDTH(width)

 NOREGULARNAME

REGULARNAME

�

© Copyright IBM Corp. 1996, 2005 427

�
 NOCLASSNAME

CLASSNAME

 NOSPECIALNAME

SPECIALNAME

The filename refers to the files that contain the mangled names to be demangled.

You may specify more than one file name, which can be a sequential file or a PDS

member. If you do not specify a file name, CXXFILT reads its input from stdin.

The following section describes the options that you can use with the CXXFILT utility.

CXXFILT options

You can use the following options with CXXFILT.

SYMMAP | NOSYMMAP

Default: NOSYMMAP

Produces a symbol map on standard output. This map contains a list of the

mangled names and their corresponding demangled names. The map only displays

the first 40 bytes of each demangled name; it truncates the rest. Mangled names

are not truncated.

If an input mangled name does not have a demangled version, the symbol mapping

does not display it.

The symbol mapping is displayed after the end of the input stream is encountered,

and after CXXFILT terminates.

SIDEBYSIDE | NOSIDEBYSIDE

Default: NOSIDEBYSIDE

Each mangled name that is encountered in the input stream is displayed beside its

corresponding demangled name. If you do not specify this option, then only the

demangled names are printed. In either case, trailing characters in the input name

that are not part of a mangled name appear next to the demangled name. For

example, if an extraneous xxxx is input with the mangled name pr__3FOOF, then the

SIDEBYSIDE option would produce this result:

FOO::pr() pr__3FOOFvxxxx

WIDTH(width) | NOWIDTH

Default: NOWIDTH

Prints demangled names in fields, width characters wide. If the name is shorter than

width, it is padded on the right with blanks; if longer, it is truncated to width. The

value of width must be greater than 0. If width is greater than the record width, then

the output is wrapped.

REGULARNAME | NOREGULARNAME

Default: REGULARNAME

This option demangles regular names such as pr__3FOOFv to FOO:pr().

428 z/OS V1R7.0 XL C/C++ User’s Guide

The mangled name that is supplied to CXXFILT is treated as a regular name by

default. Specifying the NOREGULARNAME option will turn the default off. For example,

specifying the CLASSNAME option without the NOREGULARNAME option will cause CXXFILT

to treat the mangled name as either a regular name or stand-alone class name.

CLASSNAME | NOCLASSNAME

Default: NOCLASSNAME

This option demangles stand-alone class names such as Q2_1X1Y to X::Y.

To request that the mangled names be treated as stand-alone class names only,

and never as a regular name, use both CLASSNAME and NOREGULARNAME.

SPECIALNAME | NOSPECIALNAME

Default: NOSPECIALNAME

This option demangles special names, such as compiler-generated symbol names;

for example, __vft1X is demangled to X::virtual-fn-table-ptr.

To request that the mangled names be treated as special names only, and never as

regular names, use CXXFILT (SPECIALNAME NOREGULARNAME.

Unknown type of name

If you cannot specify the type of name, use CXXFILT (SPECIALNAME CLASSNAME. This

causes CXXFILT to attempt to demangle the name in the following order:

1. Regular name

2. Stand-alone class name

3. Special name

Under z/OS batch

The CXXFILT utility accepts input by two methods: from stdin or from a file.

Example: The following example uses the CXXFILT cataloged procedure, from data

set CBC.SCBCPRC. CXXFILT reads from stdin (sysin), treats mangled names as

regular names, produces a symbol mapping, and uses a field width 15 characters.

The JCL follows:

//RUN EXEC CXXFILT,CXXPARM=’(SYMMAP WIDTH(15)’ ...
//SYSIN DD *

pr__3FOOFvxxxx

__ls__7ostreamFPCc

__vft1X

/*

The output is:

FOO::pr() xxxx

ostream::operator<<(const char*)

__vft1X

C++ Symbol Mapping

demangled mangled

--------- -------

FOO::pr() pr__3FOOFv

ostream::operator<<(const char*) __ls__7ostreamFPCs

Chapter 13. Filter Utility 429

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not

part of a valid mangled name, and the SIDEBYSIDE option is not on, the trailing

characters are not demangled.

Note: In the symbol mappings, the trailing characters xxxx are not displayed.

2. The __vft1X input is not demangled and does not appear in the symbol

mapping because it is a special name, and the SPECIALNAME option was not

specified.

The second method of giving input to CXXFILT is to supply it in one or more files.

Fixed and variable file record formats are supported. Each line of a file can have

one or more names separated by space. In the example below, mangled names are

treated either as regular names or as special names (the special names are

compiler-generated symbol names). Demangled names are printed in fields 35

characters wide, and output is in side-by-side format.

The output contains the following two mangled names:

pr__3FOOFv

__vft1X

You can use the following JCL:

//RUN EXEC CXXFILT,CXXPARM=’FILE1 (SPECIALNAME WIDTH(35) SIDEBYSIDE’

The CXXFILT utility terminates when it reads the end-of-file character.

Under TSO

The CXXFILT utility accepts input by two methods: from stdin or from a file.

With the first method, enter names after invoking CXXFILT. You can specify one or

more names on one or more lines. The output is displayed after you press Enter.

Names that are successfully demangled, as well as those which are not demangled,

are displayed in the same order as they were entered. To indicate end of input,

enter /*.

Example: In the following example, CXXFILT treats mangled names as regular

names, produces a symbol mapping, and uses a field width 15 characters wide.

user> CXXFILT (SYMMAP WIDTH(15)

user> pr__3FOOFvxxxx

reply< FOO::pr() xxxx

user> __ls__7ostreamFPCc

reply> ostream::operator<<(const char*)

user> __vft1X

reply> __vft1X

user> /*

reply> C++ Symbol Mapping

reply>

reply> demangled mangled

reply> --------- -------

reply> FOO::pr() pr__3FOOFv

reply> ostream::operator<<(const char*) __ls__7ostreamFPCs

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not

part of a valid mangled name, and the SIDEBYSIDE option is not on, the trailing

characters are not demangled.

430 z/OS V1R7.0 XL C/C++ User’s Guide

In the symbol mappings, the trailing characters xxxx are not displayed.

2. The __vft1X input is not demangled and does not appear in the symbol

mapping because it is a special name, and the SPECIALNAME option was not

specified.

3. The symbol mapping is displayed only after /* requests CXXFILT termination

The second method of giving input to CXXFILT is to supply it in one or more files.

CXXFILT supports fixed and variable file record formats. Each line of a file can have

one or more names separated by space. In the example below, mangled names are

treated either as regular names or as special names (the special names are

compiler-generated symbol names). Demangled names are printed in fields 35

characters wide, and output is in side-by-side format.

The output contains the following two mangled names:

pr__3FOOFv

__vft1X

Example: Enter the following command:

cxxfilt FILE1 (SPECIALNAME WIDTH(35) SIDEBYSIDE

This will produce the output:

FOO::pr() pr__3FOOFv

X::virtual-fn-table-ptr __vft1X

CXXFILT terminates when it reads the end-of-file character.

Chapter 13. Filter Utility 431

432 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 14. DSECT Conversion Utility

This chapter describes how to use the DSECT conversion utility, which generates a

structure to map an assembler DSECT. This utility is used when a C or C++

program calls or is called by an assembler program, and a structure is required to

map the area passed.

You assemble the source for the assembler DSECT by using the High Level

Assembler, and specifying the ADATA option. (See HLASM Programmer’s Guide, for

a description of the ADATA option.) The DSECT utility then reads the SYSADATA file

that is produced by the High Level Assembler and produces a file that contains the

equivalent C structure according to the options specified.

DSECT Utility options

The options that you can use to control the generation of the C or C++ structure are

as follows. You can specify them in uppercase or lowercase, separating them by

spaces or commas.

 Table 36. DSECT Utility options, abbreviations, and IBM-supplied defaults

DSECT Utility Option Abbreviated Name IBM Supplied Default

SECT[(name,...)] None SECT(ALL)

BITF0XL | NOBITF0XL BITF | NOBITF NOBITF0XL

COMMENT[(delim,...)] | NOCOMMENT COM | NOCOM COMMENT

DECIMAL | NODECIMAL None NODECIMAL

DEFSUB | NODEFSUB DEF | NODEF DEFSUB

EQUATE[(suboptions,...)] | NOEQUATE EQU | NOEQU NOEQUATE

HDRSKIP[(length)] | NOHDRSKIP HDR(length) | NOHDR NOHDRSKIP

LOCALE(name) | NOLOCALE LOC | NOLOC NOLOCALE

INDENT[(count)] | NOINDENT IN(count) | NOIN INDENT(2)

LOWERCASE | NOLOWERCASE LC | NOLC LOWERCASE

OPTFILE(filename) | NOOPTFILE OPTF | NOOPTF NOOPTFILE

PPCOND[(switch)] | NOPPCOND PP(switch) | NOPP NOPPCOND

SEQUENCE | NOSEQUENCE SEQ | NOSEQ NOSEQUENCE

UNIQUE|NOUNIQUE None NOUNIQUE

UNNAMED | NOUNNAMED UNN | NOUNN NOUNNAMED

OUTPUT[(filename)] OUT[(filename)] OUTPUT(DD:EDCDSECT)

RECFM[(recfm)] None C/C++ Library defaults

LRECL[(lrecl)] None C/C++ Library defaults

BLKSIZE[(blksize)] None C/C++ Library defaults

LP64 None NOLP64

SECT

DEFAULT: SECT(ALL)

The SECT option specifies the section names for which structures are produced. The

section names can be either CSECT or DSECT names. They must exist in the

© Copyright IBM Corp. 1996, 2005 433

SYSADATA file that is produced by the assembler. If you do not specify the SECT

option or if you specify SECT(ALL), structures are produced for all CSECTs and

DSECTs defined in the SYSADATA file, except for private code and unnamed

DSECTs.

If the High Level Assembler is run with the BATCH option, only the section names

defined within the first program can be specified on the SECT option. If you specify

SECT(ALL) (or select it by default), only the sections from the first program are

selected.

BITF0XL | NOBITF0XL

DEFAULT: NOBITF0XL

Specify the BITF0XL option when the bit fields are mapped into a flag byte as in the

following example:

FLAGFLD DS F

 ORG FLAGFLD+0

B1FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 1st byte

B1FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 1st byte

B1FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 1st byte

B1FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 1st byte

B1FLG5 DC 0XL(B’00001000’)’00’ Definition for bit 4 of 1st byte

B1FLG6 DC 0XL(B’00000100’)’00’ Definition for bit 5 of 1st byte

B1FLG7 DC 0XL(B’00000010’)’00’ Definition for bit 6 of 1st byte

B1FLG8 DC 0XL(B’00000001’)’00’ Definition for bit 7 of 1st byte

 ORG FLAGFLD+1

B2FLG1 DC 0XL(B’10000000’)’00’ Definition for bit 0 of 2nd byte

B2FLG2 DC 0XL(B’01000000’)’00’ Definition for bit 1 of 2nd byte

B2FLG3 DC 0XL(B’00100000’)’00’ Definition for bit 2 of 2nd byte

B2FLG4 DC 0XL(B’00010000’)’00’ Definition for bit 3 of 2nd byte

When the bit fields are mapped as shown in the above example, you can use the

following code to test the bit fields:

TM FLAGFLD,L’B1FLG1 Test bit 0 of byte 1

Bx label Branch if set/not set

When you specify the BITF0XL option, the length attribute of the following fields

provides the mapping for the bits within the flag bytes.

The length attribute of the following fields is used to map the bit fields if a field

conforms to the following rules:

v The field does not have a duplication factor of zero.

v The field has a length between 1 and 4 bytes and does not have a bit length.

v The field does not have more than one nominal value.

and the following fields conform to the following rules:

v Has a Type attribute of B, C, or X.

v Has the same offset as the field (or consecutive fields have overlapping offsets).

v Has a duplication factor of zero.

v Does not have more than one nominal value.

v Has a length attribute between 1 and 255 and does not have a bit length.

v The length attribute maps one bit or consecutive bits. for example, B’10000000’

or B’11000000’, but not B’10100000’.

The fields must be on consecutive lines and must overlap a named field. If the

fields above are used to define the bits for a field, EQU statements that follow the

field are not used to define the bit fields.

434 z/OS V1R7.0 XL C/C++ User’s Guide

COMMENT | NOCOMMENT

DEFAULT: COMMENT

The COMMENT option specifies whether the comments on the line where the field is

defined will be placed in the structure produced.

If you specify the COMMENT option without a delimiter, the entire comment is placed in

the structure.

If you specify a delimiter, any comments that follow the delimiter are skipped and

are not placed in the structure. You can remove changes that are flagged with a

particular delimiter. The delimiter cannot contain imbedded spaces or commas. The

case of the delimiter and the comment text is not significant. You can specify up to

10 delimiters, and they can contain up to 10 characters each.

DECIMAL | NODECIMAL

DEFAULT: NODECIMAL

The DECIMAL option will instruct the DSECT utility to convert all SYSATADA DC/DS

records of type P to the function type macro: _dec__var(w,0). w is the number of

digits and it is computed by taking the byte size of the P-type data, multiplying it by

two, and subtracting one from the result [in other words, (byte_size * 2)-1]. The byte

size of the P type data is found in the SYSADATA DC/DS record. If a SYSADATA

DC/DS record of type P is interpreted to be part of a union then the DSECT utility

will map it to the function type macro: _dec__uvar(w,0). w still represents the

number of digits. The _dec__uvar macro will expand to a decimal datatype for C

and a unsigned character array for C++. This is necessary because decimal support

in C++ is implemented by a decimal class. C++ does not allow a class with

constructors, or deconstructors, to be part of a union, hence in the case of C++

such decimal data must be mapped to a character array of the same byte size.

The precision will always be left as zero since there is no way to figure out its value

from the DC/DS SYSADATA record. The zero will be output, rather than just the

digit size (that is, _dec__var(w,0) rather than just _dec__var(w,))), to allow the

user to easily edit the DSECT utility output and adjust for the desired precision. Do

not remove the zero as it will cause compilation errors because the function type

macros can no longer be expanded.

If the DECIMAL option is enabled and P type records are found, then the utility will

also include the following code at the beginning of the output file:

#ifndef __decimal_found

 #define __decimal_found

 #ifdef __cplusplus

 #define _dec__var(w,p) decimal<n>

 #define _dec_uvar(w,p) _decchar##w

 #include <idecimal.hpp>

 typedef char _decchar1[1];

 typedef char _decchar2[2];

 typedef char _decchar3[2];

 typedef char _decchar4[3];

 typedef char _decchar5[3];

 typedef char _decchar6[4];

 typedef char _decchar7[4];

 typedef char _decchar8[5];

 typedef char _decchar9[5];

 typedef char _decchar10[6];

 typedef char _decchar11[6];

 typedef char _decchar12[7];

Chapter 14. DSECT Conversion Utility 435

typedef char _decchar13[7];

 typedef char _decchar14[8];

 typedef char _decchar15[8];

 typedef char _decchar16[9];

 typedef char _decchar17[9];

 typedef char _decchar18[10];

 typedef char _decchar19[10];

 typedef char _decchar20[[11];

 typedef char _decchar21[11];

 typedef char _decchar22[12];

 typedef char _decchar23[12];

 typedef char _decchar24[13];

 typedef char _decchar25[13];

 typedef char _decchar26[14];

 typedef char _decchar27[14];

 typedef char _decchar28[15];

 typedef char _decchar29[15];

 typedef char _decchar30[16];

 typedef char _decchar31[16];

 #else

 #define _dec__var(w,p) decimal(n,p)

 #define _dec_uvar(w,p) decimal(w,p)

 #include <decimal.h>

 #endif

 #endif

This code will force the inclusion of the necessary header files, depending on

whether the C or C++ compiler is used. It will also force the _dec__var and

_dec_uvar types, which are outputted by the DSECT utility, to be mapped to the

appropriate C or C++ decimal type. The definition of the macro __decimal_found is

used to guard against the redefinition of macros if several DSECT utility output files

are compiled together.

If the default NODECIMAL option is used then the DSECT utility will convert all P type

DC/DS SYSATADA records to character arrays of the same byte size as the P type

data, as is the existing behavior; for example, 171 (a value of PL3) will map to an

unsigned char[3].

DEFSUB | NODEFSUB

DEFAULT: DEFSUB

The DEFSUB option specifies whether #define directives will be built for fields that

are part of a union or substructure.

Example: If the DEFSUB option is in effect, fields within a substructure or union have

the field names prefixed by an underscore. A #define directive is written at the end

of the structure to allow the field name to be specified directly as in the following

example.

struct dsect_name {

 int field1;

 struct {

 int _subfld1;

 short int _subfld2;

 unsigned char _subfld3[4];

 } field2;

 }

#define subfld1 field2._subfld1

#define subfld2 field2._subfld2

#define subfld3 field2._subfld3

436 z/OS V1R7.0 XL C/C++ User’s Guide

If the DEFSUB option is in effect, the fields that are prefixed by an underscore may

match the name of another field within the structure. No warning is issued.

EQUATE | NOEQUATE

DEFAULT: NOEQUATE

The EQUATE option specifies whether the EQU statements following a field are to be

used to define bit fields, to generate #define directives, or are to be ignored.

The suboptions specify how the EQU statement is used. You can specify one or

more of the suboptions, separating them by spaces or commas. If you specify more

than one suboption, the EQU statements that follow a field are checked to see if they

are valid for the first suboption. If so, they are formatted according to that option.

Otherwise, the subsequent suboptions are checked to see if they are applicable.

If you specify the EQUATE option without suboptions, EQUATE(BIT) is used. If you

specify NOEQUATE (or select it by default), the EQU statements that follow a field are

ignored.

You can specify the following suboptions for the EQUATE option:

BIT Indicates that the value for an EQU statement is used to define the bits for a

field where the field conforms to the following rules:

v The field does not have a duplication factor of zero.

v The field has a length between 1 and 4 bytes and has a bit length that is

a multiple of 8.

v The field does not have more than one nominal value.

and the EQU statements that follow the field conform to the following rules:

v The value for the EQU statements that follow the field mask consecutive

bits (for example, X’80’ followed by X’40’).

v The value for an EQU statement masks one bit or consecutive bits for

example, B’10000000’ or B’11000000’, but not B’10100000’.

v Where the length of the field is greater than 1 byte, the bits for the

remaining bytes can be defined by providing the EQU statements for the

second byte after the EQU statement for the first byte.

v The value for the EQU statement is not a relocatable value.

Example: When you specify EQUATE(BIT), the EQU statements are converted

as in the following example:

FLAGFLD DS H

FLAG21 EQU X’80’

FLAG22 EQU X’40’

FLAG23 EQU X’20’

FLAG24 EQU X’10’

FLAG25 EQU X’08’

FLAG26 EQU X’04’

FLAG27 EQU X’02’

FLAG28 EQU X’01’

FLAG2A EQU X’80’

FLAG2B EQU X’40’

struct dsect_name {

 unsigned int flag21 : 1,

 flag22 : 1,

 flag23 : 1,

 flag24 : 1,

 flag25 : 1,

 flag26 : 1,

 flag27 : 1,

 flag28 : 1,

Chapter 14. DSECT Conversion Utility 437

flag2a : 1,

 flag2b : 1,

 : 6;

 }

BITL Indicates that the length attribute for an EQU statement is used to define the

bits for a field where the field conforms to the following rules:

v The field does not have a duplication factor of zero.

v The field has a length between 1 and 4 bytes and has a bit length that is

a multiple of 8.

v The field does not have more than one nominal value.

and the EQU statements that follow the field conform to the following rules:

v The value that is specified for the EQU statement has the same or

overlapping offset as the field.

v The length attribute for the EQU statement is between 1 and 255.

v The length attribute for the EQU statement masks one bit or consecutive

bits, for example, B’10000000’ or B’11000000’, but not B’10100000’.

v The value for the EQU statement is a relocatable value.

Example: When you specify EQUATE(BITL), the EQU statements are

converted as in the following example:

BYTEFLD DS F

B1FLG1 EQU BYTEFLD+0,B’10000000’

B1FLG2 EQU BYTEFLD+0,B’01000000’

B1FLG3 EQU BYTEFLD+0,B’00100000’

B1FLG4 EQU BYTEFLD+0,B’00010000’

B1FLG5 EQU BYTEFLD+0,B’00001000’

B1FLG6 EQU BYTEFLD+0,B’00000100’

B1FLG7 EQU BYTEFLD+0,B’00000010’

B1FLG8 EQU BYTEFLD+0,B’00000001’

B2FLG1 EQU BYTEFLD+1,B’10000000’

B2FLG2 EQU BYTEFLD+1,B’01000000’

B2FLG3 EQU BYTEFLD+1,B’00100000’

B2FLG4 EQU BYTEFLD+1,B’00010000’

struct dsect_name {

 unsigned int b1flg1 : 1,

 b1flg2 : 1,

 b1flg3 : 1,

 b1flg4 : 1,

 b1flg5 : 1,

 b1flg6 : 1,

 b1flg7 : 1,

 b1flg8 : 1,

 b2flg1 : 1,

 b2flg2 : 1,

 b2flg3 : 1,

 b2flg4 : 1,

 : 20;

 }

DEF Indicates that the EQU statements following a field are used to build #define

directives to define the possible values for a field. The #define directives

are placed after the end of the structure. The EQU statements should not

specify a relocatable value.

 Example: When you specify EQUATE(DEF), the EQU statements are converted

as in the following example:

FLAGBYTE DS X

FLAG1 EQU X’80’

FLAG2 EQU X’20’

FLAG3 EQU X’10’

FLAG4 EQU X’08’

FLAG5 EQU X’06’

438 z/OS V1R7.0 XL C/C++ User’s Guide

FLAG6 EQU X’01’

struct dsect_name {

 unsigned char flagbyte;

 }

/* Values for flagbyte field */

#define flag1 0x80

#define flag2 0x20

#define flag3 0x10

#define flag4 0x08

#define flag5 0x06

#define flag6 0x01

HDRSKIP | NOHDRSKIP

DEFAULT: NOHDRSKIP

The HDRSKIP option specifies that the fields within the specified number of bytes

from the start of the section are to be skipped. Use this option where a section has

a header that is not required in the structure produced.

The value that is specified on the HDRSKIP option indicates the number of bytes at

the start of the section that are to be skipped. HDRSKIP(0) is equivalent to

NOHDRSKIP.

Example: In the following example, if you specify HDRSKIP(8), the first two fields are

skipped and only the remaining two fields are built into the structure.

SECTNAME DSECT

PREFIX1 DS CL4

PREFIX2 DS CL4

FIELD1 DS CL4

FIELD2 DS CL4

struct sectname {

 unsigned char field1[4];

 unsigned char field2[4];

 }

If the value specified for the HDRSKIP option is greater than the length of the section,

the structure is not be produced for that section.

INDENT | NOINDENT

DEFAULT: INDENT(2)

The INDENT option specifies the number of character positions that the fields,

unions, and substructures are indented. Turn off indentation by specifying INDENT(0)

or NOINDENT. The maximum value that you can specify for the INDENT option is

32767.

LOCALE | NOLOCALE

The LOCALE(name) specifies the name of a locale to be passed to the setlocale()

function. Specifying LOCALE without the name parameter is equivalent to passing the

NULL string to the setlocale() function.

The structure produced contains the left and right brace, and left and right square

bracket, backslash, and number sign which have different code point values for the

different code pages. When the LOCALE option is specified, and these characters are

written to the output file, the code point from the LC_SYNTAX category for the

specified locale is used.

Chapter 14. DSECT Conversion Utility 439

The default is NOLOCALE.

You can abbreviate the option to LOC(name) or NOLOC.

LOWERCASE | NOLOWERCASE

DEFAULT: LOWERCASE

The LOWERCASE option specifies whether the field names within the C structure are to

be converted to lowercase or left as entered. If you specify LOWERCASE, all the field

names are converted to lowercase. If you specify NOLOWERCASE, the field names are

built into the structure in the case in which they were entered in the assembler

section.

LP64 | NOLP64

DEFAULT: NOLP64

The equivalent of NOLP64 for the compiler is the option ILP32, which means 32-bit

integer, long, and pointer type. This is the default in the compiler as well. LP64

means 64-bit long and pointer type. LP64 and ILP32 specify the data model for the

programming language.

The LP64 option instructs the DSECT utility to generate structures for use by the

programs compiled with the LP64 option. When this option is enabled, address fields

are mapped to C pointer types (64 bits), and 64-bit integer fields are mapped to

long data types. C/C++ also supports a __ptr32 qualifier for declaring pointers that

are 32-bit in size, which means that if a field is explicitly specified with a 31-bit

address, it is mapped to a __ptr32 qualified pointer.

OPTFILE | NOOPTFILE

The OPTFILE(filename) option specifies the filename that contains the records that

specify the options to be used for processing the sections. The records must be as

follows:

v The lines must begin with the SECT option, and only one section name must be

specified. The options following determine how the structure is produced for the

specified section. The section name must only be specified once.

v The lines may contain the options BITF0XL, COMMENT, DEFSUB, EQUATE, HDRSKIP,

INDENT, LOWERCASE, PPCOND, and UNNAMED, separated by spaces or commas. These

override the options that are specified on the command line for the section.

The OPTFILE option is ignored if the SECT option is also specified on the command

line.

The default is NOOPTFILE.

You can abbreviate the option to OPTF(filename) or NOOPTF.

PPCOND | NOPPCOND

DEFAULT: NOPPCOND

The PPCOND option specifies whether preprocessor directives will be built around the

structure definition to prevent duplicate definitions.

If you specify PPCOND, the following are built around the structure definition.

440 z/OS V1R7.0 XL C/C++ User’s Guide

#ifndef switch

#define switch ...
 structure definition for section ...
#endif

where switch is the switch specified on the PPCOND option or the section name

prefixed and suffixed by two underscores. For example, _ _name_ _.

If you specify a switch, the #ifndef and #endif directives are placed around all

structures that are produced. If you do not specify a switch, the #ifndef and #endif

directives are placed around each structure produced.

SEQUENCE | NOSEQUENCE

DEFAULT: NOSEQUENCE

The SEQUENCE option specifies whether sequence numbers will be placed in columns

73 to 80 of the output record. If you specify the SEQUENCE option, the structure is

built into columns 1 to 72 of the output record, and sequence numbers are placed

in columns 73 to 80. If you specify NOSEQUENCE (or select it by default), sequence

numbers are not generated, and the structure is built within all available columns in

the output record.

If the record length for the output file is less than 80 characters, the SEQUENCE option

is ignored.

UNIQUE | NOUNIQUE

DEFAULT: NOUNIQUE

The UNIQUE option tells the DSECT utility to consider the given unique string as not

occurring in any field names in the input SYSADATA. This is necessary because it

is a guarantee from the user that if the DSECT utility were to use the unique string

to map national characters, no conflict would occur with any other field name. Given

this guarantee the DSECT utility maps national characters as follows:

= unique string + ’n’ + unique string

@ = unique string + ’a’ + unique string

$ = unique string + ’d’ + unique string

Example: If the default ″_″ unique string was used then the national characters

would be mapped as:

= _n_

@ = _a_

$ = _d_

If the default NOUNIQUE option is enabled, the DSECT utility converts all national

characters to a single underscore, even if the resulting label names conflict (as is

the existing behavior).

Note: If the DSECT utility detects a field name that has a length that exceeds the

maximum allowed, a message is displayed and the name is truncated in the

output. This can happen due to the substitution characters in the UNIQUE

option. That is, the field name as specified by the user is within the

maximum limit, but due to the presence of national characters and the

mapping done by UNIQUE, the resulting field name can exceed the limit. The

DSECT utility then ends the output field name with ″...″ to make it easy to find.

Chapter 14. DSECT Conversion Utility 441

The user should check and fix the field name either by changing the UNIQUE

option, or by shortening the original field name, or both.

UNNAMED | NOUNNAMED

DEFAULT: NOUNNAMED

The UNNAMED option specifies that names are not generated for the unions and

substructures within the main structure.

OUTPUT

DEFAULT: OUTPUT(DD:EDCDSECT)

The structures that are produced are, by default, written to the EDCDSECT DD

statement. You can use the OUTPUT option to specify an alternative DD statement or

data set name to write the structure. You can specify any valid file name up to 60

characters in length. The file name specified will be passed to fopen() as entered.

RECFM

DEFAULT: C/C++ Library default

The RECFM option specifies the record format for the file to be produced. You can

specify up to 10 characters. If it is not specified, the C or C++ library defaults are

used.

LRECL

DEFAULT: C/C++ Library default

The LRECL option specifies the logical record length for the file to be produced. The

logical record length that is specified must not be greater than 32767. If it is not

specified, the C or C++ library defaults will be used.

BLKSIZE

DEFAULT: C/C++ Library default

The BLKSIZE option specifies the block size for the file to be produced. The block

size that is specified must not be greater than 32767. If it is not specified, the C or

C++ library defaults will be used.

Generation of structures

The structure is produced as follows according to the options in effect.

v The section name is used as the structure name. A #pragma pack(packed) is

generated at the top of the file, and a #pragma pack(reset) is generated at the

end to ensure that the structure matches the assembler section. For example:

#pragma pack(packed)

struct dsect_name { ...
 };

#pragma pack(reset)

v Any nonalphanumeric characters in the section or field names are converted to

underscores. Duplicate names may be generated when the field names are

identical except for the national character. No warning is issued.

442 z/OS V1R7.0 XL C/C++ User’s Guide

v Where fields overlap, a substructure or union is built within the main structure. A

substructure is produced where possible. When substructures and unions are

built, the DSECT utility generates the structure and union names.

v The substructures and unions within the main structure are indented according to

the INDENT option unless the record length is too small to permit any further

indentation.

v Fillers are added within the structure when required. The DSECT utility generates a

filler name.

v Where there is no direct equivalent for an assembler definition within the C or

C++ language, the field is defined as a character field.

v If a field has a duplication factor of zero, but cannot be used as a structure

name, the field is defined as though the duplication factor of zero was eliminated.

v Where a line within the assembler input consists of an operand with a duplication

factor of zero (for alignment), followed by the field definition, the first operand is

skipped. For example:

FIELDA DS OF,CLB

is treated as though the following was specified.

FIELDA DS CLB

v When the COMMENT option is in effect, the comment on the line that follows the

definition of the field is placed in the structure. The comment is placed on the

same line as the field definition where possible, or on the following line.

/* is removed from the beginning of comments, and */ is removed from the end of

comments. Any remaining instances of */ in the comment are converted to **.

Each field within the section is converted to a field within the structure, as the

following examples show:

v Bit length fields

If the field has a bit length that is not a multiple of 8, it is converted as follows.

Otherwise, it is converted according to the field type.

DS CL.n unsigned int name : n; where n is from 1 to 31.

DS CL.n unsigned char name[x]; where n is greater than 32. x will be

the number of bytes that are required (that is, the bit length / 8 +

1).

DS 5CL.n unsigned char name[x]; where x will be the number of bytes

required (that is, the duplication factor * bit length / 8 + 1).

v Characters

DS C unsigned char name;

DS CL2 unsigned char name[2];

DS 4CL2 unsigned char name[4][2];

v Graphic Characters

DS G wchar_t name;

DS GL1 unsigned char name;

DS GL2 wchar_t name;

DS GL3 unsigned char name[3];

DS 4GL1 unsigned char name[4];

DS 4GL2 wchar_t name[4];

DS 4GL3 unsigned char name[4][3];

v Hexadecimal Characters

DS X unsigned char name;

DS XL2 unsigned char name[2];

DS 4XL2 unsigned char name[4][2];

Chapter 14. DSECT Conversion Utility 443

v Binary fields

DS B unsigned char name;

DS BL2 unsigned char name[2];

DS 4BL2 unsigned char name[4][2];

v Half and Fullword Fixed-point

DS F int name;

DS H short int name;

DS FL1 or HL1 char name;

DS FL2 or HL2 short int name;

DS FL3 or HL3 int name : 24;

DS FLn or HLn unsigned char name[n]; where n is greater than

4.

DS 4F int name[4];

DS 4H short int name[4];

DS 4FL1 or 4HL1 char name[4];

DS 4FL2 or 4HL2 short int name[4];

DS 4FL3 or 4HL3 unsigned char name[4][3];

DS 4FLn or 4HLn unsigned char name[4][n]; where n is greater

than 4.

v Floating Point

DS E float name;

DS D double name;

DS L long double name;

DS 4E float name[4];

DS 4D double name[4];

DS 4L long double name[4];

DS EL4 or DL4 or LL4

float name;

DS EL8 or DL8 or LL8

double name;

DS LL16 long double name;

DS E, D or L unsigned char name[n]; where n is other than 4, 8, or 16.

v Packed Decimal

DS P unsigned char name;

DS PL2 unsigned char name[2];

DS 4PL2 unsigned char name[4][2];

v Zoned Decimal

DS Z unsigned char name;

DS ZL2 unsigned char name[2];

DS 4ZL2 unsigned char name[4][2];

v Address

DS A void *name;

DS AL1 unsigned char name;

DS AL2 unsigned short name;

DS AL3 unsigned int name : 24;

DS 4A void *name[4];

DS 4AL1 unsigned char name[4];

DS 4AL2 unsigned short name[4];

DS 4AL3 unsigned char name[4][3];

v Y-type Address

DS Y unsigned short name;

DS YL1 unsigned char name;

DS 4Y unsigned short name[4];

DS 4YL1 unsigned char name[4];

444 z/OS V1R7.0 XL C/C++ User’s Guide

v S-type Address (Base and displacement)

DS S unsigned short name;

DS SL1 unsigned char name;

DS 4S unsigned short name[4];

DS 4SL1 unsigned char name[4];

v External Symbol Address

DS V void *name;

DS VL3 unsigned int name : 24;

DS 4V void *name[4];

DS 4VL3 unsigned char name[4][3];

v External Dummy Section Offset

DS Q unsigned int name;

DS QL1 unsigned char name;

DS QL2 unsigned short name;

DS QL3 unsigned int name : 24;

DS 4Q unsigned int name[4];

DS 4QL1 unsigned char name[4];

DS 4QL2 unsigned short name[4];

DS 4QL3 unsigned char name[4][3];

v Channel Command Words

When a CCW, CCW0, or CCW1 assembler instruction is present within the

section, a typedef ccw0_t or ccw1_t is defined to map the format of the CCW.

The CCW, CCW0, or CCW1 is built into the structure as follows:

CCW cc,addr,flags,count ccw0_t name;

CCW0 cc,addr,flags,count ccw0_t name;

CCW1 cc,addr,flags,count ccw1_t name;

Under z/OS batch

Example: You can use the IBM-supplied cataloged procedure EDCDSECT to execute

the DSECT utility as in the following example.

 EDCDSECT invokes the High Level Assembler to assemble the source that is provided

with the ADATA option. It then executes the DSECT utility to produce the structure. It

writes the structure to the data set that is specified by the OUTFILE parameter,

unless the OUTPUT option is also specified. A report that indicates the options in

effect and any error messages is written to SYSOUT.

If the assembler source requires macros or copy members from a macro library,

include them on the SYSLIB DD for the ASSEMBLY step.

 KNOWN: - The assembler source name is FRED.SOURCE(TESTASM).

 - The structure is to be written to FRED.INCLUDE(TESTASM).

 - The required DSECT Utility options are EQU(BIT).

 USE THE FOLLOWING JCL:

 //DSECT EXEC PROC=EDCDSECT,

 // INFILE=’FRED.SOURCE(TESTASM)’,

 // OUTFILE=’FRED.INCLUDE(TESTASM)’,

 // DPARM=’EQU(BIT)’

Figure 43. Running the DSECT Utility under z/OS batch

Chapter 14. DSECT Conversion Utility 445

The parameters to the EDCDSECT procedure are:

 Table 37. EDCDSECT procedure parameters

Parameter Description

INFILE Input assembler source data set name. This option must be provided.

OUTFILE The data set name for the file into which the structure is written.

If you do not specify an OUTFILE name, a temporary data set is generated.

APARM High Level Assembler options.

DPARM DSECT Utility options.

Under TSO

If you have REXX installed, you can run the DSECT utility under TSO by using the

CDSECT EXEC. The format of the parameters for the CDSECT EXEC is:

�� CDSECT infile outfile

�

�

,

option

,

ASM

asmopts

 ��

where infile specifies the file name of the assembler source program containing the

required section. outfile specifies the file that the structure produced is written to,

and options are any valid DSECT utility options. If you specify ASM, any following

options must be High-Level Assembler options. The ADATA is specified by default.

 When the CDSECT command is executed, the High Level Assembler is executed with

the required options. The DSECT utility is then executed with the specified options. A

report of the options and any error messages will be displayed on the terminal.

If the assembler source requires macros or copy members from a macro library,

issue the ALLOCATE command to allocate the required macro libraries to the SYSLIB

DD statement before issuing the CDSECT command.

 KNOWN: - The assembler source name is FRED.SOURCE(TESTASM).

 - The structure is to be written to FRED.INCLUDE(TESTASM).

 - The required DSECT Utility options are EQU(BIT).

 USE THE FOLLOWING COMMAND:

 CDSECT ’FRED.SOURCE(TESTASM)’ ’FRED.INCLUDE(TESTASM)’ EQU(BIT)

Figure 44. Running the DSECT Utility under TSO

446 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 15. Coded Character Set and Locale Utilities

This chapter describes the coded character set conversion utilities and the

localedef utility. The coded character set conversion utilities help you to convert a

file from one coded character set to another. The localedef utility allows you to

define the language and cultural conventions that your environment uses.

Coded Character Set Conversion Utilities

These are the Coded Character Set Conversion utilities that you may find useful:

iconv Converts a file from one coded character set encoding to another. You can

use iconv to convert C source code before compilation or to convert input

files. For more information, refer to z/OS UNIX System Services Command

Reference.

uconvdef

Reads the input source file and creates a binary conversion table. The input

source file defines a mapping between UCS-2 and multibyte code sets. For

more information, refer to z/OS UNIX System Services Command

Reference.

genxlt Generates a translate table that the iconv utility and the iconv family of

functions can use to convert coded character sets. It can be used to build

code set converters for code pages that are not supplied with z/OS XL

C/C++, or to build code set conversions for existing code pages.

The genxlt utility runs under z/OS batch and TSO. The iconv utility runs under z/OS

batch, TSO, and the z/OS shell. The iconv_open(), iconv(), and iconv_close()

functions can be called from applications running under these environments and

CICS/ESA®.

iconv Utility

The iconv utility converts the characters from the input file from one coded

character set (code set) definition to another code set definition, and writes the

characters to the output file.

The iconv utility creates one character in the output file for each character in the

input file, and does not perform padding or truncation.

When conversions are performed between single-byte code pages, the output files

are the same length as the input files. When conversions are performed between

double-byte code pages, the output files may be longer or shorter than the input

files because the shift-out and shift-in characters may be added or removed. If you

are using the iconv utility under the z/OS shell, see z/OS UNIX System Services

Command Reference for details on syntax and uses.

There are three standard library functions that can be used by any application to

change the character set of data. These functions are iconv_open(), iconv(), and

iconv_close(). For more information on the iconv utility, see z/OS XL C/C++

Run-Time Library Reference.

Under z/OS batch

JCL procedure EDCICONV invokes the iconv utility to copy the input data set to the

output data set and convert the characters from the input code page to the output

code page.

© Copyright IBM Corp. 1996, 2005 447

The EDCICONV procedure has the following parameters:

INFILE The data set name for the input data set

OUTFILE The data set name for the output data set

FROMC The name of the code set in which the input data is encoded

TOC The name of the code set to which the output data is to be

converted

Example:

//ICONV EXEC PROC=EDCICONV,

// INFILE=’FRED.INFILE’,

// OUTFILE=’FRED.OUTFILE’,

// FROMC=’IBM-037’,

// TOC=’IBM-1047’

The output data set must be pre-allocated. If the data set does not exist, iconv will

fail. An output data set with a fixed record format may only be used if all the records

created by the iconv utility will have the same record length as the output data set.

No padding or truncation is performed. If the output data set has variable length

records, the record length must be large enough for the longest record created.

Because of these restrictions, when converting to or from a DBCS, the output data

set must have variable length records. Otherwise the iconv utility will fail.

For more information on the iconv utility, refer to z/OS XL C/C++ Programming

Guide.

Under TSO

TSO CLIST ICONV invokes the iconv utility to copy the input data set to the output

data set and convert the characters from the input code page to the output code

page.

The parameters of the ICONV CLIST are as follows:

�� ICONV infile outfile FROMCODE(fromcode) TOCODE(tocode) ��

Where:

infile The input data set name.

outfile The output data set name.

fromcode The name of the code set in which the input data is encoded.

tocode The name of the code set to which the output data is to be

converted.

Example:

ICONV INPUT.FILE OUTPUT.FILE FROMCODE(IBM-037) TOCODE(IBM-1047)

The output data set must be pre-allocated. If the data set does not exist, iconv will

fail. An output data set with a fixed record format may only be used if all the records

created by the iconv utility will have the same record length as the output data set.

No padding or truncation is performed. If the output data set has variable length

records, the record length must be large enough for the longest record created.

Because of these restrictions, when converting to or from a DBCS, the output data

set must have variable length records. Otherwise the iconv utility will fail.

448 z/OS V1R7.0 XL C/C++ User’s Guide

For more information on iconv, refer to z/OS XL C/C++ Programming Guide.

Under the z/OS Shell

iconv [–sc] –f oldset –t newset [file ...]

or

iconv –l[–v]

The iconv utility converts characters in file (or from stdin if you do not specify a

file) from one code page set to another. It writes the converted text to stdout. See

z/OS XL C/C++ Programming Guide for more information about the code sets that

are supported for this command.

If the input contains a character that is not valid in the source code set, iconv

replaces it with the byte 0xff and continues, unless the –c option is specified.

If the input contains a character that is not valid in the destination code set,

behavior depends on the iconv() function of the system. See z/OS XL C/C++

Run-Time Library Reference for more information about the character that is used

for converting incorrect characters.

You can use iconv to convert singlebyte data or doublebyte data.

Options:

–c Characters that contain conversion errors are not written to the

output. By default, characters not in the source character set are

converted to the value 0xff and written to the output.

–f oldset oldset can be either the code set name or a pathname to a file that

contains an external code set. Specifies the current code set of the

input.

–l Lists code sets in the internal table. This option is not supported.

–s Suppresses all error messages about faulty encodings.

–t newset Specifies the destination code set for the output. newset can be

either the code set name or a pathname to a file that contains an

external code set.

–v Specifies verbose output.

genxlt Utility

The genxlt utility creates translation tables, which are used by the iconv_open(),

iconv(), and iconv_close() services of the run-time library. These services can be

called from both non-XPLINK and XPLINK applications. The non-XPLINK and

XPLINK versions have different names. The non-XPLINK and XPLINK versions of

the GENXLT table should always be generated. If any XPLINK applications will

require one of these translation tables, then the XPLINK version should also be

generated.

Under TSO, you specify the options on the command line. Under z/OS batch, the

options are specified on the EXEC PARM, and may be separated by spaces or

commas. If you specify the same option more than once, genxlt uses the last

specification.

DBCS|NODBCS Specifies whether genxlt will convert the DBCS characters within

Chapter 15. Coded Character Set and Locale Utilities 449

shift-out and shift-in characters. You should only specify the DBCS

option when you are converting an EBCDIC code page to a

different EBCDIC code page.

 If the DBCS option is specified, when a shift-out character is

encountered in the input, the characters up to the shift-in character

are copied to the output, and not converted. There must be an even

number of characters between the shift-out and shift-in characters,

and the characters must be valid DBCS characters.

 If you specify the NODBCS option, genxlt treats all the characters as

a single SBCS character, and does not perform a check of DBCS

characters.

For more information on the genxlt utility, refer to z/OS XL C/C++ Programming

Guide.

Under z/OS batch

JCL procedure EDCGNXLT invokes the genxlt utility to read the character conversion

information and produce the conversion table. It invokes the system Linkage Editor

to build the load module.

The EDCGNXLT procedure has the following parameters:

INFILE The data set name for the file that contains the character

conversion information.

OUTFILE The data set name for the output file that is to contain the

link-edited conversion table. The non-XPLINK version of this table

should have EDCU as the first four characters. The XPLINK version

of this table should have CEHU as the first four characters.

GOPT Options for the genxlt utility.

Example:

//GENXLT EXEC PROC=GENXLT,

// INFILE=’FRED.GENXLT.SOURCE(EDCUEAEY)’,

// OUTFILE=’FRED.GENXLT.LOADLIB(EDCUEAEY)’,

// GOPT=’DBCS’

Under TSO

TSO CLIST GENXLT invokes the genxlt utility to read the character conversion

information and produce the conversion table. It then invokes the system Linkage

Editor to build the load module.

The general parameters for GENXLT CLIST are as follows:

�� GENXLT infile outfile

DBCS

NODBCS

 ��

Where:

infile The file name for the file that contains the character conversion information.

outfile The file name for the output file that is to contain the link-edited conversion

table. The non-XPLINK version of the table should have EDCU as the first

four characters. The XPLINK version of this table should have CEHU as the

first four characters.

450 z/OS V1R7.0 XL C/C++ User’s Guide

For example:

GENXLT GENXLT.SOURCE(EDCUEAEY) GENXLT.LOADLIB(EDCUEAEY) DBCS

localedef Utility

A locale is a collection of data that defines language and cultural conventions.

Locales consist of various categories, that are identified by name, that characterize

specific aspects of your cultural environment.

The localedef utility generates locales according to the rules that are defined in the

locale definition file. A user can create his own customized locale definition file.

The localedef utility creates locale objects, which are used by the setlocale()

service of the run-time library. This service can be called from both non-XPLINK

and XPLINK applications. The non-XPLINK, XPLINK, and 64–bit locale object

versions have different names. Also, localedef can generate the locale objects into

a PDS or PDSE under BATCH or TSO, or into the HFS under the z/OS shell. The

non-XPLINK, XPLINK, and 64–bit versions of the locale object should always be

generated. If any XPLINK applications will use the locale then the XPLINK version

should also be generated.

The utility reads the locale definition file and produces a locale object that the

locale-specific library functions can use. You invoke localedef using either a JCL

procedure or a TSO CLIST, or by specifying the localedef command under z/OS

UNIX System Services. To activate a locale during your application’s execution, you

call the run-time function setlocale().

Note: TSO and z/OS batch are not supported for building 64–bit locales. You must

use the localedef command under z/OS UNIX System Services to build

64–bit locales.

The options for the localedef utility in TSO or z/OS batch are as follows. Spaces or

commas can separate the options. If you specify the same option more than once,

localedef uses the last option that you specified.

CHARMAP(name) Specifies the member name of the file that contains

the definition of the encoded character set. If you

do not specify this option, the localedef utility

assumes the encoded character set IBM-1047.

 The name that is specified for the CHARMAP is the

member name within a partitioned data set, with the

− (dash) sign converted to an @ (at) sign.

FLAG(W|E) The FLAG option controls whether localedef issues

warning messages. If you specify FLAG(W),

localedef issues warning and error messages. If

you specify FLAG(E), localedef issues only the

error messages.

BLDERR|NOBLDERR If you specify the BLDERR option, localedef

generates the locale even if it detects errors. If you

specify the NOBLDERR option, localedef does not

generate the locale if it detects an error.

 The following sections describe how you can invoke the localedef utility. For more

information on locale source definition files, codeset mapping files (CHARMAPs),

method files, and locale object names, refer to z/OS XL C/C++ Programming Guide.

Chapter 15. Coded Character Set and Locale Utilities 451

For information on using the localedef utility under z/OS UNIX System Services,

refer to z/OS UNIX System Services Command Reference.

Under z/OS batch

Note: To build XPLINK optimized locales, use EDCXLDEF.

Under z/OS batch, JCL procedure EDCLDEF invokes the localedef utility. It does the

following:

1. Invokes the EDCLDEF module to read the locale definition data set and produces

the C code to build the locale

2. Invokes the z/OS XL C/C++ compiler to compile the C source generated

3. Invokes the Linkage Editor to build the locale into a loadable module

The EDCLDEF JCL procedure has the following parameters:

INFILE The data set name for the file that contains the locale definition

information.

OUTFILE For non-XPLINK, it is the data set name for the output partitioned

data set and member that is to contain the link-edited locale object.

For XPLINK, it is the data set name for the output PDSE and

member that is to contain the bound locale object. The non-XPLINK

version of the locale object should have EDC$ or EDC@ as the first

four characters of the member name. The name that is chosen

determines the locale that is built (for further information, see z/OS

XL C/C++ Programming Guide). The XPLINK version should have

CEH$ or CEH@ as the first four characters of the member name.

LOPT The options for the localedef utility

Example:

//LOCALDEF EXEC PROC=EDCLDEF,

// INFILE=’FRED.LOCALE.SOURCE(EDC$EUEY)’,

// OUTFILE=’FRED.LOCALE.LOADLIB(EDC$EUEM)’,

// LOPT=’CHARMAP(IBM-297)’

Under z/OS batch, you specify the options on the EXEC PARM and separate them

by spaces or commas.

Under TSO

Under TSO, LOCALDEF invokes the localedef utility. The name is shortened to 8

characters from LOCALEDEF because of the file naming restrictions. It does the

following:

1. Invokes the EDCLDEF module to read the locale definition data set and produce

the C code to build the locale

2. Invokes the z/OS XL C/C++ compiler to compile the C source generated

3. Invokes the Linkage Editor to build the locale into a loadable module

The invocation syntax for the LOCALDEF REXX EXEC is as follows:

�� LOCALDEF infile outfile

LOPT(

loptions)

XPLINK
 ��

where:

infile The data set name for the data set that contains the locale

definition information

452 z/OS V1R7.0 XL C/C++ User’s Guide

outfile For non-XPLINK, it is the data set name for the output partitioned

data set and member that is to contain the link-edited locale object.

For XPLINK, it is the data set name for the output PDSE and

member that is to contain the bound locale object. The non-XPLINK

version of the locale object should have EDC$ or EDC@ as the first

four characters of the member name. The XPLINK version should

have CEH$ or CEH@ as the first four characters of the member

name.

loptions The options for the localedef utility.

XPLINK Indicates that the locale to be built is an XPLINK locale.

Example: In the following example, the input source is LOCALE.SOURCE(EDC$EUEY),

the output library is LOCALE.LOADLIB(EDC$EUEM) for en_us.IBM-297, and options are

CHARMAP(IBM-297):

LOCALEDEF LOCALE.SOURCE(EDC$EUEY) LOCALE.LOADLIB(EDC$EUEM) LOPT(CHARMAP(IBM-297))

Under TSO, you specify the options on the command line.

Under the z/OS Shell

Under z/OS UNIX System Services, use the localedef command to invoke the

localedef utility. The following is the invocation syntax for the localedef command:

localedef [–c] [–w] [–X] [–A][–f charmap] [–i sourcefile] [–m] [–L binderoptions]

name

Options:

–A Causes localedef to generate an ASCII locale object. ASCII locales

invoke ASCII methods, so they must be generated using ASCII

charmaps. An ASCII charmap maps symbolic character names into

ASCII code points, but even ASCII charmap specifications are

written in EBCDIC code page IBM-1047. Users must ensure that

the charmap specified, when they invoke the localedef utility, is an

ASCII charmap. Note: When –A is specified, –X is assumed

because ASCII locales are only supported as XPLINK locales.

–c Creates permanent output even if there were warning messages.

Normally, localedef does not create permanent output when it has

issued warning messages.

–f charmap Specifies a charmap file that contains a mapping of character

symbols and collating element symbols to actual character

encodings.

–i sourcefile Specifies the file that contains the source definitions. If there is no

–i, localedef reads the source definitions from the standard input.

–m MethodFile

Specifies the names of a method file that identifies the methods to

be overridden when constructing a locale object. The localedef

utility reads a method file and uses indicated entry points when

constructing a locale object. Method files are used to replace

IBM-supplied method functions with user-written method functions.

For each replaced method, the method file supplies the user-written

method function name and optionally indicates where the method

function code is to be found (.o file, archive library or DLL). Method

files typically replace the charmap related methods. When this is

Chapter 15. Coded Character Set and Locale Utilities 453

done, the end result is the creation of a locale, which supports a

blended code page. The user-written method functions are used

both by the locale-sensitive APIs they represent, and also by

localedef itself while generating the method-file based ASCII locale

object. This second use by localedef itself causes a temporary

DLL to be created, while processing the charmap file supplied on

the –f parameter. The name of the file containing method objects or

side deck information is passed by localedef as a parameter on

the c89 command line, so the standard archive/object/side deck

suffix naming conventions apply (in other words, .a, .o, .x).

Note: Method files may only be used when constructing ASCII

locale objects (that is, when the –A option is also specified).

If the –A option is not specified along with the –m option,

then a severe error message will be issued and processing

will be terminated.

–w Instructs localedef to issue a warning message when a duplicate

character definition is found. This is mainly intended for debugging

character map specifications. It can help to ensure that a code point

value is not accidentally assigned to the wrong symbolic character

name.

–X Causes localedef to generate an XPLINK AMODE 31 locale object

(DLL).

–L binderoptions

Instructs localedef to pass additional binder options (mostly for

diagnostic purposes).

-6 Instructs localedef to an XPLINK AMODE 64 locale object (DLL).

The -X option is implied when this option is specified.

name Is the target locale. The HFS name for the non-XPLINK version of

the locale can be arbitrarily assigned, but by convention the name

is the same as the descriptive name of the locale. The HFS name

for the XPLINK version of the locale is then formed by adding the

suffix .xplink to the end of the non-XPLINK name. Locale

descriptive names are described in z/OS XL C/C++ Programming

Guide. It is permitted to ignore these naming conventions, but you

are then required to explicitly supply the full path name of the locale

object on each setlocale() invocation. In any event, the

non-XPLINK and XPLINK versions of the locale must have distinct

names. The convention of .xplink at the end of the XPLINK locales

satisfies this requirement. It is common for setlocale() to be given

the descriptive locale name using environment variables. When the

conventions are followed then the system can find both the

non-XPLINK and XPLINK when needed and without having to

change the environment variables to fully specify the HFS locale.

See z/OS XL C/C++ Programming Guide for more information

about HFS resident locale object names.

 z/OS ships two versions of the localedef utility:

v One can be invoked under z/OS batch and TSO, and is shipped with the z/OS

XL C/C++ compiler.

v The other can be invoked under z/OS UNIX System Services, and is shipped

with z/OS UNIX System Services.

454 z/OS V1R7.0 XL C/C++ User’s Guide

For more information, refer to z/OS UNIX System Services Planning.

The TSO REXX Exec LOCALDEF, included in the C/C++ compiler, is not supported in

the z/OS shell environment. In that environment, use the z/OS UNIX System

Services localedef command instead.

Chapter 15. Coded Character Set and Locale Utilities 455

456 z/OS V1R7.0 XL C/C++ User’s Guide

Part 5. z/OS UNIX System Services utilities

This part contains information about the z/OS UNIX System Services utilities.

v Chapter 16, “Archive and Make Utilities,” on page 459

v Chapter 17, “BPXBATCH Utility,” on page 461

v Chapter 18, “c89 — Compiler invocation using host environment variables,” on

page 465

v Chapter 19, “xlc — Compiler invocation using a customizable configuration file,”

on page 505

© Copyright IBM Corp. 1996, 2005 457

458 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 16. Archive and Make Utilities

This chapter describes the z/OS UNIX System Services archive (ar) and make

utilities. There are several other useful z/OS UNIX System Services utilities such as

gencat and mkcatdefs. For information on their syntax and use, refer to z/OS UNIX

System Services Command Reference.

The z/OS Shell and Utilities provide two utilities that you can use to simplify the

task of creating and managing z/OS UNIX System Services XL C/C++ application

programs: ar and make. Use these utilities with the c89 and c++ utilities to build

application programs into easily updated and maintained executable files.

Archive libraries

The ar utility allows you to create and maintain a library of z/OS XL C/C++

application object files. You can specify the c89 and c++ command strings so that

archive libraries are processed during the IPA Link step or binding.

The archive library file, when created for application program object files, has a

special symbol table for members that are object files. The symbol table is read to

determine which object files should be bound into the application program

executable file. The binder processes archive libraries during the binding process. It

includes any object file in the specified archive library that it can use to resolve

external symbols. Use of this autocall library mechanism is analogous to the use of

Object Libraries with object files in data sets. For more information, see Chapter 12,

“Object Library Utility,” on page 415.

By default, the c89 and c++ utilities require that archive libraries end in the suffix .a,

as in file.a. For example; source file dirsum.c is in your src subdirectory in your

working directory, and the archive library symb.a is in your working directory. To

compile dirsum.c and resolve external symbols from symb.a, and create the

executable in exfils/dirsum enter:

c89 -o exfils/dirsum src/dirsum.c symb.a

Creating archive libraries

To create the archive library, use the ar -r option.

Example: To create an archive library that is named bin/libbrobompgm.a from your

working directory, and add the member jkeyadd.o to it, specify:

ar -rc ./bin/libbrobompgm.a jkeyadd.o

ar creates the archive library file libbrobompgm.a in the bin subdirectory of your

HFS working directory. The -c option tells ar to suppress the message that it

normally sends when it creates an archive library file.

Example: For control purposes, when working interactively, you can use the -v

option to generate a message as each member is added to the archive:

ar -rv ./bin/libbrobompgm.a jkeyadd.o

Example: To display the object files that are archived in the bin/libbrobompgm.a

library from your working directory, specify:

ar -t ./bin/libbrobompgm.a

© Copyright IBM Corp. 1996, 2005 459

For a detailed discussion of the ar utility, see z/OS UNIX System Services

Command Reference.

Creating makefiles

The make utility maintains all the parts of and dependencies for your application

program. It uses a makefile, to keep your application parts (listed in it) up to date

with one another. If one part changes, make updates all the other files that depend

on the changed part.

A makefile is a normal HFS text file. You can use any text editor to create and edit

the file. It describes the application program files, their locations, dependencies on

other files, and rules for building the files into an executable file. When creating a

makefile, remember that tabbing of information in the file is important and not all

editors support tab characters the same way.

The make utility uses c89 or c++ to call the z/OS XL C/C++ compiler, and the binder,

to recompile and rebind an updated application program.

See z/OS UNIX System Services Programming Tools, and z/OS UNIX System

Services Command Reference for a detailed discussion of the shell make utility.

Makedepend Utility

The makedepend utility can also be used to create a makefile that can be used by

make. The makedepend utility is used to analyze each source file to determine what

dependency it has on other files. This information is then placed into a usable

makefile. See z/OS UNIX System Services Command Reference for a detailed

discussion of the makedepend utility.

460 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 17. BPXBATCH Utility

This chapter provides a quick reference for the IBM-supplied BPXBATCH program.

BPXBATCH makes it easy for you to run shell scripts and z/OS XL C/C++ executable

files that reside in hierarchical file system (HFS) files through the z/OS batch

environment. If you do most of your work from TSO/E, use BPXBATCH to avoid going

into the shell to run your scripts and applications.

In addition to using BPXBATCH, a user who wants to perform a local spawn without

being concerned about environment set-up (that is, without having to set specific

environment variables, which could be overwritten if they are also set in the user’s

profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point into

BPXBATCH, and forces a program to run using a local spawn instead of fork/exec as

BPXBATCH does. This ultimately allows a program to run faster.

BPXBATSL is also useful when the user wants to perform a local spawn of their

program, but also needs subsequent child processes to be forked/executed.

Formerly, with BPXBATCH, this could not be done since BPXBATCH and the requested

program shared the same environment variables. BPXBATSL is provided as an

alternative to BPXBATCH. It will force the running of the target program into the same

address space as the job itself is initiated in, so that all resources for the job can be

used by the target program; for example, DD allocations. In all other respects, it is

identical to BPXBATCH.

For information on c89 commands, see Chapter 18, “c89 — Compiler invocation

using host environment variables,” on page 465.

BPXBATCH usage

The BPXBATCH program allows you to submit z/OS batch jobs that run shell

commands, scripts, or z/OS XL C/C++ executable files in hierarchical file system

(HFS) files from a shell session. You can invoke BPXBATCH from a JCL job, from

TSO/E (as a command, through a CALL command, from a REXX EXEC).

JCL: Use one of the following:

v EXEC PGM=BPXBATCH,PARM=’SH program-name’

v EXEC PGM=BPXBATCH,PARM=’PGM program-name’

TSO/E: Use one of the following:

v BPXBATCH SH program-name

v BPXBATCH PGM program-name

BPXBATCH allows you to allocate the z/OS standard files stdin, stdout, and stderr

as HFS files for passing input, for shell command processing, and writing output

and error messages. If you do allocate standard files, they must be HFS files. If you

do not allocate them, stdin, stdout, and stderr default to /dev/null. You allocate

the standard files by using the options of the data definition keyword PATH.

Note: The BPXBATCH utility also uses the STDENV file to allow you to pass

environment variables to to the program that is being invoked. This can be

useful when not using the shell, such as when using the PGM parameter.

Example: For JCL jobs, specify PATH keyword options on DD statements; for

example:

© Copyright IBM Corp. 1996, 2005 461

//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’PGM program-name parm1 parm2’

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)

//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU ...

You can also allocate the standard files dynamically through use of SVC 99.

For TSO/E, you specify PATH keyword options on the ALLOCATE command. For

example:

ALLOCATE FILE(STDIN) PATH(’/stdin-file-pathname’) PATHOPTS(ORDONLY)

ALLOCATE FILE(STDOUT) PATH(’/stdout-file-pathname’)

 PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

ALLOCATE FILE(STDERR) PATH(’/stderr-file-pathname’)

 PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

BPXBATCH SH program-name

You must always allocate stdin as read. You must always allocate stdout and

stderr as write.

Parameter

BPXBATCH accepts one parameter string as input. At least one blank character must

separate the parts of the parameter string. When BPXBATCH is run from a batch job,

the total length of the parameter string must not exceed 100 characters. When

BPXBATCH is run from TSO, the parameter string can be up to 500 characters. If

neither SH nor PGM is specified as part of the parameter string, BPXBATCH assumes

that it must start the shell to run the shell script allocated by stdin.

SH | PGM

Specifies whether BPXBATCH is to run a shell script or command or a z/OS

XL C/C++ executable file that is located in an HFS file.

SH Instructs BPXBATCH to start the shell, and to run shell

commands or scripts that are provided from stdin or the

specified program-name.

Note: If you specify SH with no program-name information,

BPXBATCH attempts to run anything read in from

stdin.

PGM Instructs BPXBATCH to run the specified program-name as a

called program.

 If you specify PGM, you must also specify program-name.

BPXBATCH creates a process for the program to run in and

then calls the program. The HOME and LOGNAME environment

variables are set automatically when the program is run,

only if they do not exist in the file that is referenced by

STDENV. You can use STDENV to set these environment

variables, and others.

462 z/OS V1R7.0 XL C/C++ User’s Guide

program-name

Specifies the shell command name or the HFS pathname for the shell script

or z/OS XL C/C++ executable file to be run. In addition, program-name can

contain option information.

 BPXBATCH interprets the program name as case-sensitive.

Note: When PGM and program-name are specified and the specified

program name does not begin with a slash character (/), BPXBATCH

prefixes the user’s initial working directory information to the program

pathname.

Usage notes

You should be aware of the following:

1. BPXBATCH is an alias for the program BPXMBATC, which resides in the

SYS1.LINKLIB data set.

2. BPXBATCH must be invoked from a user address space running with a program

status word (PSW) key of 8.

3. BPXBATCH does not perform any character translation on the supplied parameter

information. You should supply parameter information, including HFS

pathnames, using only the POSIX portable character set.

4. A program that is run by BPXBATCH cannot use allocations for any files other than

stdin, stdout, or stderr.

5. BPXBATCH does not close file descriptors except for 0, 1, and 2. Other file

descriptors that are open and not defined as “marked to be closed” remain open

when you call BPXBATCH. BPXBATCH runs the specified script or executable file.

6. BPXBATCH uses write-to-operator (WTO) routing code 11 to write error messages

to either the JCL job log or your TSO/E terminal. Your TSO/E user profile must

specify WTPMSG so that BPXBATCH can display messages to the terminal.

Files

The following list describes the files:

v SYS1.LINKLIB(BPXMBATC) is the BPXBATCH program location.

v The stdin default is /dev/null.

v The stdout default is /dev/null.

v The stdenv default is /dev/null.

v The stderr default is the value of stdout. If all defaults are accepted, stderr is

/dev/null.

Chapter 17. BPXBATCH Utility 463

464 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 18. c89 — Compiler invocation using host

environment variables

Format

c89 | cc | c++ | cxx [–+CcEFfgOpqrsVv0123]

 [–D name[=value]]... [–U name]...

 [–e function] [–u function]...

 [–W phase,option[,option]...]...

 [–o outfile]

 [–I directory]... [–L directory]...

 [file.C]... [file.i]... [file.c]... [file.s]...

 [file.o]... [file.x]... [file.p]... [file.I]... [file.a]... [–l libname]...

Notes:

1. The I option signifies an uppercase i, not a lowercase L.

2. The c99 command is only supported by the xlc utility. See Chapter 19, “xlc —

Compiler invocation using a customizable configuration file,” on page 505 for

more information.

Description

c89 and cc compile, assemble, and link-edit C programs; c++ does the same for

C++ programs.

v c89 should be used when compiling C programs that are written according to

Standard C.

v cc should be used when compiling C programs that are written according to

Common Usage C.

v cxx/c++ must be used when compiling C++ programs. Prior to z/OS V1R2, the

C++ compiler supported the Draft Proposal International Standard for Information

Systems — Programming Language C++ (X3J16). As of z/OS V1R7, the C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:2003(E))

standard, as well as the Programming languages - C++ (ISO/IEC 14882:1998)

standard. c++ can compile both C++ and C programs, and can also be invoked

by the name cxx (all references to c++ throughout this document apply to both

names).

c89, cc, and c++ call other programs for each step of the compilation, assemble and

link-editing phases. The list below contains the following: the step name, the name

of the document that describes the program you use for that step and the document

that describes any messages issued by that program, and prefixes to those

messages:

 Table 38. Reference documentation for programs invoked by c89, cc, and c++ commands

Step Name Document

Describing

Options and

How to Call

Program

Document

Containing

Messages Issued

by Program

Prefix of

Messages Issued

by Program

ASSEMBLE HLASM

Programmer’s

Guide

HLASM

Programmer’s

Guide

ASMA

© Copyright IBM Corp. 1996, 2005 465

|
|
|

|
|
|
|

Table 38. Reference documentation for programs invoked by c89, cc, and c++

commands (continued)

Step Name Document

Describing

Options and

How to Call

Program

Document

Containing

Messages Issued

by Program

Prefix of

Messages Issued

by Program

COMPILE, IPACOMP,

TEMPINC, IPATEMP,

IPALINK

z/OS C/C++

User’s Guide for

releases prior to

z/OS V1R7 and

z/OS XL C/C++

User’s Guide for

z/OS V1R7 and

later releases

z/OS C/C++

Messages for z/OS

V1R5 and z/OS

V1R6 releases and

z/OS XL C/C++

Messages for z/OS

V1R7 and later

releases

CCN for z/OS

V1R2 and later

releases

PRELINK z/OS Language

Environment

Programming

Guide and z/OS

XL C/C++ User’s

Guide

z/OS Language

Environment

Debugging Guide

EDC

LINKEDIT (Program

Management Binder)

z/OS MVS

Program

Management:

User’s Guide and

Reference

z/OS MVS System

Messages, Vol 8

(IEF-IGD)

IEW

Execution of any Language Environment program (including c89 and the z/OS XL

C/C++ compiler) can result in run-time messages. These messages are described

in z/OS Language Environment Run-Time Messages and have an EDC prefix. In

some cases, c89 issues messages with Language Environment messages

appended to them. Messages issued by c89 have an FSUM3 prefix.

In order for c89, cc, and c++ to perform C and C++ compiles, the z/OS C/C++

Optional Feature must be installed on the system. The z/OS C/C++ Optional

Feature provides a C compiler, a C++ compiler, C++ Class Libraries, and some

utilities. See z/OS Introduction and Release Guide for further details. Also see

prefix_CLIB_PREFIX and prefix_PLIB_PREFIX in “Environment variables” on page

480 for information about the names of the z/OS C/C++ Optional Feature data sets

that must be made available to c89/cc/c++.

Note: The term prefix is defined in “Environment variables” on page 480.

First, c89, cc, and c++ perform the compilation phase (including preprocessing) by

compiling all source file operands (file.C, file.i, and file.c, as appropriate). For c++, if

automatic template generation is being used (which is the default), then z/OS XL

C++ source files may be created or updated in the tempinc subdirectory of the

working directory during the compilation phase (the tempinc subdirectory will be

created if it does not already exist). Then, c89, cc, and c++ perform the assemble

phase by assembling all operands of the file.s form. The result of each compile step

and each assemble step is a file.o file. If all compilations and assemblies are

successful, or if only file.o and/or file.a files are specified, c89, cc, and c++ proceed

to the link-editing phase. For c++, the link-editing phase begins with an automatic

template generation step when applicable. For IPA (Interprocedural Analysis)

optimization an additional IPA link step comes next. The link-edit step is last. See

c89, cc, and c++

466 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

the environment variable prefix_STEPS under “Environment variables” on page 480

for more information about the link-editing phase steps.

In the link-editing phase, c89, cc, and c++ combine all file.o files from the

compilation phase along with any file.o files that were specified on the command

line. For c++, this is preceded by compiling all z/OS XL C++ source files in the

tempinc subdirectory of the working directory (possibly creating and updating

additional z/OS XL C++ source files during the automatic template generation step).

After compiling all the z/OS XL C++ source files, the resulting object files are

combined along with the file.o files from the compilation phase and the command

line. Any file.a files, file.x files and –l libname operands that were specified are also

used.

The usual output of the link-editing phase is an executable file. For c89, cc, and c++

to produce an executable file, you must specify at least one operand which is of

other than –l libname form. If –r is used, the output file is not executable.

For more information about automatic template generation, see the information on

″Using TEMPINC or NOTEMPINC″ in z/OS XL C/C++ Programming Guide. Note that the

c++ command only supports using the tempinc subdirectory of the working directory

for automatic template generation.

IPA is further described under the –W option on page 475.

Options

–+ Specifies that all source files are to be recognized as C++ source files. All

file.s, file.o, and file.a files will continue to be recognized as assembler

source, object, and archive files respectively. However, any C file.c or file.i

files will be processed as corresponding C++ file.C or file.i files, and any

other file suffix which would otherwise be unrecognized will be processed

as a file.C file.

 This option effectively overrides the environment variable

prefix_EXTRA_ARGS. This option is only supported by the c++ command.

–C Specifies that C and C++ source comments should be retained by the

preprocessor. By default, all comments are removed by the preprocessor.

This option is ignored except when used with the –E option.

–c Specifies that only compilations and assemblies be done. Link-edit is not

done.

–D name[=value]

Defines a C or C++ macro for use in compilation. If only name is provided,

a value of 1 is used for the macro it specifies. For information about macros

that c89/cc/c++ automatically define, see Usage Note 5 on page 496. Also

see Usage Note 13 on page 498.

–E Specifies that output of the compiler preprocessor phase be copied to

stdout. Object files are not created, and no link-editing is performed.

–e function

Specifies the name of the function to be used as the entry point of the

program. This can be useful when creating a fetchable program, or a non–C

or non–C++ main, such as a COBOL program. Non–C++ linkage symbols

of up to 1024 characters in length may be specified. You can specify an

S-name by preceding the function name with double slash (//). (For more

information about S-names, see Usage Note 23 on page 501.)

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 467

|

|

Specify a null S-name (″-e //″) so that no function name is identified by

c89/cc/c++ as the entry point of the program. In that case, the Program

Management Binder (link editor) default rules will determine the entry point

of the program. For more information about the Program Management

Binder and the ENTRY control statement, see z/OS MVS Program

Management: User’s Guide and Reference.

 The function //ceestart is the default. When the default function entry point

is used, a binder ORDER control statement is generated by c89/cc/c++ to

cause the CEESTART code section to be ordered to the beginning of the

program. Specify the name with a trailing blank to disable this behavior, as

in "//ceestart ". For more information about the Program Management

Binder and the ORDER control statement, see z/OS MVS Program

Management: User’s Guide and Reference.

 This option may be required when building products which are intended to

be installed using the IBM SMP/E product. When installing ++MOD

elements with SMP/E, binder control statements should be provided in the

JCLIN created to install the product instead of being embedded in the

elements themselves.

–F Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

–f Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

 Historical implementations of C/C++ used this option to enable floating-point

support. Floating-point is automatically included in z/OS XL C/C++.

However, in z/OS XL C/C++, two types of floating-point support are

available:

HEXADECIMAL

Base 16 zSeries hexadecimal format. The zSeries hexadecimal

format is referred to as the hexadecimal floating-point format, and is

unique to zSeries hardware. This is the default.

IEEE754

Base 2 IEEE-754 binary format. The IEEE-754 binary format is

referred to as binary floating-point format. The IEEE-754 binary

format is the more common floating point format used on other

platforms.

If you are porting an application from another platform, transmitting

floating-point numbers between other platforms or workstations, or your

application requires the larger exponent range provided by IEEE-754 binary

format, then you should consider using IEEE floating-point.

 Example: The following is an example of compiling with IEEE-754 binary

floating point format:

c89 -o outfile -Wc,’float(ieee)’ file.c

–g Specifies that a side file that contains symbolic information is emitted and

the executable is to be loaded into read/write storage, which is required for

source-level debugging with dbx, and other debuggers.

 For 32-bit compiles, if the _DEBUG_FORMAT=ISD environment variable is

exported, then –g specifies that the output file (executable) is to contain

symbolic information and is to be loaded into read/write storage, which is

required for source-level debugging with dbx, and other debuggers.

c89, cc, and c++

468 z/OS V1R7.0 XL C/C++ User’s Guide

When specified for the compilation phase, the compiler produces symbolic

information for source-level debugging.

 When specified for the link-editing phase, the executable file is marked as

being serially reusable and will always be loaded into read/write storage.

 dbx requires that all the executables comprising the process be loaded into

read/write storage so that it can set break points in these executables.

When dbx is attached to a running process, this cannot be guaranteed

because the process was already running and some executables were

already loaded. There are two techniques that will guarantee that all the

executables comprising the process are loaded into read-write storage:

1. Specify the –g option for the link-editing phase of each executable. After

this is done, the executable is always loaded into read/write storage.

Because the executable is marked as being serially reusable, this

technique works except in cases where the executable must be marked

as being reentrant. For example:

v If the executable is to be used by multiple processes in the same

user space.

v If the executable is a DLL that is used on more than one thread in a

multithreaded program.

In these cases, use the following technique instead:

2. Do not specify the –g option during the link-editing phase so that the

executable will be marked as being reentrant. Before invoking the

program, export the environment variable _BPX_PTRACE_ATTACH with a

value of YES. After you do this, then executables will be loaded into

read/write storage regardless of their reusability attribute.

If you compile an MVS data set source using the –g option, you can use

dbx to perform source-level debugging for the executable file. You must first

issue the dbx use subcommand to specify a path of double slash (//),

causing dbx to recognize that the symbolic name of the primary source file

is an MVS data set. For information on the dbx command and its use

subcommand, see z/OS UNIX System Services Command Reference.

 For more information on using dbx, see z/OS UNIX System Services

Programming Tools.

 The z/OS UNIX System Services web page also has more information

about dbx. Go to www.ibm.com/servers/eserver/zseries/zos/unix/.

 For more information on the _BPX_PTRACE_ATTACH environment variable, see

z/OS UNIX System Services Programming: Assembler Callable Services

Reference.

 The GONUMBER option is automatically turned on by the –g option, but can

also be turned on independently. There is no execution path overhead

incurred for turning on this option, only some additional space for the saved

line number tables.

 For 31-bit compiles and In Storage Debug (ISD) information, the GONUMBER

option generates tables that correspond to the input source file line

numbers. These tables make it possible for Debug Tools and for error trace

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 469

http://www.ibm.com/servers/eserver/zseries/zos/unix/

back information in CEE dumps to display the source line numbers. Having

source line numbers in CEE dumps improves serviceability costs of

applications in production.

 Example: The following is an example of compiling with the GONUMBER

compiler option:

c89 -o outfile -Wc,’GONUM’ file.c

Note: 64-bit compiles do not support GONUMBER and line number information

will not be available within 64-bit compiled objects.

–I directory

Note: The I option signifies an uppercase i, not a lowercase L.
–I specifies the directories to be used during compilation in searching for

include files (also called header files).

 Absolute pathnames specified on #include directives are searched exactly

as specified. The directories specified using the –I option or from the usual

places are not searched.

 If absolute pathnames are not specified on #include directives, then the

search order is as follows:

1. Include files enclosed in double quotes (") are first searched for in the

directory of the file containing the #include directive. Include files

enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the

–I option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See

Usage Note 4 on page 496 for a description of the usual places.)

You can specify an MVS data set name as an include file search directory.

Also, MVS data set names can explicitly be specified on #include

directives. You can indicate both by specifying a leading double slash (//).

 Example: To include the include file DEF that is a member of the MVS PDS

ABC.HDRS, code your C or C++ source as follows:

#include <//'abc.hdrs(def)'>

MVS data set include files are handled according to z/OS XL C/C++

compiler conversion rules (see Usage Note 4 on page 496). When

specifying an #include directive with a leading double slash (in a format

other than #include<//'dsname'> and #include<//dd:ddname>), the

specified name is paired only with MVS data set names specified on the –I

option. That is, when you explicitly specify an MVS data set name, any

hierarchical file system (HFS) directory names specified on the –I option

are ignored.

–L directory

Specifies the directories to be used to search for archive libraries specified

by the –l operand. The directories are searched in the order specified,

followed by the usual places. You cannot specify an MVS data set as an

archive library directory.

c89, cc, and c++

470 z/OS V1R7.0 XL C/C++ User’s Guide

For information on specifying C370LIB libraries, see the description of the

–l libname operand. Also see Usage Note 7 on page 497 for a description

of the usual places.

–0, –O (–1), –2, –3

Specifies the level of compiler optimization (including inlining) to be used.

The level –1 (number one) is equivalent to –O (capital letter O). The level –3

gives the highest level of optimization. The default is –0 (level zero), no

optimization and no inlining, when not using IPA (Interprocedural Analysis).

 When optimization is specified, the default is ANSIALIAS. The ANSIALIAS

default specifies whether type-based aliasing is to be used during

optimization. That is, the optimizer assumes that pointers can only be used

to access objects of the same type. Type-based aliasing improves

optimization. Applications that use pointers that point to objects of a

different type will need to specify NOANSIALIAS when the optimization

compiler option is specified. If your application works when compiled with

no optimization and fails when compiled with optimization, then try

compiling your application with both optimization and NOANSIALIAS compiler

options.

Note: Options can also be specified as –O1 (using capital letter O), –O2,

and –O3. For further information, see Usage Note 12 on page 498.

Example: The following is an example of a compile with the highest level of

optimization and no type-based aliasing:

c89 -o outfile -O3 -Wc,NOANSIALIAS file.c

When optimization is specified, you may want to obtain a report on the

amount of inlining performed and increase or decrease the level of inlining.

More inlining will improve application performance and increase application

memory usage.

 Example: The following is an example of a compile with optimization with

no report generated, a threshold of 500 abstract code units, and a limit of

2500 abstract code units:

c89 -o outfile -O2 -Wc,’inline(auto,noreport,500,2500)’ file.c

When using IPA, the default is –O (level 1) optimization and inlining. IPA

optimization is independent from and can be specified in addition to this

optimization level. IPA is further described under the –W option on page 475.

 If compiling with PDF, the same optimization level must be used in the PDF1

and PDF2 steps.

 If you compile your program to take advantage of dbx source-level

debugging and specify –g (see the –g option on page 468), you will always

get –0 (level zero) optimization regardless of which of these compiler

optimization levels you specify.

 In addition to using optimization techniques, you may want to control

writable strings by using the #pragma strings(readonly) directive or the

ROSTRING compiler option. As of z/OS Version 1 Release 2, ROSTRING is the

default.

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 471

|
|

|

|

For more information on this topic, refer to the chapter on reentrancy in

z/OS XL C/C++ in z/OS XL C/C++ Programming Guide or the description of

“ROSTRING | NOROSTRING” on page 173.

–o outfile

Specifies the name of the c89/cc/c++ output file.

 If the –o option is specified in addition to the –c option, and only one source

file is specified, then this option specifies the name of the output file

associated with the one source file. See file.o under “Operands” on page

478 for information on the default name of the output file.

 Otherwise the –o option specifies the name of the executable file produced

during the link-editing phase. The default output file is a.out.

–p Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

–q Ignored by cc. Provided for compatibility with historical implementations of

cc. Flagged as an error by c89 and c++.

–r Specifies that c89/cc/c++ is to save relocation information about the object

files which are processed. When the output file (as specified on –o) is

created, it is not made an executable file. Instead, this output file can later

be used as input to c89/cc/c++. This can be used as an alternative to an

archive library.

 IPA Usage Note:

 When using -r and link-editing IPA compiled object files, you must link-edit

with IPA (see the description of IPA under the -W option). However, the -r

option is typically not useful when creating an IPA optimized program. This

is because link-editing with IPA requires that all of the program information

is available to the link editor (that is, all of the object files). It is not

acceptable to have unresolved symbols, especially the program entry point

symbol (which is usually main). The -r option is normally used when you

wish to combine object files incrementally. You would specify some object

files during the initial link-edit that uses -r. Later, you would specify the

output of the initial link-edit, along with the remaining object files in a final

link-edit that is done without using -r. In such situations where you wish to

combine IPA compiled object files, there is an alternative which does not

involve the link editor. That alternative is to concatenate the object files into

one larger file. This larger file can later be used in a final link-edit, when the

remainder of the object files are also made available. (This concatenation

can easily be done using the cp or cat utilities.)

–s Specifies that the compilation phase is to produce a file.o file that does not

include symbolic information, and that the link-editing phase produce an

executable that is marked reentrant. This is the default behavior for

c89/cc/c++.

–U name

Undefines a C or C++ macro specified with name. This option affects only

macros defined by the –D option, including those automatically specified by

c89/cc/c++. For information about macros that c89/cc/c++ automatically

define, see Usage Note 5 on page 496. Also see Usage Note 13 on page

498.

–u function

Specifies the name of the function to be added to the list of symbols which

are not yet defined. This can be useful if the only input to c89/cc/c++ is

c89, cc, and c++

472 z/OS V1R7.0 XL C/C++ User’s Guide

archive libraries. Non–C++ linkage symbols of up to 255 characters in

length may be specified. You can specify an S-name by preceding the

function name with double slash (//). (For more information about

S-names, see Usage Note 23 on page 501.) The function //ceemain is the

default for non-IPA link-editing, and the function main is the default for IPA

link-editing. However, if this -u option is used, or the DLL link editor option is

used, then the default function is not added to the list.

–V This verbose option produces and directs output to stdout as compiler,

assembler, IPA linker, prelinker, and link editor listings. If the –O, –2, or –3

options are specified and cause c89/cc/c++ to use the compiler INLINE

option, then the inline report is also produced with the compiler listing. Error

output continues to be directed to stderr. Because this option causes

c89/cc/c++ to change the options passed to the steps producing these

listings so that they produce more information, it may also result in

additional messages being directed to stderr. In the case of the compile

step, it may also result in the return code of the compiler changing from 0

to 4.

–v This verbose option causes pseudo-JCL to be written to stdout before the

compiler, assembler, IPA linker, prelinker, and link editor programs are run.

 Example: It also causes phaseid information to be emitted in stderr:

FSUM0000I Utility(c89) Level(UQ99999)

It provides information about exactly which compiler, prelinker, and link

editor options are being passed, and also which data sets are being used. If

you want to obtain this information without actually invoking the underlying

programs, specify the –v option more than once on the c89/cc/c++

command string. For more information about the programs which are

executed, see Usage Note 14 on page 499.

–W phase, option[,option]...

Specifies options to be passed to the steps associated with the compile,

assemble, or link-editing phases of c89/cc/c++. The valid phase codes are:

0 Specifies the compile phase (used for both non-IPA and IPA

compilation).

a Specifies the assemble phase.

c Same as phase code 0.

I Enables IPA (Interprocedural Analysis) optimization.

 Unlike other phase codes, the IPA phase code I does not require

that any additional options be specified, but it does allow them. In

order to pass IPA suboptions, specify those suboptions using the

IPA phase code.

 Example: To specify that an IPA compile should save source line

number information, without writing a listing file, specify:

c89 -c -W I,list file.c

Example: To specify that an IPA link-edit should write the map file

to stdout, specify:

c89 -W I,map file.o

l Specifies the link-editing phase.

v To pass options to the prelinker, the first link-editing phase option

must be p or P. All the following options are then prelink options.

Example: To write the prelink map to stdout, specify:

c89 –W l,p,map file.c

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 473

Note: The prelinker is no longer used in the link-editing phase in

most circumstances. If it is not used, any options passed

are accepted but ignored. See the environment variable

prefix_STEPS under “Environment variables” on page 480

for more information about the link-editing phase prelink

step.

v To pass options to the IPA linker, the first link-editing phase

option must be i or I. All the following options are then IPA link

options.

Example: To specify the size of the SPILL area to be used

during an IPA link-edit, you could specify:

c89 –W l,I,"spill(256)" file.o

v To link-edit a DLL (Dynamic Link Library) and produce a side

deck, the link-editing phase option DLL must be specified.

Example: To accomplish this task, you could specify:

c89 –o outdll –W l,dll file.o

Most z/OS XL C/C++ extensions can be enabled by using this option.

Those which do not directly pass options through to the underlying steps, or

involve files which are extensions to the compile and link-edit model, are

described here:

DLL (Dynamic Link Library)

A DLL is a part of a program that is not statically bound to the

program. Instead, linkage to symbols (variables and functions) is

completed dynamically at execution time. DLLs can improve

storage utilization, because the program can be broken into smaller

parts, and some parts may not always need to be loaded. DLLs can

improve maintainability, because the individual parts can be

managed and serviced separately.

 In order to create a DLL, some symbols must be identified as being

exported for use by other parts of the program. This can be done

with the z/OS XL C/C++ #pragma export compiler directive, or by

using the z/OS XL C/C++ EXPORTALL compiler option. If during the

link-editing phase some of the parts have exported symbols, the

executable which is created is a DLL. In addition to the DLL, a

definition side-deck is created, containing link-editing phase IMPORT

control statements which name those symbols which were exported

by the DLL. In order for the definition side-deck to be created, the

DLL link editor option must be specified. This definition side-deck is

subsequently used during the link-editing phase of a program which

is to use the DLL. See the file.x operand under Operands on page

479 for information on where the definition side-deck is written. In

order for the program to refer to symbols exported by the DLL, it

must be compiled with the DLL compiler option.

 Example: To compile and link a program into a DLL, you could

specify:

c89 -o outdll -W c,exportall -W l,dll file.c

To subsequently use file.x definition side-decks, specify them along

with any other file.o object files specified for c89/cc/c++ link-editing

phase.

 Example: To accomplish this task, you could specify:

c89 –o myappl –W c,dll myappl.c outdll.x

c89, cc, and c++

474 z/OS V1R7.0 XL C/C++ User’s Guide

|

In order to run an application which is link-edited with a definition

side-deck, the DLL must be made available (the definition side-deck

created along with the DLL is not needed at execution time). When

the DLL resides in the HFS, it must be in either the working

directory or in a directory named on the LIBPATH environment

variable. Otherwise it must be a member of a data set in the search

order used for MVS programs.

Note: For non-DLL C++ compiles, a dummy definition side file will

be allocated to prevent the binder from issuing a warning

message. If you do want the binder to issue a warning

message when an exported symbol is encountered, specify

the DLL=NO option for the link-editing phase; for example:

 c++ -o outfile -W l,dll=no file.C

IPA (interprocedural analysis)

IPA optimization is independent from and can be used in addition to

the c89/cc/c++ optimization level options (such as –O). IPA

optimization can also improve the execution time of your

application. IPA is a mechanism for performing optimizations across

function boundaries, even across compilation units. It also performs

optimizations not otherwise available with the C/C++ compiler.

 When phase code I is specified for the compilation phase, then IPA

compilation steps are performed. When phase code I is specified

for the link-editing phase, or when the first link-editing phase (code

l) option is i or I, then an additional IPA link step is performed prior

to the prelink and link-edit steps.

 With conventional compilation and link-editing, the object code

generation takes place during the compilation phase. With IPA

compilation and link-editing, the object code generation takes place

during the link-editing phase. Therefore, you might need to request

listing information about the program (such as with the –V option)

during the link-editing phase.

 Unlike the other phase codes, phase code I does not require that

any additional options be specified. If they are, they should be

specified for both the compilation and link-editing phases.

 No additional preparation needs to be done in order to use IPA.

 Example: To create the executable myIPApgm using c89 with some

existing source program mypgm.c, you could specify:

c89 –W I –o myIPApgm mypgm.c

When IPA is used with c++, and automatic template generation is

being used, phase code I will control whether the automatic

template generation compiles are done using IPA. If you do not

specify phase code I, then regular compiles will be done.

Specifying I as the first option of the link-editing phase option (that

is, -W l,I), will cause the IPA linker to be used, but will not cause

the IPA compiler to be used for automatic template generation

unless phase code I (that is, -W I) is also specified.

 The IPA Profile-Directed Feedback (PDF) option tunes

optimizations, where results from sample program execution are

used to improve optimization near conditional branches and in

frequently executed code sections. The profiling information is

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 475

placed in the file specified by the PDFNAME(filename) suboption. If

PDFNAME(filename) is not specified, the default name of the file

containing profile information is PDF.

LP64 The LP64 option instructs the compiler to generate AMODE 64 code

utilizing the z/Architecture 64-bit instructions.

 To compile 64-bit code, specify the z/OS XL C/C++ LP64 compiler

option.

 Example: The following example shows how to compile and bind

using the LP64 option:

c89 -o -W c,LP64 -Wl,LP64 file.c

XPLINK (Extra Performance Linkage)

z/OS XPLINK provides improved performance for many C/C++

programs. The C/C++ XPLINK compiler option instructs the C/C++

compiler to generate high performance linkage for subroutine calls.

It does so primarily by making subroutine calls as fast and efficient

as possible, by reducing linkage overhead, and by passing function

call parameters in registers. Furthermore, it reduces the data size

by eliminating unused information from function control blocks.

 An XPLINK-compiled program is implicitly a DLL-compiled program

(the C/C++ DLL compiler option need not be specified along with the

XPLINK option). XPLINK improves performance when crossing

function boundaries, even across compilation units, since XPLINK

uses a more efficient linkage mechanism.

 For more information about Extra Performance Linkage, refer to

z/OS Language Environment Programming Guide.

 To use XPLINK, you must both compile and link-edit the program

for XPLINK. All C and C++ source files must be compiled XPLINK,

as you cannot statically link together XPLINK and non-XPLINK C

and C++ object files (with the exception of non-XPLINK ″OS″

linkage). You can however mix XPLINK and non-XPLINK

executables across DLL and fetch() boundaries.

 To compile a program as XPLINK, specify the z/OS XL C/C++

XPLINK compiler option. If there are any exported symbols in the

executable and you want to produce a definition side-deck, specify

the DLL link editor option. When XPLINK is specified in the

link-editing step, different link-edit libraries will be used.

 Example: Here is an example of compiling and link-editing an

XPLINK application in one command:

c89 -o outxpl -W c,XPLINK -W l,XPLINK,dll file.c

In order to execute an XPLINK program, the SCEERUN2 as well as

the SCEERUN data set must be in the MVS program search order

(see the prefix_PLIB_PREFIX environment variable).

 You cannot use –W to override the compiler options that correspond to

c89/cc/c++ options, with the following exceptions:

v Listing options (corresponding to –V)

v Inlining options (corresponding to –O, –2, and –3)

v Symbolic options (corresponding to –s and –g); symbolic options can be

overridden only when neither –s nor –g is specified.

c89, cc, and c++

476 z/OS V1R7.0 XL C/C++ User’s Guide

Notes:

1. Most compiler, prelinker, and IPA linker options have a positive and

negative form. The negative form is the positive with a prepended NO

(as in XREF and NOXREF).

2. The compiler #pragma options directives as well as any other #pragma

directives which are overridden by compiler options, will have no effect

in source code compiled by c89/cc/c++.

3. Link editor options must be specified in the name=value format. Both

the option name and value must be spelled out in full. If you do not

specify a value, a default value of YES is used, except for the following

options, which if specified without a value, have the default values

shown here:

ALIASES ALIASES=ALL

COMPAT COMPAT=CURRENT

Note: The binder default is COMPAT=MIN. For downward

compatibility (when - Wc,’target(release)’ is

used), COMPAT should also be used (for example,

-Wl,compat=min, or the specific program object

format level supported by the target deployment

system, if it is known). For more information, see

“z/OS Language Environment downward

compatibility” on page 9.

DYNAM DYNAM=DLL

LET LET=8

LIST LIST=NOIMPORT

Note: References throughout this document to the link editor are

generic references. c89/cc/c++ specifically uses the Program

Management binder for this function.

4. Related information about the z/OS XL C/C++ Run-Time Library,

including information about DLL and IPA support, is described in z/OS

XL C/C++ Programming Guide. Related information about the C and

C++ languages, including information about compiler directives, is

described in z/OS XL C/C++ Language Reference.

5. Since some compiler options are z/OS XL C–only and some compiler

options are z/OS XL C++–only, you may get warning messages and a

compiler return code of 4, if you use this option and compile both C and

C++ source programs in the same c++ command invocation.

6. For more information on the prelinker, see Appendix A, “Prelinking and

linking z/OS XL C/C++ programs,” on page 527.

7. Any messages produced by it (CCN messages) are documented in

z/OS XL C/C++ Messages.

8. You may see run-time messages (CEE or EDC) in executing your

applications. These messages are described in z/OS Language

Environment Debugging Guide.

9. The link editor (the Program Management binder) is described in z/OS

MVS Program Management: User’s Guide and Reference. The Program

Management binder messages are described in z/OS MVS System

Messages, Vol 8 (IEF-IGD).

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 477

Operands

c89/cc/c++ generally recognize their file operand types by file suffixes. The suffixes

shown here represent the default values used by c89/cc/c++. See “Environment

variables” on page 480 for information on changing the suffixes to be used.

Unlike c89 and c++, which report an error if given an operand with an unrecognized

suffix, cc determines that it is either an object file or a library based on the file itself.

This behavior is in accordance with the environment variable prefix_EXTRA_ARGS.

file.a Specifies the name of an archive file, as produced by the ar command, to

be used during the link-editing phase. You can specify an MVS data set

name, by preceding the file name with double slash (//), in which case the

last qualifier of the data set name must be LIB. The data set specified must

be a C370LIB object library or a load library. See the description of the –l

libname operand for more information about using data sets as libraries.

file.C Specifies the name of a C++ source file to be compiled. You can specify an

MVS data set name by preceding the file name with double slash (//), in

which case the last qualifier of the data set name must be CXX. This

operand is only supported by the c++ command.

file.c Specifies the name of a C source file to be compiled. You can specify an

MVS data set name by preceding the file name with double slash (//), in

which case the last qualifier of the data set name must be C. (The

conventions formerly used by c89 for specifying data set names are still

supported. See the environment variables prefix_OSUFFIX_HOSTRULE and

prefix_OSUFFIX_HOSTQUAL for more information.)

file.I Specifies the name of a IPA linker output file produced during the

c89/cc/c++ link-editing phase, when the –W option is specified with phase

code I. IPA is further described under the –W option on page 475. By default

the IPA linker output file is written to a temporary file. To have the IPA linker

output file written to a permanent file, see the environment variable

prefix_TMPS under Environment variables.

 When an IPA linker output file is produced by c89/cc/c++, the default name

is based upon the output file name. See the –o option under Options on

page 472, for information on the name of the output file.

 If the output file is named a.out, then the IPA linker output file is named a.I,

and is always in the working directory. If the output file is named //a.load,

then the IPA linker output file is named //a.IPA. If the output file specified

already has a suffix, that suffix is replaced. Otherwise the suffix is

appended. This file may also be specified on the command line, in which

case it is used as a file to be link-edited.

file.i Specifies the name of a preprocessed C or C++ source file to be compiled.

You can specify an MVS data set name, by preceding the file name with

double slash (//), in which case the last qualifier of the data set name must

be CEX.

 When using the c++ command, this source file is recognized as a C++

source file, otherwise it is recognized as a C source file. c++ can be made

to distinguish between the two. For more information see the environment

variables prefix_IXXSUFFIX and prefix_IXXSUFFIX_HOST.

file.o Specifies the name of a C, C++, or assembler object file, produced by

c89/cc/c++, to be link-edited.

c89, cc, and c++

478 z/OS V1R7.0 XL C/C++ User’s Guide

|

|
|

|

|

When an object file is produced by c89/cc/c++, the default name is based

upon the source file. If the source file is named file.c, then the object file is

named file.o, and is always in the working directory. If the source file were a

data set named //file.C, then the object file is named //file.OBJ.

 If the data set specified as an object file has undefined (U) record format,

then it is assumed to be a load module. Load modules are not processed

by the prelinker.

 You can specify an MVS data set name to be link-edited, by preceding the

file name with double slash (//), in which case the last qualifier of the data

set name must be OBJ.

 Example: If a partitioned data set is specified, more than one member

name may be specified by separating each with a comma (,):

c89 //file.OBJ(mem1,mem2,mem3)

file.p Specifies the name of a prelinker composite object file produced during the

c89/cc/c++ link-editing phase. By default, the composite object file is written

to a temporary file. To have the composite object file written to a permanent

file, see the environment variable prefix_TMPS under Environment variables.

 When a composite object file is produced by c89/cc/c++, the default name

is based upon the output file name. See the –o option under Options on

page 472, for information on the name of the output file.

 If the output file is named a.out, then the composite object file is named

a.p, and is always in the working directory. If the output file is named

//a.load, then the composite object file is named //a.CPOBJ. If the output file

specified already has a suffix, that suffix is replaced. Otherwise the suffix is

appended. This file may also be specified on the command line, in which

case it is used as a file to be link-edited.

file.s Specifies the name of an assembler source file to be assembled. You can

specify an MVS data set name, by preceding the file name with double

slash (//), in which case the last qualifier of the data set name must be

ASM.

file.x Specifies the name of a definition side-deck produced during the

c89/cc/c++ link-editing phase when creating a DLL (Dynamic Link Library),

and used during the link-editing phase of an application using the DLL.

DLLs are further described under the –W option.

 When a definition side-deck is produced by c89/cc/c++, the default name is

based upon the output file name. See the –o option under Options on page

472, for information on the name of the output file.

 If the output file is named a.dll, then the definition side-deck is named a.x,

and is always in the working directory. If the output file is named //a.DLL,

then the definition side-deck is named //a.EXP. If the output file specified

already has a suffix, that suffix is replaced. Otherwise the suffix is

appended.

 You can specify an MVS data set name to be link-edited, by preceding the

file name with double slash (//), in which case the last qualifier of the data

set name must be EXP.

 Example: If a partitioned data set is specified, more than one member

name may be specified by separating each with a comma (,):

c89 //file.EXP(mem1,mem2,mem3)

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 479

|

–l libname

Specifies the name of an archive library. c89/cc/c++ searches for the file

liblibname.a in the directories specified on the –L option and then in the

usual places. The first occurrence of the archive library is used. For a

description of the usual places, see Usage Note 7 on page 497.

 You can also specify an MVS data set; you must specify the full data set

name, because there are no rules for searching library directories.

 The data set specified must be a C370LIB object library or a load library. If

a data set specified as a library has undefined (U) record format, then it is

assumed to be a load library. For more information about how load libraries

are searched, see Usage Note 7 on page 497.

Environment variables

You can use environment variables to specify necessary system and operational

information to c89/cc/c++. When a particular environment variable is not set,

c89/cc/c++ uses the default shown. For information about the JCL parameters used

in these environment variables, see z/OS MVS JCL User’s Guide.

Each environment variable has a prefix (shown in italics) that should be replaced

by one of the following, depending on the command name used:

v _CC

v _CXX

v _C89

This means that to specify cc environment variables, the name shown must be

prefixed with _CC (for example, _CC_ACCEPTABLE_RC). To specify c89 environment

variables, the name shown must be prefixed with _C89 (for example,

_C89_ACCEPTABLE_RC). To specify c++/cxx environment variables, the name shown

must be prefixed with _CXX (for example, _CXX_ACCEPTABLE_RC).

Notes:

1. For most environment variables, you can use all three prefixes (_CC, _CXX, _C89).

In the list of environment variables that follows, you should assume that all three

prefixes can be used unless otherwise indicated.

2. c89/cc/c++ can accept parameters only in the syntax indicated here. A null

value indicates that c89/cc/c++ should omit the corresponding parameters

during dynamic allocation. Numbers in parentheses following the environment

variable name correspond to usage notes, which begin on Page 496, and

indicate specific usage information for the environment variable.

prefix_ACCEPTABLE_RC

The maximum allowed return code (result) of any step (compile, assemble,

IPA link, prelink, or link-edit). If the result is between zero and this value

(inclusive), then it is treated internally by c89/cc/c++ exactly as if it were a

zero result, except that message FSUM3065 is also issued. The default

value is:

"4"

When used under c89/cc/c++, the prelinker by default returns at least a 4

when there are duplicate symbols or unresolved writable static symbols (but

not for other unresolved references). The link editor returns at least a 4

when there are duplicate symbols, and at least an 8 when there are

unresolved references and automatic library call was used.

c89, cc, and c++

480 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

|

|

|
|
|
|
|

|
|
|

|

prefix_ASUFFIX (15)

The suffix by which c89/cc/c++ recognizes an archive file. This environment

variable does not affect the treatment of archive libraries specified as –l

operands, which are always prefixed with lib and suffixed with .a. The

default value is:

"a"

prefix_ASUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a library data set. This

environment variable does not affect the treatment of data set libraries

specified as –l operands, which are always used exactly as specified. The

default value is:

"LIB"

prefix_CCMODE

Controls how c89/cc/c++ does parsing. The default behavior of c89/cc/c++

is to expect all options to precede all operands. Setting this variable allows

compatibility with historical implementations (other cc commands). When

set to 1, c89/cc/c++ operates as follows:

v Options and operands can be interspersed.

v The double dash (––) is ignored.

Setting this variable to 0 results in the default behavior. The default value is:

"0"

prefix_CLASSLIB_PREFIX (17)

The prefix for the following named data sets used during the compilation

phase and execution of your C++ application.

 To be used, the following data sets must be cataloged:

v The data sets ${prefix_CLASSLIB_PREFIX}.SCLBH.+ contain the z/OS XL

C++ Class Library include (header) files.

v The data set ${prefix_CLASSLIB_PREFIX}.SCLBSID contains the z/OS XL

C++ Class Library definition side-decks.

The following data sets are also used:

 The data sets ${prefix_CLASSLIB_PREFIX}.SCLBDLL and

${prefix_CLASSLIB_PREFIX}.SCLBDLL2 contain the z/OS XL C++ Class

Library DLLs and messages.

 The preceding data sets contain MVS programs that are invoked during the

execution of a C++ application built by c++. To be executed correctly, these

data sets must be made part of the MVS search order. Regardless of the

setting of this or any other c++ environment variable, c++ does not affect the

MVS search order. These data sets are listed here for information only, to

assist in identifying the correct data sets to be added to the MVS program

search order.

 The default value is the value of the environment variable:

_CXX_CLIB_PREFIX

The prefix_CLASSLIB_PREFIX environment variable applies only to c++ and

cxx command names. _CXX is the only valid prefix.

prefix_CLASSVERSION

The version of the C++ Class Library to be invoked by c++. The setting of

this variable allows c++ to control which C++ Class Library named data sets

are used during the c++ processing phases. It also sets default values for

other environment variables.

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 481

|

|

|

|

|

|

|
|

|
|

|

The format of this variable is the same as the result of the Language

Environment C/C++ Run-Time Library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is the same as the value for the _CVERSION

environment variable. If _CVERSION is not set, then the default value will be

the result of the C/C++ Run-Time library _librel() function.

 The prefix_CLASSVERSION environment variable applies only to the c++ and

cxx command names. _CXX is the only valid prefix.

prefix_CLIB_PREFIX (17)

The prefix for the following named data set used during the compilation

phase.

 The data set ${prefix_CLIB_PREFIX}.SCCNCMP contains the compiler

programs called by c89/cc/c++.

 The preceding data set contains MVS programs that are invoked during the

execution of c89/cc/c++ and during the execution of a C/C++ application

built by c89/cc/c++. To be executed correctly, the data set must be made

part of the MVS search order. Regardless of the setting of this or any other

c89/cc/c++ environment variable, c89/cc/c++ does not affect the MVS

search order. The data set is listed here for information only, to assist in

identifying the correct data set to be added to the MVS program search

order.

 The following data set is also used:

 The data set ${prefix_CLIB_PREFIX}.SCCNOBJ contains object files required

to instrument the code for profile-driven feedback optimization.

 The default value is:

"CBC"

prefix_CMEMORY

A suggestion as to the use of compiler C/C++ Runtime Library memory

files. When set to 0, c89/cc/c++ will prefer to use the compiler NOMEMORY

option. When set to 1, c89/cc/c++ will prefer to use the compiler MEMORY

option. When set to 1, and if the compiler MEMORY option can be used,

c89/cc/c++ need not allocate data sets for the corresponding work files. In

this case it is the responsibility of the user to not override the compiler

options (using the –W option) with the NOMEMORY option or any other compiler

option which implies the NOMEMORY option.

 The default value is:

"1"

prefix_CMSGS (14)

The Language Environment national language name used by the compiler

program. A null value will cause the default Language Environment NATLANG

run-time name to be used, and a non-null value must be a valid Language

Environment NATLANG run-time option name (Language Environment

run-time options are described in z/OS Language Environment

Programming Guide . The default value is:

"" (null)

prefix_CNAME (14)

The name of the compiler program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

default value is:

"CCNDRVR"

c89, cc, and c++

482 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

|

|

|

|

|

If c89/cc/c++ is being used with prefix_CVERSION set to a release prior to

z/OS V1R2, the default value will be:

"CBCDRVR"

prefix_CSUFFIX (15)

The suffix by which c89/cc/c++ recognizes a C source file. The default

value is:

"c"

prefix_CSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a C source data set. The default

value is:

"C"

prefix_CSYSLIB (4, 16)

The system library data set concatenation to be used to resolve #include

directives during compilation.

 Normally #include directives are resolved using all the information specified

including the directory name. When c89/cc/c++ can determine that the

directory information can be used, such as when the include (header) files

provided by Language Environment are installed in the default location (in

accordance with prefix_INCDIRS), then the default concatenation is:

"" (null)

When c89/cc/c++ cannot determine that the directory information can be

used, then the default concatenation is:

"${prefix_PLIB_PREFIX}.SCEEH.H"

"${prefix_PLIB_PREFIX}.SCEEH.SYS.H"

"${prefix_PLIB_PREFIX}.SCEEH.ARPA.H"

"${prefix_PLIB_PREFIX}.SCEEH.NET.H"

"${prefix_PLIB_PREFIX}.SCEEH.NETINET.H"

When this variable is a null value, then no allocation is done for compiler

system library data sets. In this case, the use of //DD:SYSLIB on the –I

option and the #include directive will be unsuccessful. Unless there is a

dependency on the use of //DD:SYSLIB, it is recommended that for

improved performance this variable be allowed to default to a null value.

prefix_CVERSION

The version of the C/C++ compiler to be invoked by c89/cc/c++. The

setting of this variable allows c89/cc/c++ to control which C/C++ compiler

program is invoked. It also sets default values for other environment

variables.

 The format of this variable is the same as the result of the Language

Environment C/C++ Run-Time Library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is the result of the C/C++ Run-Time library

_librel() function.

 In order for c89/cc/c++ to use the OS/390 Version 2 Release 10 C/C++

compiler and C++ Class Library, this variable should be set to the value:

0x220A0000

prefix_CXXSUFFIX (15)

The suffix by which c++ recognizes a C++ source file. The default value is:

"C"

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 483

|

|

|

|

|

|
|
|
|
|

|

|

This environment variable is only supported by the c++ and cxx command

names. _CXX is the only valid prefix.

prefix_CXXSUFFIX_HOST (15)

The suffix by which c++ recognizes a C++ source data set. The default

value is:

"CXX"

This environment variable is only supported by the c++ and cxx command

names. _CXX is the only valid prefix.

prefix_DAMPLEVEL

The minimum severity level of dynamic allocation messages returned by

dynamic allocation message processing. Messages with severity greater

than or equal to this number are written to stderr. However, if the number

is out of the range shown here (that is, less than 0 or greater than 8), then

c89/cc/c++ dynamic allocation message processing is disabled. The default

value is:

"4"

Following are the values:

0 Informational

1–4 Warning

5–8 Severe

prefix_DAMPNAME (14)

The name of the dynamic allocation message processing program called by

c89/cc/c++. It must be a member of a data set in the search order used for

MVS programs. The default dynamic allocation message processing

program is described in z/OS MVS Programming: Authorized Assembler

Services Guide. The default value is:

"IEFDB476"

prefix_DCBF2008 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format fixed unblocked and minimum block size of 2008. The block

size must be in multiples of 8, and the maximum depends on the phase in

which it is used but can be at least 5100. The default value is:

"(RECFM=F,LRECL=4088,BLKSIZE=4088)"

prefix_DCBU (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format undefined and data set organization partitioned. This DCB is

used by c89/cc/c++ for the output file when it is to be written to a data set.

The default value is:

"(RECFM=U,LRECL=0,BLKSIZE=6144,DSORG=PO)"

prefix_DCB121M (21)

The DCB parameters used by c89/cc/c++for data sets with the attributes of

record format fixed blocked and logical record length 121, for data sets

whose records may contain machine control characters. The default value

is:

"(RECFM=FBM,LRECL=121,BLKSIZE=3630)"

prefix_DCB133M (21)

The DCB parameters used by c89/cc/c++for data sets with the attributes of

c89, cc, and c++

484 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

|
|

|

|

|

|

|

|

record format fixed blocked and logical record length 133, for data sets

whose records may contain machine control characters. The default value

is:

"(RECFM=FBM,LRECL=133,BLKSIZE=3990)"

prefix_DCB137 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format variable blocked and logical record length 137. The default

value is:

"(RECFM=VB,LRECL=137,BLKSIZE=882)"

prefix_DCB137A (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format variable blocked and logical record length 137, for data sets

whose records may contain ISO/ANSI control characters. The default value

is:

"(RECFM=VB,LRECL=137,BLKSIZE=882)"

prefix_DCB3200 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format fixed blocked and logical record length 3200. The default

value is:

"(RECFM=FB,LRECL=3200,BLKSIZE=12800)"

prefix_DCB80 (21)

The DCB parameters used by c89/cc/c++ for data sets with the attributes of

record format fixed blocked and logical record length 80. This value is also

used when c89/cc/c++ allocates a new data set for an object file. The

default value is:

"(RECFM=FB,LRECL=80,BLKSIZE=3200)"

prefix_DEBUG_FORMAT (21)

This variable is used to determine to which debug format (DWARF or ISD) the

–g flag is translated. If _DEBUG_FORMAT is set to DWARF, then –g is translated

to DEBUG(FORMAT(DWARF)). If _DEBUG_FORMAT is set to ISD, then –g is

translated to TEST. The default value is DWARF.

Note: This environment variable only applies to 31-bit compiles.

prefix_ELINES

This variable controls whether the output of the -E option will include #line

directives. #line directives provide information about the source file names

and line numbers from which the preprocessed source came. The

preprocessor only inserts #line directives where it is necessary. When set

to 1, the output of the c89/cc/c++ -E option will include #line directives

where necessary. When set to 0, the output will not include any #line

directives. The default value is:

"0"

prefix_EXTRA_ARGS

The setting of this variable controls whether c89/cc/c++ treats a file

operand with an unrecognized suffix as an error, or attempts to process it.

When the c++ command –+ option is specified, all suffixes which otherwise

would be unrecognized are instead recognized as C++ source, effectively

disabling this environment variable. See page 467 for information about the

–+ option.

 When set to0, c89/cc/c++ treats such a file as an error and the command

will be unsuccessful, because the suffix will not be recognized.

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 485

|

|

|

|

|

|

|

When set to 1, c89/cc/c++ treats such a file as either an object file or a

library, depending on the file itself. If it is neither an object file nor a library

then the command will be unsuccessful, because the link-editing phase will

be unable to process it. The default value for c89 and c++ is:

"0"

The default value for cc is:

"1"

prefix_IL6SYSIX (7, 16)

The system definition side-deck list that is used to resolve symbols during

the IPA link step of the link-editing phase when using LP64 (see the

description of LP64 in “Options” on page 467). The default value is whatever

prefix_L6SYSIX is set to or defaults to.

prefix_IL6SYSLIB (7, 16)

The system library data set list that is used to resolve symbols during the

IPA link step of the link-editing phase when using LP64 (see the description

of LP64 in “Options” on page 467). The default value is whatever

prefix_L6SYSLIB is set to or defaults to.

prefix_ILCTL (14)

The name of the control file used by the IPA linker program. By default the

control file is not used, so the –W option must be specified to enable its use,

as in:

c89 -WI,control ...

The default value is:

"ipa.ctl"

prefix_ILMSGS (14)

The name of the message data set member, or the Language Environment

national language name, used by the IPA linker program. The default value

is whatever prefix_CMSGS is. So if prefix_CMSGS is set or defaults to

"" (null), the default value is:

"" (null)

prefix_ILNAME (14)

The name of the IPA linker program called by c89/cc. It must be a member

of a data set in the search order used for MVS programs. The default value

is whatever prefix_CNAME is. So if prefix_CNAME is set or defaults to

"CCNDRVR" the default value is:

"CCNDRVR"

prefix_ILSUFFIX (15)

The suffix c89/cc uses when creating an IPA linker output file. The default

value is:

"I"

prefix_ILSUFFIX_HOST (15)

The suffix c89/cc uses when creating an IPA linker output data set. The

default value is:

"IPA"

prefix_ILSYSLIB (7, 16)

The system library data set list to be used to resolve symbols during the

IPA link step of the link-editing phase of non-XPLINK programs. The default

value is whatever prefix_PSYSLIB is set or defaults to, followed by whatever

prefix_LSYSLIB is set or defaults to.

c89, cc, and c++

486 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

|

|

|

|

|

|

|
|

prefix_ILSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

the IPA link step of the link-editing phase in non-XPLINK programs. The

default value is whatever prefix_PSYSIX is set or defaults to.

prefix_ILXSYSLIB (7, 16)

The system library data set list to be used to resolve symbols during the

IPA link step of the link-editing phase when using XPLINK (see XPLINK

(Extra Performance Linkage) in “Options” on page 467). The default value is

whatever prefix_LXSYSLIB is set or defaults to.

prefix_ILXSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

the IPA link step of the link-editing phase when using XPLINK (see XPLINK

(Extra Performance Linkage) in “Options” on page 467). The default value is

whatever prefix_LXSYSIX is set or defaults to.

prefix_INCDIRS (22)

The directories used by c89/cc/c++ as a default place to search for include

files during compilation (before searching prefix_INCLIBS and

prefix_CSYSLIB). If c++ is not being used the default value is:

"/usr/include"

If c++ is being used the default value is:

/usr/include /usr/lpp/cbclib/include

prefix_INCLIBS (22)

The directories used by c89/cc/c++ as a default place to search for include

files during compilation (after searching prefix_INCDIRS and before

searching prefix_CSYSLIB). The default value depends on whether or not

c++ is being used. If c++ is not being used the default value is:

"//'${prefix_PLIB_PREFIX}.SCEEH.+'"

If c++ is being used, the default value is:

"//’${prefix_PLIB_PREFIX}.SCEEH.+’ //’${prefix_CLIB_PREFIX}.SCLBH.+’"

prefix_ISUFFIX (15)

The suffix by which c89/cc/c++ recognizes a preprocessed C source file.

The default value is:

"i"

prefix_ISUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a preprocessed (expanded) C

source data set. The default value is:

"CEX"

prefix_IXXSUFFIX (15)

The suffix by which c++ recognizes a preprocessed C++ source file. The

default value is:

"i"

This environment variable is only supported by the c++ and cxx command

names. _CXX is the only valid prefix.

prefix_IXXSUFFIX_HOST (15)

The suffix by which c++ recognizes a preprocessed (expanded) C++ source

data set. The default value is:

"CEX"

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 487

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|

This environment variable is only supported by the c++ and cxx command

names. _CXX is the valid prefix.

prefix_L6SYSIX (7, 16)

The system definition side-deck list that resolves symbols during the

link-editing phase when using LP64 (see the description of LP64 in “Options”

on page 467). A definition side-deck contains link-editing phase IMPORT

control statements, which name symbols that are exported by a DLL. The

default value depends on whether or not c++ is used. If c++ is not used, the

default value is:

"${prefix_PLIB_PREFIX}.SCEELLIB(CELQS003)"

If c++ is used, the default value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELQS003,CELQSCPP,C64)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSX64)"

prefix_L6SYSLIB (7, 16)

The system library data set concatenation that is used to resolve symbols

during the link-editing step when using LP64 (see the description of LP64 in

“Options” on page 467). The default value is the concatenation:

"${prefix_PLIB_PREFIX}.SCEEBND2"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LIBDIRS (22)

The directories used by c89/cc/c++ as the default place to search for

archive libraries which are specified using the –l operand. The default value

is:

"/lib /usr/lib"

prefix_LSYSLIB (7, 16)

The system library data set concatenation to be used to resolve symbols

during the IPA link step and the link-edit step of the non-XPLINK link-editing

phase. The prefix_PSYSLIB libraries always precede the prefix_LSYSLIB

libraries when resolving symbols in the link-editing phase. The default value

is the concatenation:

"${prefix_PLIB_PREFIX}.SCEELKEX"

"${prefix_PLIB_PREFIX}.SCEELKED"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LXSYSLIB (7, 16)

The system library data set concatenation to be used to resolve symbols

during the IPA link step and the link-editing phase when using XPLINK (see

XPLINK (Extra Performance Linkage) in “Options” on page 467). The

default value is the concatenation:

"${prefix_PLIB_PREFIX}.SCEEBIND"

"${prefix_SLIB_PREFIX}.CSSLIB"

prefix_LXSYSIX (7, 16)

The system definition side-deck list to be used to resolve symbols during

the link-editing phase when using XPLINK (see XPLINK (Extra Performance

Linkage) in “Options” on page 467). A definition side-deck contains

link-editing phase IMPORT control statements naming symbols which are

exported by a DLL. The default value depends on whether or not c++ is

being used. For 32-bit objects, if c++ is not being used, the default value is

the list:

"${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001)"

c89, cc, and c++

488 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|

|

|
|

|

|
|

|

|

|

|
|
|

|

|
|

|

|

For 32-bit objects, if c++ is being used with prefix_PVERSION and

prefix_CLASSVERSION defaulted to the current z/OS release, the default

value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP,C128)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For 32-bit objects, if c++ is being used with prefix_PVERSION and

prefix_CLASSVERSION set to a release prior to z/OS Version 1 Release 2 for

a 32-bit program, the default value is the list concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

Note: For 64–bit objects, see prefix_L6SYSIX.

prefix_MEMORY

A suggestion as to the use of C/C++ Runtime Library memory files by

c89/cc/c++. When set to 0, c89/cc/c++ uses temporary data sets for all

work files. When set to 1, c89/cc/c++ uses memory files for all work files

that it can. The default value is:

"1"

prefix_NEW_DATACLAS (18)

The DATACLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is:

"" (null)

prefix_NEW_DSNTYPE (18, 20)

The DSNTYPE parameter used by c89/cc/c++ for any new data sets it

creates. The default value is:

"" (null)

prefix_NEW_MGMTCLAS (18)

The MGMTCLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is:

"" (null)

prefix_NEW_SPACE (18, 19)

The SPACE parameters used by c89/cc/c++for any new data sets it

creates. A value for the number of directory blocks should always be

specified. When allocating a sequential data set, c89/cc/c++ automatically

ignores the specification. The default value is:

"(,(10,10,10))"

prefix_NEW_STORCLAS (18)

The STORCLAS parameter used by c89/cc/c++ for any new data sets it

creates. The default value is:

"" (null)

prefix_NEW_UNIT (18)

The UNIT parameter used by c89/cc/c++ for any new data sets it creates.

The default value is:

"" (null)

prefix_NOCMDOPTS (27)

Controls how the compiler processes the default options set by c89. Setting

this variable to 1, reverts the compiler to the behavior that was available

prior to z/OS V1R5, when the compiler was unable to distinguish between

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 489

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

the c89 defaults and the user-specified options. Setting this variable to 0,

results in the default behavior where the compiler is now able to recognize

c89 defaults. The default value is:

"0"

prefix_OPERANDS (22)

These operands are parsed as if they were specified after all other

operands on the c89/cc/c++ command line. The default value is:

"" (null)

prefix_OPTIONS (22)

These options are parsed as if they were specified before all other options

on the c89/cc/c++ command line. The default value is:

"" (null)

prefix_OSUFFIX (15)

The suffix by which c89/cc/c++ recognizes an object file. The default value

is:

"o"

prefix_OSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes an object data set. The default

value is:

"OBJ"

prefix_OSUFFIX_HOSTQUAL

The data set name of an object data set is determined by the setting of this

option. If it is set to 0, then the suffix prefix_OSUFFIX_HOST is appended to

the source data set name to produce the object data set name. If it is set to

1, then the suffix prefix_OSUFFIX_HOST replaces the last qualifier of the

source data set name to produce the object data set name (unless there is

only a single qualifier, in which case the suffix is appended). The default

value is:

"1"

Note: Earlier versions of c89 always appended the suffix, which was

inconsistent with the treatment of files in the hierarchical file system.

It is recommended that any existing data sets be converted to use

the new convention.

prefix_OSUFFIX_HOSTRULE

The way in which suffixes are used for host data sets is determined by the

setting of this option. If it is set to 0, then data set types are determined by

the rule described in the note which follows. If it is set to 1, then the data

set types are determined by last qualifier of the data set (just as a suffix is

used to determine the type of hierarchical file system file). Each host file

type has an environment variable by which the default suffix can be

modified. The default value is:

"1"

Notes:

1. Earlier versions of c89 scanned the data set name to determine if it was

an object data set. It searched for the string OBJ in the data set name,

exclusive of the first qualifier and the member name. If it was found, the

data set was determined to be an object data set, and otherwise it was

determined to be a C source data set. It is recommended that any

existing data sets be converted to use the new convention. Also,

c89, cc, and c++

490 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

|

|

|

|

because the earlier convention only provided for recognition of C source

files, assembler source cannot be processed if it is used.

2. The c++ command does not support this environment variable, as the

earlier convention would not provide for recognition of both C++ and C

source files. Therefore regardless of its setting, c++ always behaves as

if it is set to "1".

prefix_PLIB_PREFIX (17)

The prefix for the following named data sets used during the compilation,

assemble, and link-editing phases, and during the execution of your

application.

 To be used, the following data sets must be cataloged:

v The data sets ${prefix_PLIB_PREFIX}.SCEEH.+ contain the include

(header) files for use with the run-time library functions (where + can be

any of H, SYS.H, ARPA.H, NET.H, and NETINET.H).

v The data set ${prefix_PLIB_PREFIX}.SCEEMAC contains COPY and

MACRO files to be used during assembly.

v The data sets ${prefix_PLIB_PREFIX}.SCEEOBJ and

${prefix_PLIB_PREFIX}.SCEECPP contain run-time library bindings which

exploit constructed reentrancy, used during the link-editing phase of

non-XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEELKEX contains C run-time

library bindings which exploit L-names used during the link-editing phase

of non-XPLINK programs. For more information about L-names, see

usage note 23 on page 501.

v The data set ${prefix_PLIB_PREFIX}.SCEELKED contains all other

Language Environment run-time library bindings, used during the

link-editing phase of non-XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEEBIND contains all static

Language Environment run-time library bindings, used during the

link-editing phase of XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEEBND2 contains all static

Language Environment run-time library bindings, used during the

link-editing phase of XPLINK programs.

v The data set ${prefix_PLIB_PREFIX}.SCEELIB contains the definition

side-decks for the run-time library bindings, used during the link-editing

phase of XPLINK programs.

The following data sets are also used:

v The data sets ${prefix_PLIB_PREFIX}.SCEERUN and

${prefix_PLIB_PREFIX}.SCEERUN2 contains the run-time library programs.

The above data sets contain MVS programs that are invoked during the

execution of c89/cc/c++ and during the execution of a C/C++ application

built by c89/cc/c++. To be executed correctly, these data sets must be

made part of the MVS search order. Regardless of the setting of this or any

other c89/cc/c++ environment variable, c89/cc/c++ does not affect the MVS

program search order. These data sets are listed here for information only,

to assist in identifying the correct data sets to be added to the MVS

program search order. The default value is:

"CEE"

prefix_PMEMORY

A suggestion as to the use of prelinker C/C++ Runtime Library memory

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 491

|

|

|

|
|

|

|

|

|

|

|
|

|

files. When set to 0, c89/cc/c++ uses the prelinker NOMEMORY option. When

set to 1, c89/cc/c++ uses the prelinker MEMORY option. The default value is:

"1"

prefix_PMSGS (14)

The name of the message data set used by the prelinker program. It must

be a member of the cataloged data set ${prefix_PLIB_PREFIX}.SCEEMSGP.

The default value is:

 "EDCPMSGE"

prefix_PNAME (14)

The name of the prelinker program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

prelinker program is shipped as a member of the

${prefix_PLIB_PREFIX}.SCEERUN data set. The default value is:

"EDCPRLK"

prefix_PSUFFIX (15)

The suffix c89/cc/c++ uses when creating a prelinker (composite object)

output file. The default value is:

"p"

prefix_PSUFFIX_HOST (15)

The suffix c89/cc/c++ uses when creating a prelinker (composite object)

output data set. The default value is:

"CPOBJ"

prefix_PSYSIX (16)

The system definition side-deck list to be used to resolve symbols during

the non-XPLINK link-editing phase. A definition side-deck contains

link-editing phase IMPORT control statements naming symbols which are

exported by a DLL. The default value when c++ is not being used is null. If

c++ is being used with prefix_PVERSION and prefix_CLASSVERSION set or

defaulted to the current z/OS release, the default value is the list

concatenation:

"${prefix_PLIB_PREFIX}.SCEELIB(C128)"

"${prefix_CLASSLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

If c++ is being used with prefix_PVERSION and prefix_CLASSVERSION set to

a release prior to z/OS Version 1 Release 2, the default value is the list:

"${prefix_CLASSLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

prefix_PSYSLIB (16)

The system library data set list to be used to resolve symbols during the

non-XPLINK link-editing phase. The prefix_PSYSLIB libraries always

precede the prefix_LSYSLIB libraries when resolving symbols in the

link-editing phase. The default value depends on whether or not c++ is

being used. If c++ is not being used, the default value is the list containing

the single entry:

"${prefix_PLIB_PREFIX}.SCEEOBJ"

If c++ is being used, the default value is the list:

"${prefix_PLIB_PREFIX}.SCEEOBJ"

"${prefix_PLIB_PREFIX}.SCEECPP"

prefix_PVERSION (26)

The version of the Language Environment to be used with c89/cc/c++. The

setting of this variable allows c89/cc/c++ to control which Language

c89, cc, and c++

492 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|
|

|

Environment named data sets are used during the c89/cc/c++ processing

phases. These named data sets include those required for use of the

C/C++ Run-Time Library as well as the ISO C++ Library. It also sets default

values for other environment variables.

 The format of this variable is the same as the result of the Language

Environment C/C++ Run-Time Library function _librel(). See z/OS XL

C/C++ Run-Time Library Reference for a description of the _librel()

function. The default value is:

The result of the C/C++ Run-Time library _librel() function

prefix_SLIB_PREFIX (17)

The prefix for the named data sets used by the link editor (CSSLIB) and the

assembler system library data sets (MACLIB and MODGEN). The data set

${prefix_SLIB_PREFIX}.CSSLIB contains the z/OS UNIX assembler callable

services bindings. The data sets ${prefix_SLIB_PREFIX}.MACLIB and

${prefix_SLIB_PREFIX}.MODGEN contain COPY and MACRO files to be used

during assembly. These data sets must be cataloged to be used. The

default value is:

"SYS1"

prefix_SNAME (14)

The name of the assembler program called by c89/cc/c++. It must be a

member of a data set in the search order used for MVS programs. The

default value is:

"ASMA90"

prefix_SSUFFIX (15)

The suffix by which c89/cc/c++ recognizes an assembler source file. The

default value is:

"s"

prefix_SSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes an assembler source data set.

The default value is:

"ASM"

prefix_SSYSLIB (16)

The system library data set concatenation to be used to find COPY and

MACRO files during assembly. The default concatenation is:

"${prefix_PLIB_PREFIX}.SCEEMAC"

"${prefix_SLIB_PREFIX}.MACLIB"

"${prefix_SLIB_PREFIX}.MODGEN"

prefix_STEPS

The steps that are executed for the link-editing phase can be controlled with

this variable. For example, the prelinker step can be enabled, so that the

inputs normally destined for the link editor instead go into the prelinker, and

then the output of the prelinker becomes the input to the link editor.

 This variable allows the prelinker to be used in order to produce output

which is compatible with previous releases of c89/cc/c++. The prelinker is

normally used by c89/cc/c++ when the output file is a data set which is not

a PDSE (partitioned data set extended).

Note: The prelinker and XPLINK are incompatible. When using the link

editor XPLINK option, the prelinker cannot be used. Thus, specifying

the prelinker on this variable will have no effect.

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 493

|

|
|
|

|

|

|

|

|
|
|

|

The format of this variable is a set of binary switches which either enable

(when turned on) or disable (when turned off) the corresponding step.

Turning a switch on will not cause a step to be enabled if it was not already

determined by c89/cc/c++ that any other conditions necessary for its use

are satisfied. For example, the IPA link step will not be executed unless the

–W option is specified to enable the IPA linker. Enabling the IPA linker is

described under the –W option on page 475.

 Considering this variable to be a set of 32 switches, numbered left-to-right

from 0 to 31, the steps corresponding to each of the switches are as

follows:

0-27 Reserved

28 TEMPINC/IPATEMP

29 IPALINK

30 PRELINK

31 LINKEDIT

 Example: To override the default behavior of c89/cc/c++ and cause the

prelinker step to be run (this is also the default when the output file is a

data set which is not a PDSE), set this variable to:

"0xffffffff" or the equivalent, -1

The default value when the output file is an HFS file or a PDSE data set is:

"0xfffffffd" or the equivalent, -3

Note: The IPATEMP step is the IPA equivalent of the TEMPINC (automatic

template generation) step, just as the IPACOMP step is the IPA

equivalent of the COMPILE step. See the description of IPA under

the -W option for more information.

prefix_SUSRLIB (16)

The user library data set concatenation to be used to find COPY and

MACRO files during assembly (before searching prefix_SSYSLIB). The

default value is:

"" (null)

prefix_TMPS

The use of temporary files by c89/cc/c++ can be controlled with this

variable.

 The format of this variable is a set of binary switches which either cause a

temporary file to be used (when turned on) or a permanent file to be used

(when turned off) in the corresponding step.

 The correspondence of these switches to steps is the same as for the

variable prefix_STEPS. Only the prelinker and IPA linker output can be

captured using this variable.

 Example: To capture the prelinker output, set this variable to:

"0xfffffffD" or the equivalent, -3

The default value is:

"0xffffffff" or the equivalent, -1

prefix_WORK_DATACLAS (18)

The DATACLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is:

"" (null)

c89, cc, and c++

494 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

prefix_WORK_DSNTYPE (18, 20)

The DSNTYPE parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is:

"" (null)

prefix_WORK_MGMTCLAS (18)

The MGMTCLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is:

"" (null)

prefix_WORK_SPACE (18, 19)

The SPACE parameters used by c89/cc/c++ for unnamed temporary (work)

data sets. The default value is:

"(32000,(30,30))"

prefix_WORK_STORCLAS (18)

The STORCLAS parameter used by c89/cc/c++ for unnamed temporary

(work) data sets. The default value is:

"" (null)

prefix_WORK_UNIT (18)

The UNIT parameter used by c89/cc/c++ for unnamed temporary (work)

data sets. The default value is:

"SYSDA"

prefix_XSUFFIX (15)

The suffix by which c89/cc/c++ recognizes a definition side-deck file of

exported symbols. The default value is:

"x"

prefix_XSUFFIX_HOST (15)

The suffix by which c89/cc/c++ recognizes a definition side-deck data set of

exported symbols. The default value is:

"EXP"

Files

libc.a C/C++ Runtime Library function library (see Usage Note 7 on page 497).

libm.a C/C++ Runtime Library math function library (see Usage Note 7 on page

497).

libl.a lex function library.

liby.a yacc function library.

/dev/fd0, /dev/fd1, ...

Character special files required by c89/cc/c++. For installation information,

see z/OS UNIX System Services Planning.

/usr/include

The usual place to search for include files (see Usage Note 4 on page

496).

/lib The usual place to search for run-time library bindings (see Usage Note 7

on page 497).

/usr/lib

The usual place to search for run-time library bindings (see Usage Note 7

on page 497).

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 495

|

|

|

|

|

|

|

Usage notes

 1. To be able to specify an operand that begins with a dash (–), before specifying

any other operands that do not, you must use the double dash (––)

end-of-options delimiter. This also applies to the specification of the –l

operand. (See the description of environment variable prefix_CCMODE for an

alternate style of argument parsing.)

 2. When invoking c89/cc/c++ from the shell, any option-arguments or operands

specified that contain characters with special meaning to the shell must be

escaped. For example, some –W option-arguments contain parentheses.

Source files specified as PDS member names contain parentheses; if they are

specified as fully qualified names, they contain single quotes.

To escape these special characters, either enclose the option-argument or

operand in double quotes, or precede each character with a backslash.

 3. Some c89/cc/c++ behavior applies only to hierarchical files (and not to data

sets).

v If the compile or assemble is not successful, the corresponding object file

(file.o) is always removed.

v If the DLL option is passed to the link-editing phase, and afterwards the

file.x file exists but has a size of zero, then that file is removed.

 4. MVS data sets may be used as the usual place to resolve C and C++

#include directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,

searching for these include files can be specified on the –I option as

//DD:SYSLIB. (See the description of environment variable prefix_CSYSLIB for

information.

When include files are MVS PDS members, z/OS XL C/C++ uses conversion

rules to transform the include (header) file name on a #include preprocessor

directive into a member name. If the "//'dataset_prefix.+'" syntax is not used for

the MVS data set which is being searched for the include file, then this

transformation strips any directory name on the #include directive, and then

takes the first 8 or fewer characters up to the first dot (.).

If the "//'dataset_prefix.+'" syntax is used for the MVS data set which is being

searched for the include file, then this transformation uses any directory name

on the #include directive, and the characters following the first dot (.), and

substitutes the "+" of the data set being searched with these qualifiers.

In both cases the data set name and member name are converted to

uppercase and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed

into the hierarchical file system in the default location (in accordance with the

prefix_INCDIRS environment variable), then the compiler will use those files to

resolve #include directives during compilation. c89/cc/c++ by default searches

the directory /usr/include as the usual place, just before searching the data

sets just described. See the description of environment variables

prefix_CSYSLIB, prefix_INCDIRS, and prefix_INCLIBS for information on

customizing the default directories to search.

 5. Feature test macros control which symbols are made visible in a source file

(typically a header file). c89/cc/c++ automatically defines the following feature

test macros along with the errno macro, according to whether or not cc was

invoked.

v Other than cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=1

c89, cc, and c++

496 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

v cc

 –D "errno=(*__errno())"

 –D _OPEN_DEFAULT=0

 –D _NO_PROTO=1

c89/cc/c++ add these macro definitions only after processing the command

string. Therefore, you can override these macros by specifying –D or –U options

for them on the command string.

 6. The default LANGLVL and related compiler options are set according to whether

cc, c89, or c++ (cxx) was invoked. These options affect various aspects of the

compilation, such as z/OS XL C/C++ predefined macros, which are used like

feature test macros to control which symbols are made visible in a source file

(typically a header file), but are normally not defined or undefined except by

this compiler option. They can also affect the language rules used by the

compiler. For more information about z/OS XL C/C++ predefined macros, see

z/OS XL C/C++ Language Reference. The options are shown here in a syntax

that the user can specify on the c89/cc/c++ command line to override them:

v c89 (also c++ (cxx) when using a C++ compiler older than z/OS v1r2)

 –W "c,langlvl(ansi),noupconv"
v c++ (cxx)

 –W "c,langlvl(extended,nolibext,nolonglong)
v cc

 –W "c,langlvl(commonc),upconv"

 7. By default the usual place for the –L option search is the /lib directory followed

by the /usr/lib directory. See the description of environment variable

prefix_LIBDIRS for information on customizing the default directories to

search.

The archive libraries libc.a and libm.a exist as files in the usual place for

consistency with other implementations. However, the run-time library bindings

are not contained in them. Instead, MVS data sets installed with the Language

Environment run-time library are used as the usual place to resolve run-time

library bindings. In the final step of the link-editing phase, any MVS load

libraries specified on the –l operand are searched in the order specified,

followed by searching these data sets. See the prefix_PLIB_PREFIX

description, as well as descriptions of the environment variables featured in the

following list.

 prefix_ILSYSLIB

 prefix_ILSYSIX

 prefix_LSYSLIB

 prefix_PSYSIX

 prefix_PSYSLIB

This list of environment variables affects the link-editing phase of c89, but only

for non-XPLINK link-editing. See XPLINK (Extra Performance Linkage) in

“Options” on page 467.

The following list of environment variables affects the link-editing phase of c89,

but only for ILP32 XPLINK link-editing. See XPLINK (Extra Performance

Linkage) in “Options” on page 467.

 prefix_ILXSYSLIB

 prefix_ILXSYSIX

 prefix_LXSYSLIB

 prefix_LXSYSIX

The following list of environment variables affects the link-editing phase of c89,

but only for LP64 link-editing. See the description of LP64 in “Options” on page

467.

 prefix_IL6SYSLIB

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 497

|

|

|
|
|
|
|

|

|
|
|

|

|

prefix_IL6SYSIX

 prefix_L6SYSLIB

 prefix_L6SYSIX

 8. Because archive library files are searched when their names are encountered,

the placement of –l operands and file.a operands is significant. You may have

to specify a library multiple times on the command string, if subsequent

specification of file.o files requires that additional symbols be resolved from

that library.

 9. When the prelinker is used during the link-editing phase, you cannot use as

input to c89/cc/c++ an executable file produced as output from a previous use

of c89/cc/c++. The output of c89/cc/c++ when the –r option is specified (which

is not an executable file) may be used as input.

10. All MVS data sets used by c89/cc/c++ must be cataloged (including the

system data sets installed with the z/OS XL C/C++ compiler and the Language

Environment run-time library).

11. c89/cc/c++ operation depends on the correct setting of their installation and

configuration environment variables (see “Environment variables” on page

480). Also, they require that certain character special files are in the /dev

directory. For additional installation and configuration information, see z/OS

UNIX System Services Planning.

12. Normally, options and operands are processed in the order read (from left to

right). Where there are conflicts, the last specification is used (such as with –g

and –s). However, some c89/cc/c++ options will override others, regardless of

the order in which they are specified. The option priorities, in order of highest

to lowest, are as follows:

–v specified twice

The pseudo-JCL is printed only, but the effect of all the other options

and operands as specified is reflected in the pseudo-JCL.

–E Overrides –0, –O, –1, –2, –3, –V, –c, –g and –s (also ignores any file.s

files).

–g Overrides –0, –O, –1, –2, –3, and –s.

–s Overrides –g (the last one specified is honored).

–0 (zero), –O (capital letter O), –1, –2, –3, –V, –c

All are honored if not overridden. –0, –O, –1, –2, –3 override each other

(the last one specified is honored).

Note: The preferred way for specifying optimization options, is –O

(capital letter O) followed by a number; for example, –O2.

13. For options that have option-arguments, the meaning of multiple specifications

of the options is as follows:

–D All specifications are used. If the same name is specified on more than

one –D option, only the first definition is used.

–e The entry function used will be the one specified on the last –e option.

–I All specifications are used. If the same directory is specified on more

than one –I option, the directory is searched only the first time.

–L All specifications are used. If the same directory is specified on more

than one –L option, the directory is searched only the first time.

–o The output file used will be the one specified on the last –o option.

c89, cc, and c++

498 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

|
|
|

|
|

–U All specifications are used. The name is not defined, regardless of the

position of this option relative to any –D option specifying the same

name.

–u All specifications are used. If a definition cannot be found for any of

the functions specified, the link-editing phase will be unsuccessful.

–W All specifications are used. All options specified for a phase are

passed to it, as if they were concatenated together in the order

specified.

14. The following environment variables can be at most eight characters in length.

For those whose values specify the names of MVS programs to be executed,

you can dynamically alter the search order used to find those programs by

using the STEPLIB environment variable.

c89/cc/c++ environment variables do not affect the MVS program search

order. Also, for c89/cc/c++ to work correctly, the setting of the STEPLIB

environment variable should reflect the Language Environment library in use at

the time that c89/cc/c++ is invoked.

For more information on the STEPLIB environment variable, see z/OS UNIX

System Services Planning. It is also described under the sh command. Note

that the STEPLIB allocation in the pseudo-JCL produced by the –v verbose

option is shown as a comment, and has no effect on the MVS program search

order. Its appearance in the pseudo-JCL is strictly informational.

 prefix_CMSGS

 prefix_CNAME

 prefix_DAMPNAME

 prefix_ILCTL

 prefix_ILNAME

 prefix_ILMSGS

 prefix_PMSGS

 prefix_PNAME

 prefix_SNAME

15. The following environment variables can be at most 15 characters in length.

You should not specify any dots (.) when setting these environment variables

since they would then never match their corresponding operands:

 prefix_ASUFFIX

 prefix_ASUFFIX_HOST

 prefix_CSUFFIX

 prefix_CSUFFIX_HOST

 prefix_CXXSUFFIX

 prefix_CXXSUFFIX_HOST

 prefix_ISUFFIX

 prefix_ISUFFIX_HOST

 prefix_ILSUFFIX

 prefix_ILSUFFIX_HOST

 prefix_IXXSUFFIX

 prefix_IXXSUFFIX_HOST

 prefix_OSUFFIX

 prefix_OSUFFIX_HOST

 prefix_PSUFFIX

 prefix_PSUFFIX_HOST

 prefix_SSUFFIX

 prefix_SSUFFIX_HOST

 prefix_XSUFFIX

 prefix_XSUFFIX_HOST

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 499

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

16. The following environment variables are parsed as colon-delimited data set

names, and represent a data set concatenation or a data set list. The

maximum length of each specification is 1024 characters:

 prefix_CSYSLIB

 prefix_IL6SYSIX

 prefix_IL6SYSLIB

 prefix_ILSYSIX

 prefix_ILSYSLIB

 prefix_ILXSYSIX

 prefix_ILXSYSLIB

 prefix_L6SYSIX

 prefix_L6SYSLIB

 prefix_LSYSLIB

 prefix_LXSYSIX

 prefix_LXSYSLIB

 prefix_PSYSIX

 prefix_PSYSLIB

 prefix_SSYSLIB

 prefix_SUSRLIB

17. The following environment variables can be at most 44 characters in length:

 prefix_CLASSLIB_PREFIX

 prefix_CLIB_PREFIX

 prefix_PLIB_PREFIX

 prefix_SLIB_PREFIX

18. The following environment variables can be at most 63 characters in length:

 prefix_NEW_DATACLAS

 prefix_NEW_DSNTYPE

 prefix_NEW_MGMTCLAS

 prefix_NEW_SPACE

 prefix_NEW_STORCLAS

 prefix_NEW_UNIT

 prefix_WORK_DATACLAS

 prefix_WORK_DSNTYPE

 prefix_WORK_MGMTCLAS

 prefix_WORK_SPACE

 prefix_WORK_STORCLAS

 prefix_WORK_UNIT

19. The following environment variables are for specification of the SPACE

parameter, and support only the syntax as shown with their default values

(including all commas and parentheses). Also as shown with their default

values, individual subparameters can be omitted, in which case the system

defaults are used.

 prefix_NEW_SPACE

 prefix_WORK_SPACE

20. The following environment variables are for specification of the DSNTYPE

parameter, and support only the subparameters LIBRARY or PDS (or null for

no DSNTYPE):

 prefix_NEW_DSNTYPE

 prefix_WORK_DSNTYPE

21. The following environment variables can be at most 127 characters in length:

 prefix_DCBF2008

 prefix_DCBU

 prefix_DCB121M

 prefix_DCB133M

 prefix_DCB137

c89, cc, and c++

500 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

prefix_DCB137A

 prefix_DCB3200

 prefix_DCB80

 prefix_DEBUG_FORMAT

These environment variables are for specification of DCB information, and

support only the following DCB subparameters, with the noted restrictions:

RECFM

Incorrect values are ignored.

LRECL

None

BLKSIZE

None

DSORG

Incorrect values are treated as if no value had been specified.

22. The following environment variables are parsed as blank-delimited words, and

therefore no embedded blanks or other white-space is allowed in the value

specified. The maximum length of each word is 1024 characters:

 prefix_INCDIRS

 prefix_INCLIBS

 prefix_LIBDIRS

 prefix_OPTIONS

 prefix_OPERANDS

23. An S-name is a short external symbol name, such as produced by the z/OS

XL C/C++ compiler when compiling z/OS XL C programs with the NOLONGNAME

option. An L-name is a long external symbol name, such as produced by the

z/OS XL C/C++ compiler when compiling z/OS C programs with the LONGNAME

option.

24. The C/C++ Runtime Library supports a file naming convention of // (the

filename can begin with exactly two slashes). c89/cc/c++ indicate that the file

naming convention of // can be used.

However, the Shell and Utilities feature does not support this convention. Do

not use this convention (//) unless it is specifically indicated (as here in

c89/cc/c++). The z/OS Shell and Utilities feature does support the POSIX file

naming convention where the filename can be selected from the set of

character values excluding the slash and the null character.

25. When coding in C and C++, c89, cc, and c++, by default, produce reentrant

executables. For more information on reentrancy, see z/OS XL C/C++

Programming Guide. When coding in assembler language, the code must not

violate reentrancy. If it does, the resulting executable may not be reentrant.

26. The prefix_CVERSION, prefix_PVERSION and prefix_CLASSVERSION environment

variables are set to a hex string in the format 0xPVVRRMMM where P is

product, VV is version, RR is release and MMM is modification level. For

example, the prefix_CVERSION and prefix_CLASSVERSION for the z/OS V1R2

compiler is 0x41020000.

27. c89 passes some options to the compiler to ensure that expected behavior is

achieved; for example, POSIX behavior. These options are passed onto the

compiler as defaults that the user can overwrite. When default options passed

by c89 are in conflict with options and/or pragmas that the user specified, the

compiler issues warning and/or severe error messages. Since the user did not

specify options that c89 passed as defaults, these messages may confuse the

user. Prior to the z/OS V1R5 release, the compiler was unable to differentiate

between the options that c89 passed as defaults and the user-specified options

so it was unable to correctly resolve conflicting pragma/option combinations. In

some cases, the compiler would overwrite pragmas with the options that c89

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 501

|
|
|
|

|
|
|
|
|

|

|

passed as defaults thus limiting a user’s ability to use pragmas. As of V1R5,

the compiler is now able to recognize c89 defaults and avoid confusion from

messages for options, which were not explicitly specified by the user, and

overriding pragmas, when the user did not explicitly request it. Most users will

benefit from this feature so it is the default behavior. To enable the old

behavior, environment variable prefix_NOCMDOPTS must have a non-zero value.

Example: The following sequence will preserve the old behavior:

export _C89_NOCMDOPTS=1

c89 -o hello hello.c

Localization

c89/cc/c++ use the following localization environment variables:

v LANG

v LC_ALL

v LC_CTYPE

v LC_MESSAGES

Exit values

0 Successful completion.

1 Failure due to incorrect specification of the arguments.

2 Failure processing archive libraries:

v Archive library was not in any of the library directories specified.

v Archive library was incorrectly specified, or was not specified, following

the –l operand.

3 Step of compilation, assemble, or link-editing phase was unsuccessful.

4 Dynamic allocation error, when preparing to call the compiler, assembler,

IPA linker, prelinker, or link editor, for one of the following reasons:

v The file or data set name specified is incorrect.

v The file or data set name cannot be opened.

5 Dynamic allocation error, when preparing to call the compiler, assembler,

prelinker, IPA linker, or link editor, due to an error being detected in the

allocation information.

6 Error copying the file between a temporary data set and a hierarchical file

system file (applies to the –2 option, when processing assembler source

files, and –r option processing).

7 Error creating a temporary control input data set for the link-editing phase.

8 Error creating a temporary system input data set for the compile or

link-editing phase.

Portability

For c89, X/Open Portability Guide, POSIX.2 C-Language Development Utilities

Option.

For cc, POSIX.2 C-Language Development Utilities Option, UNIX systems.

The following are extensions to the POSIX standard:

v The –v, –V, –0, –1, –2 and –3 options

v DLL support

c89, cc, and c++

502 z/OS V1R7.0 XL C/C++ User’s Guide

|

v IPA optimization support

v The behavior of the –o option in combination with the –c option and a single

source file.

Note: –Ox (where x is 0, 1, 2, or 3) is equivalent to –x because –x overrides –O.

This happens to match the standard compliant syntax of optimization level x

(–Ox), but "Ox" is not treated as a single entity. It may appear redundant to

use –Ox but it is recommended because it improves portability. In order to

avoid creating non-portable legacy, the xlc utility does not support –x

extension syntax. For example, the following are equivalent but the first

syntax is recommended:

c89 -O2 hello.c

c89 -2 hello.c

Features have been added to z/OS releases, which have made it easier to port

applications from other platforms to z/OS and improve performance. For

compatibility reasons, these portability and performance enhancements could not be

made the default. If you are porting an application from another platform to z/OS,

you may want to start by specifying the following options:

c89 -o HelloWorld -2 -Wc,NOANSIALIAS -Wc,XPLINK\

-Wl,XPLINK -Wc,’FLOAT(IEEE)’ -Wc,’GONUM’ HelloWorld.c

Note: The above string is one line (had to be split to fit page). A space exists

between -Wc,XPLINK and -Wl,XPLINK.

Related information

See the information on the following utilities in z/OS UNIX System Services

Command Reference: ar, dbx, file, lex, makedepend, nm, strings, strip, yacc

c89, cc, and c++

Chapter 18. c89 — Compiler invocation using host environment variables 503

|
|
|
|
|
|
|

|
|

|

504 z/OS V1R7.0 XL C/C++ User’s Guide

Chapter 19. xlc — Compiler invocation using a customizable

configuration file

Format

xlc | xlc_x | xlc_64

xlC | xlC_x | xlC_64

xlc++ | xlc++_x | xlc++_64

cc | cc_x | cc_64

c89 | c89_x | c89_64

c99 | c99_x | c99_64

cxx | cxx_x | cxx_64

c++ | c++_x | c++_64

Description

xlc is a utility that uses an external configuration file to control the invocation of the

compiler. xlc and related commands compile C and C++ source files. They also

process assembler source files and object files.

Note: Unless the –c option is specified, xlc calls the binder to produce an

executable module.

All commands accept the following input files with their default HFS and host

suffixes:

v filename with .C suffix (C++ source file)

v filename with .c suffix (C source file)

v filename with .i suffix (preprocessed C or C++ source file)

v filename with .o suffix (object file for binder/IPA link)

v filename with .s suffix (assembler source file)

v filename with .a suffix (archive library)

v filename with .p suffix (prelinker output file for the binder/IPA Link)

v filename with .I suffix (IPA Link output file for the binder)

v filename with .x suffix (definition side-file or side deck)

v filename with .CXX suffix (C++ source host file)

v filename with .C suffix (C source host file)

v filename with .CEX suffix (preprocessed C or C++ source host file)

v filename with .OBJ suffix (object host file for the binder/IPA Link)

v filename with .ASM suffix (assembler source host file)

v filename with .LIB suffix (host archive library)

v filename with .CPOBJ suffix (prelinker output host file for the binder/IPA Link)

v filename with .IPA suffix (IPA Link output host file for the binder

v filename with .EXP suffix (host definition side-file or side deck)

The xlc utility invokes the assembler, the C/C++ compiler, and the binder.

Invocation of the compiler and the binder is described in “Invoking the compiler” on

page 516 and “Invoking the binder” on page 516.

© Copyright IBM Corp. 1996, 2005 505

|
|
|
|
|
|
|
|

Invocation commands

The xlc utility provides two basic compiler invocation commands, xlc and xlC

(xlc++), along with several other compiler invocation commands to support various

C/C++ language levels and compilation environments. In most cases, you would

use the xlc command to compile C source files and xlC (xlc++) command to

compile C++ source files.

You can however, use other forms of the command if your particular environment

requires it. The various compiler invocation commands for C are:

v xlc

v cc

v c89

v c99

v xlc_x

v cc_x

v c89_x

v c99_x

v xlc_64

v cc_64

v c89_64

v c99_64

The various compiler invocation commands for C++ are:

v xlC (xlc++)

v cxx

v c++

v xlC_x (xlc++_x)

v c++_x

v cxx_x

v xlC_64 (xlc++_64)

v c++_64

v cxx_64

The two basic compiler invocation commands appear as the first entry of each list

item shown above. Select an invocation command using the following criteria:

xlc Invokes the compiler for C source files with a default language level of

ANSI, the compiler option -qansialias to allow type-based aliasing, and the

compiler option -qcpluscmt to allow C++ style comments (//).

xlC (xlc++)

Invokes the compiler so that source files are compiled as C++ language

source code.

 Files with .c suffixes, assuming you have not used the –+ compiler option,

are compiled as C language source code with a default language level of

ANSI, and compiler option –qansialias to allow type-based aliasing.

 If any of your source files are C++, you must use this invocation to link with

the correct run-time libraries.

cc Invokes the compiler for C source files with a default language level of

xlc and xlC

506 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|
|
|

extended and compiler options –qnoro and –qnoroconst (to provide

placement of string literals or constant values in read/write storage).

 Use this invocation for legacy C code that does not require compliance with

ANSI C. This invocation is intended to provide the same compiler behavior

as when invoked by the cc command name of the c89 utility.

c89 Invokes the compiler for C source files, with a default language level of

ANSI, and specifies compiler options –qansialias (to allow type-based

aliasing) and –qnolonglong (disabling use of long long). Use this invocation

for strict conformance to the ISO/IEC 9899:1990 standard. This invocation

is intended to provide the same compiler behavior as when invoked by the

c89 command name of the c89 utility.

c99 Invokes the compiler for C source files, with a default language level of

STDC99 and specifies compiler option –qansialias (to allow type-based

aliasing). Use this invocation for strict conformance to the ISO/IEC

9899:1999 standard.

cxx/c++

cxx and c++ invoke the compiler for C++ language source code. Both are

intended to provide the same compiler behavior as when invoked using the

cxx and c++ command names of the c89 utility.

_x Command invocations using command names with suffix _x are the same

as invocations using names without suffixes, except the -qxplink option is

also specified and appropriate XPLINK libraries are used in the link step. If

you are building an XPLINK application, you no longer need to use

command names with suffix _x to link with the correct run-time libraries.

This can be achieved through the new configuration attributes that have

been introduced to enable XPLINK behavior without the use of suffixes.

See “Configuration file attributes” on page 509 for further information.

_64 Command invocations using command names with suffix _64 are the same

as invocations using names without suffixes, except the -q64 option is also

specified and appropriate 64-bit libraries are used in the link step. If you are

building a 64-bit application, you no longer need to use command names

with suffix _64 to link with the correct run-time libraries. This can be

achieved through the new configuration attributes that have been introduced

to enable 64-bit behavior without the use of suffixes. See “Configuration file

attributes” on page 509 for further information.

Note: Suffixes are used as a naming convention and do not enforce behavior.

Setting up the compilation environment

Before you compile your C and C++ programs, you must set up the environment

variables and the configuration file for your application. For more information on the

configuration file, see “Setting up a configuration file” on page 509.

Environment variables

You can use environment variables to specify necessary system information.

Setting environment variables

Different commands are used to set the environment variables depending on

whether you are using the z/OS UNIX System Services shell (sh), which is based

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 507

||
|
|
|

|

|
|
|

|
|
|
|
|

|

on the Korn Shell and is upward-compatible with the Bourne shell, or tcsh shell,

which is upward-compatible with the C shell. To determine the current shell, use the

echo command, which is echo $SHELL.

The z/OS UNIX System Services shell path is /bin/sh. The tcsh shell path is

/bin/tcsh.

For more information about the NLSPATH and LANG environment variables, see z/OS

XL C/C++ Programming Guide and z/OS UNIX System Services Command

Reference.

Setting environment variables in z/OS shell

The following statements show how you can set environment variables in the z/OS

shell:

LANG=En_US

NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

PATH=/bin:/usr/lpp/cbclib/xlc/bin${PATH:+:${PATH}}

export LANG NLSPATH PATH

To set the variables so that all users have access to them, add the commands to

the file /etc/profile. To set them for a specific user only, add the commands to the

.profile file in the user’s home directory. The environment variables are set each

time the user logs in.

Setting environment variables in tcsh shell

The following statements show how you can set environment variables in the tcsh

shell:

setenv LANG En_US

setenv NLSPATH /usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

setenv PATH /bin:/usr/lpp/cbclib/xlc/bin${PATH:+:${PATH}}

To set the variables so that all users have access to them, add the commands to

the file /etc/csh.cshrc. To set them for a specific user only, add the commands to

the .tcshrc file in the user’s home directory. The environment variables are set each

time the user logs in.

Setting environment variables for the message file

Before using the compiler, you must install the message catalogs and set the

environment variables:

LANG Specifies the national language for message and help files.

NLSPATH

Specifies the path name of the message and help files.

XL_CONFIG

Specifies the name of an alternative configuration file (.cfg) for the xlc

utility. Note: For the syntax of the configuration file, see the description for

the -F flag option in “Flag options syntax” on page 518.

 The LANG environment variable can be set to any of the locales provided on the

system. See the description of locales in z/OS XL C/C++ Programming Guide for

more information.

The national language code for United States English may be En_US or C. If the

Japanese message catalog has been installed on your system, you can substitute

Ja_JP for En_US.

xlc and xlC

508 z/OS V1R7.0 XL C/C++ User’s Guide

To determine the current setting of the national language on your system, see the

output from both of the following echo commands:

v echo $LANG

v echo $NLSPATH

The LANG and NLSPATH environment variables are initialized when the operating

system is installed, and may differ from the ones you want to use.

Setting up a configuration file

The configuration file specifies information that the compiler uses when you invoke

it. This file defines values used by the compiler to compile C or C++ programs. You

can make entries to this file to support specific compilation requirements or to

support other C or C++ compilation environments.

A configuration file is an HFS file consisting of named sections called stanzas. Each

stanza contains keywords called configuration file attributes, which are assigned

values. The attributes are separated from their assigned value by an equal sign. A

stanza can point to a default stanza by specifying the ″use″ keyword. This allows

specifying common attributes in a default stanza and only the deltas in a specific

stanza, referred to as the local stanza.

For any of the supported attributes not found in the configuration file, the xlc utility

uses the built-in defaults. It uses the first occurrence in the configuration file of a

stanza or attribute it is looking for. Unsupported attributes, and duplicate stanzas

and attributes are not diagnosed.

Note: The difference between specifying values in the stanza and relying on the

defaults provided by the xlc utility is that the defaults provided by the xlc

utility will not override pragmas.

Configuration file attributes

A stanza in the configuration file can contain the following attributes:

as Path name to be used for the assembler. The default is /bin/c89.

asopt The list of options for the assembler and not for the compiler. These

override all normal processing by the compiler and are directed to

the assembler specified in the as attribute. Options are specified

following the c89 utility syntax.

asuffix The suffix for archive files. The default is a.

asuffix_host The suffix for archive data sets. The default is LIB.

ccomp The C compiler. The default is usr/lpp/cbclib/xlc/exe/ccndrvr.

cinc A comma separated list of directories or data set wild cards used to

search for C header files. The default for this attribute is:

-I//’CEE.SCEEH.+’

For further information on the list of search places used by the

compiler to search for system header files, see the note at the end

of this list of configuration file attributes.

cppcomp The C++ compiler. The default is

/usr/lpp/cbclib/xlc/exe/ccndrvr.

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 509

|
|
|

|
|
|

cppinc A comma separated list of directories or data set wild cards used to

search for C++ header files. The default for this attribute is:

-I//’CEE.SCEEH.+’,-I//’CBC.SCLBH.+’

For further information on the list of search places used by the

compiler to search for system header files, see the note at the end

of this list of configuration file attributes.

csuffix The suffix for source programs. The default is c (lowercase c).

csuffix_host The suffix for C source data sets. The default is C (uppercase C).

cxxsuffix The suffix for C++ source files. The default is C (uppercase C).

cxxsuffix_host

The suffix for C++ source data sets. The default is CXX.

exportlist A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase. This attribute is only used for compatibility with

configuration files that are defined using the z/OS V1R6 release.

Attributes with an appropriate suffix should be used instead (see

descriptions for exportlist attributes with a suffix). The default for

this attribute should match the type of stanza for which it is

specified.

 Suffix-less C stanzas do not have a default.

 The default for suffix-less C++ stanzas is:

CEE.SCEELIB(C128N):CBC.SCLBSID(IOSTREAM,COMPLEX)

 The default for C stanzas with an _x suffix is:

CEE.SCEELIB(CELHS003,CELHS001)

 The default for C++ stanzas with an _x suffix is:

CEE.SCEELIB(CELHS003,CELHSCPP,CELHS001,C128):CBC.SCLBSID

(IOSTREAM,COMPLEX)

 The default for C stanzas with a _64 suffix is:

CEE.SCEELIB(CELQS003)

 The default for C++ stanzas with a _64 suffix is:

CEE.SCEELIB(CELQS003,CELQSCPP,C64):CBC.SCLBSID(IOSQ64)

exportlist_c A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of non-XPLINK C applications. The default for this

attribute is:

NONE

exportlist_cpp

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of non-XPLINK C++ applications. The default for

this attribute is:

CEE.SCEELIB(C128n):CBC.SCLBSID(IOSTREAM,COMPLEX)

exportlist_c_x

A colon separated list of data sets with member names indicating

xlc and xlC

510 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

||
|
|
|

|

|
|
|
|
|

|

|
|

definition side-decks to be used to resolve symbols during the

link-editing phase of XPLINK C applications. The default for this

attribute is:

CEE.SCEELIB(CELHS003,CELHS001)

exportlist_cpp_x

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of XPLINK C++ applications. The default for this

attribute is:

CEE.SCEELIB(CELHS003,CELHSCPP,CELHS001,C128):CBC.SCLBSID

(IOSTREAM,COMPLEX)

exportlist_c_64

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of 64-bit C applications. The default for this

attribute is:

CEE.SCEELIB(CELQS003)

exportlist_cpp_64

A colon separated list of data sets with member names indicating

definition side-decks to be used to resolve symbols during the

link-editing phase of 64-bit C++ applications. The default for this

attribute is:

CEE.SCEELIB(CELQS003,CELQSCPP,C64):CBC.SCLBSID(IOSQ64)

isuffix The suffix for C preprocessed files. The default is i.

isuffix_host The suffix for C preprocessed data sets. The default is CEX.

ilsuffix The suffix for IPA output files. The default is I.

ilsuffix_host The suffix for IPA output data sets. The default is IPA.

ixxsuffix The suffix for C++ preprocessed files. The default is i.

ixxsuffix_host

The suffix for C++ preprocessed data sets. The default is CEX.

ld The path name to be used for the binder. The default is /bin/c89.

ld_c The path name to be used for the binder when only C sources

appear on the command line. The default is:/bin/c89.

ld_cpp The path name to be used for the binder when at least one C++

source appears on the command line. The default is: /bin/cxx.

libraries2 libraries2 specifies the libraries that the binder is to use at bind

time. The default is empty.

options A string of option flags, separated by commas, to be processed by

the compiler as if they had been entered on the command line.

osuffix The suffix for object files. The default is .o.

osuffix_host The suffix for object data sets. The default is OBJ.

psuffix The suffix for prelinked files. The default is p.

psuffix_host The suffix for prelinked data sets. The default is CPOBJ.

ssuffix The suffix for assembler files. The default is .s.

ssuffix_host The suffix for assembler data sets. The default is ASM.

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 511

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|

|

||
|

||
|

steplib A colon separated list of data sets or keyword NONE used to set the

STEPLIB environment variable. The default is NONE, which causes all

programs to be loaded from LPA or linklist.

syslib A colon separated list of data sets used to resolve run-time library

references. Data sets from this list are used to construct the

SYSLIB DD for the IPA Link and the binder invocation for

non-XPLINK applications. For compatibility with configuration files

defined using the z/OS V1R6 release, this attribute is also used

with XPLINK applications as a fallback when the syslib_x attribute

is not specified. When the syslib_x attribute is not specified, the

default for this attribute should match the type of stanza for which it

is specified. When the syslib_x attribute is specified, the default for

this attribute matches the default for suffix-less stanzas.

 The default for suffix-less stanzas is:

CEE.SCEELKEX:CEE.SCEELKED:CBC.SCCNOBJ:SYS1.CSSLIB

 The default for stanzas with _x and _64 suffixes is:

CEE.SCEEBND2:CBC.SCCNOBJ:SYS1.CSSLIB

syslib_x A colon separated list of data sets used to resolve run-time library

references. Data sets from this list are used to construct the

SYSLIB DD for the IPA Link and the binder invocation when

building XPLINK applications (31-bit and 64-bit).

 The default for this attribute is:

CEE.SCEEBND2:CBC.SCCNOBJ:SYS1.CSSLIB

sysobj A colon separated list of data sets containing object files used to

resolve run-time library references. Data sets from this list are used

to construct the LIBRARY control statements and the SYSLIB DD

for the IPA Link and the binder invocation. This attribute is ignored

for XPLINK and 64-bit applications.

 The default is:

CEE.SCEEOBJ:CEE.SCEECPP

use Values for attributes are taken from the named stanza and from the

local stanza. For single-valued attributes, values in the use stanza

apply if no value is provided in the local, or default stanza. For

comma-separated lists, the values from the use stanza are added

to the values from the local stanza.

xlC The path name of the C++ compiler invocation command. The

default is /usr/lpp/cbclib/xlc/bin/xlc.

xlCcopt A string of option flags, separated by commas, to be processed

when the xlC command is used for compiling a C file.

xsuffix The suffix for definition side-deck files. The default is x.

xsuffix_host The suffix for definition side-deck data sets. The default is EXP.

Note: When using the xlc utility to invoke the compiler, the compiler uses the

following list of search places to search for system header files:

v If the -qnosearch option is not specified on the command line or in the

configuration file:

1. search places defined in the customizable defaults module (CCNEDFLT)

xlc and xlC

512 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|
|
|
|
|
|
|

|

|

|

|

||
|
|
|

|

|

|

|
|

|

|

|

|
|

|
|

|

2. followed by those specified on the command line using the -I flag

option

3. followed by those specified in the configuration file

v If the -qnosearch is specified only in the configuration file:

1. search places specified on the command line using the -I flag option

2. followed by those specified in the configuration file

v If the -qnosearch option is specified on the command line:

1. search places specified on the command line following the last

specified -qnosearch option

2. followed by those specified in the configuration file

Tailoring a configuration file

The default configuration file is installed in /usr/lpp/cbclib/xlc/etc/xlc.cfg.

You can copy this file and make changes to the copy to support specific compilation

requirements or to support other C or C++ compilation environments. The -F option

is used to specify a configuration file other than the default. For example, to make

-qnoro the default for the xlC compiler invocation command, add -qnoro to the xlC

stanza in your copied version of the configuration file.

You can link the compiler invocation command to several different names. The

name you specify when you invoke the compiler determines which stanza of the

configuration file the compiler uses. You can add other stanzas to your copy of the

configuration file to customize your own compilation environment.

Example: You can use the -F option with the compiler invocation command to

make links to select additional stanzas or to specify a stanza or another

configuration file:

xlC myfile.C -Fmyconfig:SPECIAL

would compile myfile.C using the SPECIAL stanza in a myconfig configuration file

that you had created.

Default configuration file

The default configuration file, (/usr/lpp/cbclib/xlc/etc/xlc.cfg.), specifies information

that the compiler uses when you invoke it. This file defines values used by the

compiler to compile C or C++ programs. You can make entries to this file to support

specific compilation requirements or to support other C or C++ compilation

environments. Options specified in the configuration file override the default settings

of the option. Similarly, options specified in the configuration file are in turn

overridden by options set in the source file and on the command line. Options that

do not follow this scheme are listed in “Specifying compiler options” on page 521.

Example: The following example shows a default configuration file:

*

* FUNCTION: z/OS 1.7 XL C/C++ Compiler Configuration file

*

* Licensed Materials - Property of IBM

* 5694-A01 (C) Copyright IBM Corp. 2004, 2005

* All Rights Reserved

* US Government Users Restricted Rights - Use, duplication or

* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

*

* C compiler, extended mode

xlc: use = DEFLT

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 513

|
|

|

|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

* XPLINK C compiler, extended mode

xlc_x: use = DEFLT

* 64 bit C compiler, extended mode

xlc_64: use = DEFLT

* C compiler, common usage C

cc: use = DEFLT

* XPLINK C compiler, common usage C

cc_x: use = DEFLT

* 64 bit C compiler, common usage C

cc_64: use = DEFLT

* Strict ANSI C 89 compiler

c89: use = DEFLT

* XPLINK Strict ANSI C 89 compiler

c89_x: use = DEFLT

* 64 bit Strict ANSI C 89 compiler

c89_64: use = DEFLT

* ISO/IEC 9899:1999 Standard Compliant C Compiler

c99: use = DEFLT

* XPLINK ISO/IEC 9899:1999 Standard Compliant C Compiler

c99_x: use = DEFLT

* 64 bit ISO/IEC 9899:1999 Standard Compliant C Compiler

c99_64: use = DEFLT

* ANSI C++ compiler

cxx: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* XPLINK ANSI C++ compiler

cxx_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* 64 bit ANSI C++ compiler

cxx_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* ANSI C++ compiler

c++: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* XPLINK ANSI C++ compiler

c++_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* 64 bit ANSI C++ compiler

c++_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

xlc and xlC

514 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ipa = /bin/cxx

 ld = /bin/cxx

* C++ compiler, extended mode

xlC: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* XPLINK C++ compiler, extended mode

xlC_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* 64 bit C++ compiler, extended mode

xlC_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* C++ compiler, extended mode

xlc++: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* XPLINK C++ compiler, extended mode

xlc++_x: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* 64 bit C++ compiler, extended mode

xlc++_64: use = DEFLT

 xlC = /usr/lpp/cbclib/xlc/bin/.orig/xlC

 ipa = /bin/cxx

 ld = /bin/cxx

* common definitions

DEFLT: cppcomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 ccomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 ipacomp = /usr/lpp/cbclib/xlc/exe/ccndrvr

 ipa = /bin/c89

 as = /bin/c89

 ld = /bin/c89

 xlC = /usr/lpp/cbclib/xlc/bin/xlc

 xlCcopt = -D_XOPEN_SOURCE

 sysobj = cee.sceeobj:cee.sceecpp

 syslib = cee.sceelkex:cee.sceelked:cbc.sccnobj:sys1.csslib

 syslib_x = cee.sceebnd2:cbc.sccnobj:sys1.csslib

 exportlist_c = NONE

 exportlist_cpp = cee.sceelib(c128n):cbc.sclbsid(iostream,complex)

 exportlist_c_x = cee.sceelib(celhs003,celhs001)

 exportlist_cpp_x = cee.sceelib(celhs003,celhs001,celhscpp,c128):

cbc.sclbsid(iostream,complex)

 exportlist_c_64 = cee.sceelib(celqs003)

 exportlist_cpp_64 = cee.sceelib(celqs003,celqscpp,c64):cbc.sclbsid(iosx64)

 steplib = NONE

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 515

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Invoking the compiler

The z/OS XL C/C++ compiler is invoked using the following syntax, where

invocation can be replaced with any valid z/OS XL C/C++ invocation command:

��

invocation

�

command_line_options

input_files

��

The parameters of the compiler invocation command can be names of input files,

compiler options, and linkage-editor options. Compiler options perform a wide

variety of functions such as setting compiler characteristics, describing object code

and compiler output to be produced, and performing some preprocessor functions.

To compile without binding, use the –c compiler option. The –c option stops the

compiler after compilation is completed and produces as output, an object file

file_name.o for each file_name.c input source file, unless the –o option was used to

specify a different object filename. The binder is not invoked. You can bind the

object files later using the invocation command, specifying the object files without

the –c option.

Notes:

1. Any object files produced from an earlier compilation with the same name as

expected object files in this compilation are deleted as part of the compilation

process, even if new object files are not produced.

2. By default, the invocation command calls both the compiler and the binder. It

passes binder options to the binder. Consequently, the invocation commands

also accept all binder options.

Invoking the binder

All invocation commands invoke the binder using the c89 utility, so all binder options

must follow the syntax supported by the c89 utility. Standard libraries required to

bind your program are controlled by the sysobj, syslib, and exportlist attributes

in the configuration file.

The specified object files are processed by the binder to create one executable file.

Invoking the compiler with one of the invocation commands, automatically calls the

binder unless you specify one of the following compiler options: -E, -c, -P,

-qsyntaxonly, -qpponly, or -#.

All input and output files supported by the c89 utility are valid for all invocation

commands.

Supported options

In addition to -W syntax for specifying keyword options, the xlc utility supports AIX

-q options syntax and several new flag options.

–q options syntax

All compiler options can be specified using the -q syntax with their z/OS names,

except for the following options which must use AIX equivalent options. This

ensures portability from z/OS to AIX.

xlc and xlC

516 z/OS V1R7.0 XL C/C++ User’s Guide

|

v ATTRIBUTE (-qattr)

v BITFIELD (-qbitfields)

v CHECKOUT (-qinfo)

v ENUMSIZE (-qenum)

v EXH (-qeh)

v ILP32 (-q32)

v LP64 (-q64)

v OBJECTMODEL (-qobjmodel)

v PHASEID (-qphsinfo)

v ROSTRING (-qro)

v SSCOMM (-qcpluscmt)

v TEST (-qdebug=format=isd)

Options that do not exist on AIX, are not required to accomplish a z/OS specific

task, and their effect can be accomplished by other means, are not supported with

-q syntax (use the syntax in the list below instead). Options that fall in this category

are:

v DEFINE (-D)

v OBJECT (-co)

v UNDEFINE (-U)

Suboptions with negative forms of -q options are not supported, unless they cause

an active compiler action, as in the case of -qnokeyword=<keyword>.

Compiler options for AIX that do not apply to z/OS are accepted and ignored with a

diagnostic message. For a brief description of the compiler options that can be

specified with xlc, type xlc. For detailed descriptions of the compiler options that

can be specified with xlc, refer to Chapter 4, “Compiler Options,” on page 43.

The following syntax diagram shows how to specify keyword options using -q

syntax:

��

�

 -q option_keyword

:

=

suboption

 ��

In the diagram, option_keyword is an option name and the optional suboption is a

value associated with the option. Keyword options with no suboptions represent

switches that may be either on or off. The option_keyword by itself turns the switch

on, and the option_keyword preceded by the letters NO turns the switch off. For

example, –qLIST tells the compiler to produce a listing and -qNOLIST tells the

compiler not to produce a listing. If an option that represents a switch is set more

than once, the compiler uses the last setting.

Some keyword options only have values. Keywords which have values are specified

as keyword=value pairs.

Example:

-qfloat=ieee

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 517

where ieee is a value.

Some keyword options have suboptions, which in turn have values. Suboptions

which have values are specified as suboption=value pairs.

Example:

-qipa=level=2

where level is a suboption and 2 is a value.

Keyword options and suboptions may appear in mixed case letters in the command

that invokes the xlc utility. Keyword options that have suboptions can also be

preceded by the letters NO in which case they are similar to off switches described

above and do not allow suboptions. This is a noticeable departure from the z/OS

options, which allow suboptions even if they are preceded by the letters NO.

However, the function that the z/OS behavior provides can easily be emulated by

specifying all desired suboptions with an option_keyword followed by the same

option_keyword that is preceded by the letters NO. The subsequent specification of

the same option_keyword unlocks all previously specified suboptions.

Example: NODEBUG(FORMAT(DWARF)) is equivalent to -qdebug=format=dwarf

-qnodebug

The compiler recognizes all AIX -q options, but only those that have a matching

z/OS native option are accepted and processed. All other AIX -q options are

ignored with an informational message.

Flag options syntax

Except for the -W, -D, and -U flag options, all flag options that are supported by the

c89 utility are supported by the xlc utility with the same semantics as documented

in Chapter 18, “c89 — Compiler invocation using host environment variables,” on

page 465. The xlc utility does not recognize constructs such as -Wl,I or -Wl,p. All

other aspects of the -W flag are the same as with the c89 utility. -D and -U flag

options are not preprocessed by the xlc utility. Instead, they are converted to the

DEFINE and UNDEFINE native options and are passed to the compiler. The xlc utility

also supports several new flag options, which are described below:

-# Displays language processing commands but does not invoke

them; output goes to stdout.

�� -# ��

-B Determines substitute path names for programs such as the

assembler and binder, where program can be:

v a (assembler)

v c (C/C++ compiler)

v l (binder)

v L (IPA Link)

�� -B

prefix

-t

program
 ��

xlc and xlC

518 z/OS V1R7.0 XL C/C++ User’s Guide

Notes:

1. The optional prefix defines part of a path name to the new

programs. The compiler does not add a / between the prefix

and the program name.

2. To form the complete path name for each program, the xlc

utility adds prefix to the program names indicated by the -t

option. The program names can be any combination of C/C++

compiler, assembler, IPA Link and binder.

3. If -Bprefix is not specified, or if -B is specified without the

prefix, the default path (/usr/lpp/cbclib/xlc/bin/) is used.

4. -tprograms specifies the programs for which the path name

indicated by the -B option is to be applied.

5. -Bprefix and -tprograms options override the path names of

the programs that are specified inside the configuration file

indicated by the -Fconfig_file option.

Example: To compile myprogram.c using a substitute compiler

and binder from /lib/tmp/mine/, enter:

xlc myprogram.c -B/lib/tmp/mine/

Example: To compile myprogram.c using a substitute binder

from /lib/tmp/mine/, enter:

xlc myprogram.c -B/lib/tmp/mine/ -tl

–F Names an alternative configuration file (.cfg) for the xlc utility.

 Suboptions are:

v config_file (specifies the name of an xlc configuration file.)

v stanza (specifies the name of the command used to invoke the

compiler. This directs the compiler to use the entries under

stanza in the config_file to set up the compiler environment.)

�� -F config_file

:

stanza

:

stanza

 ��

Notes:

1. The default configuration file supplied at installation time is

called /usr/lpp/cbclib/xlc/etc/xlc.cfg. Any file names or stanzas

that you specify on the command line override the defaults

specified in the /usr/lpp/cbclib/xlc/etc/xlc.cfg configuration file.

2. The -B, -t, and -W options override entries in the configuration

file indicated by the -F option.

Example: To compile myprogram.c using a configuration file called

/usr/tmp/mycbc.cfg, enter:

 xlc myprogram.c -F/usr/tmp/mycbc.cfg

–O Optimizes generated code.

�� -O ��

–O2 Same as –O.

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 519

�� -O2 ��

–O3 Performs some memory and compile time intensive optimizations in

addition to those executed with –O2. The –O3 specific optimizations

have the potential to alter the semantics of a user’s program. The

compiler guards against these optimizations at –O2 and the option

–qstrict is provided at –O3 to turn off these aggressive

optimizations.

�� -O3 ��

–O4 Equivalent to –O3 –qipa.

�� -O4 ��

–O5 Equivalent to –O3 –qipa=level=2.

�� -O5 ��

-P Produces preprocessed output in a file that has a suffix that is

defined by isuffix, isuffix_host, ixxsuffix, and ixxsuffix_host.

The default for host files is .CEX and for HFS files is .i.

 As with the -E option, the -C option can be combined with the -P

option to preserve the comments.

-t Adds the prefix specified by the -B option to the designated

programs, where programs are:

v a (assembler)

v c (C/C++ compiler)

v L (Interprocedural Analysis tool - link phase)

v l (binder)

��

�

-t

a

c

L

l

��

Note: This option must be used together with the -B option.

If -B is specified but the prefix is not, the default prefix is

/usr/lpp/cbclib/xlc/bin/. If -Bprefix is not specified at all, the prefix of

the standard program names is /usr/lib/cbclib/xlc/bin/.

 If -B is specified but -tprograms is not, the default is to construct

path names for all of the standard program names: a, c, L, and l.

 Example: To compile myprogram.c so that the name

/u/new/compilers/ is prefixed to the binder and assembler program

names, enter:

 xlc myprogram.c -B/u/new/compilers/ -tla

xlc and xlC

520 z/OS V1R7.0 XL C/C++ User’s Guide

-W Passes the listed options to a designated compiler program where

programs are:

v a (assembler)

v c (C/C++ compiler)

v I (Interprocedural Analysis tool - compile phase)

v l (binder)

Note: When used in the configuration file, the –W option requires

the escape sequence back slash comma (\,) to represent a

comma in the parameter string.

��

�

�

-W

a

,

directory

c

I

l

��

Example: To compile myprogram.s so that the option map is

passed to the binder and the option list is passed to the

assembler, enter:

 xlc myprogram.s -Wl,map -Wa,list

Example: In a configuration file, use the \, sequence to

represent the comma (,):

 -Wl\,map,-Wa\,list

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions. You can specify compiler options in one or

more of the following ways:

v On the command line

v In your source program

v In a configuration file

The compiler uses default settings for the compiler options not explicitly set by you

in the ways listed above. The defaults can be compiler defaults, installation defaults,

or the defaults set by the c89 or the xlc utility. The compiler defaults are overridden

by installation defaults, which are overridden by the defaults set by the c89 or the

xlc utilities.

When specifying compiler options, it is possible for option conflicts and

incompatibilities to occur. z/OS XL C/C++ resolves most of these conflicts and

incompatibilities in a consistent fashion, as follows:

 Source overrides Command overrides Configuration overrides Default

 file -----------> line ----------> file -----------> settings

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 521

Options that do not follow this scheme are summarized in the following table:

 Table 39. Compiler option conflict resolution

Option Conflicting Options Resolution

-qxref -qxref=FULL -qxref=FULL

-qattr -qattr=FULL -qattr=FULL

-E -o -E

-# -v -#

-F -B | -t |-W | -qpath|

configuration file settings

-B| -t | -W |-qpath

-qpath -B| -t -qpath overrides -B and -t

In general, if more than one variation of the same option is specified (with the

exception of xref and attr), the compiler uses the setting of the last one specified.

Compiler options specified on the command line must appear in the order you want

the compiler to process them.

If a command-line flag is valid for more than one compiler program (for example -B,

-W, or -I applied to the compiler, binder, and assembler program names), you must

specify it in options, or asopt in the configuration file. The command-line flags must

appear in the order that they are to be directed to the appropriate compiler

program.

Three exceptions to the rules of conflicting options are the -Idirectory or

-I//dataset_name, -llibrary, and -Ldirectory options, which have cumulative effects

when they are specified more than once.

Specifying compiler options on the command line

There are two kinds of command-line options:

v –qoption_keyword (compiler-specific)

v Flag options (available to z/OS XL C/C++ compilers in z/OS UNIX System

Service environment)

Command-line options in the –qoption_keyword format are similar to on and off

switches. For most –q options, if a given option is specified more than once, the last

appearance of that option on the command line is the one recognized by the

compiler. For example, –qsource turns on the source option to produce a compiler

listing, and –qnosource turns off the source option so that no source listing is

produced.

Example: The following example would produce a source listing for both

MyNewProg.C and MyFirstProg.C because the last source option specified

(–qsource) takes precedence:

 xlC -qnosource MyFirstProg.C -qsource MyNewProg.C

You can have multiple –qoption_keyword instances in the same command line, but

they must be separated by blanks. Option keywords can appear in mixed case, but

you must specify the –q in lowercase.

Example: You can specify any –qoption_keyword before or after the file name:

xlC -qLIST -qnomaf file.c

xlC file.c -qxref -qsource

xlc and xlC

522 z/OS V1R7.0 XL C/C++ User’s Guide

Some options have suboptions. You specify these with an equal sign following the

-qoption. If the option permits more than one suboption, a colon (:) must separate

each suboption from the next.

Example: The following example compiles the C source file file.c using the option

-qipa to specify the inter procedural analysis options. The suboption level=2 tells

the compiler to use the full inter procedural data flow and alias analysis, map tells

the compiler to produce a report, and the noobj tells the compiler to produce only

an IPA object without a regular object. The option -qattr with suboption full will

produce an attribute listing of all identifiers in the program.

xlc -qipa=level=2:map:noobj -qattr=full file.c

Specifying flag options

The z/OS XL C/C++ compilers use a number of common conventional flag options.

Lowercase flags are different from their corresponding uppercase flags. For

example, -c and -C are two different compiler options:

v -c specifies that the compiler should only preprocess, compile, and not invoke

the binder

v -C can be used with -E or -P to specify that user comments should be preserved

Some flag options have arguments that form part of the flag.

Example:

 xlC stem.c -F/home/tools/test3/new.cfg:myc -qflag=w

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string.

Example:

 xlc -Ocv file.c

has the same effect as:

 xlc -O -v -c test.c

Specifying compiler options in a configuration file

The default configuration file, (/usr/lpp/cbclib/xlc/etc/xlc.cfg), specifies information

that the compiler uses when you invoke it. This file defines values used by the

compiler to compile C or C++ programs. You can make entries to this file to support

specific compilation requirements or to support other C or C++ compilation

environments.

Options specified in the configuration file override the default settings of the option.

Similarly, options specified in the configuration file are in turn overridden by options

set in the source file and on the command line.

Specifying compiler options in your program source files

You can specify compiler options within your program source by using #pragma

directives. Options specified with pragma directives in program source files override

all other option settings.

xlc and xlC

Chapter 19. xlc — Compiler invocation using a customizable configuration file 523

Specifying compiler options for architecture-specific 32-bit or 64-bit

compilation

You can use z/OS XL C/C++ compiler options to optimize compiler output for use

on specific processor architectures. You can also instruct the compiler to compile in

either 32-bit or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last

allowable one found determining the compiler mode:

1. Compiler default (32-bit mode)

2. Configuration file settings

3. Command line compiler options (-q32, -q64, -qarch, -qtune)

4. Source file statements (#pragma options(ARCH(suboption),TUNE(suboption)))

The compilation mode actually used by the compiler depends on a combination of

the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the

following conditions:

v Compiler mode is set according to the last-found instance of the -q32, or -q64

compiler options. If neither of these compiler options is chosen, the compiler

mode is set to 32-bit.

v Architecture target is set according to the last-found instance of the -qarch

compiler option, provided that the specified -qarch setting is compatible with the

compiler mode setting. If the -qarch option is not set, the compiler assumes a

-qarch setting of 5.

v Tuning of the architecture target is set according to the last-found instance of the

-qtune compiler option, provided that the -qtune setting is compatible with the

architecture target and compiler mode settings. If the -qtune option is not set, the

compiler assumes a default -qtune setting according to the -qarch setting in use.

Possible option conflicts and compiler resolution of these conflicts are described

below:

v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a

warning message, sets -qarch to 5, and sets the -qtune option to the -qarch

setting’s default -qtune value.

v -q32 or -q64 setting is incompatible with user-selected -qtune option.

Resolution: -q32 or -q64 setting overrides -qtune option; compiler issues a

warning message, and sets -qtune to the -qarch settings’s default -qtune value.

v -qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch

setting’s default -qtune value.

v Selected -qarch and -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch to 5, and sets

-qtune to the -qarch setting’s default -qtune setting. The compiler mode (32 or

64-bit) is determined by the -q32/-q64 compiler settings.

xlc and xlC

524 z/OS V1R7.0 XL C/C++ User’s Guide

Part 6. Appendixes

© Copyright IBM Corp. 1996, 2005 525

526 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix A. Prelinking and linking z/OS XL C/C++ programs

Instead of using the prelinker and linkage editor, you can use the binder. See

Chapter 9, “Binding z/OS XL C/C++ programs,” on page 351 for more information.

This chapter shows how to prelink and link your programs under z/OS with the

z/OS Language Environment. The z/OS Language Environment prelinker combines

the object modules that comprise a C or C++ application into a single object

module. The linkage editor then processes this object module and generates a load

module that can be retrieved for execution.

You do not need to prelink object modules that:

v Do not refer to writable static

v Do not contain long names

v Do not contain DLL code

You must use the z/OS Language Environment prelinker before linking your

application when any of the following are true:

v Your application contains C++ code.

v Your application contains C code that is compiled with the RENT, LONGNAME, DLL, or

IPA compiler options.

v Your application is compiled to run under z/OS UNIX System Services.

If you do not need to prelink your application, continue to the information in “Linking

an application” on page 532. For information on creating object libraries in z/OS XL

C++, refer to Chapter 12, “Object Library Utility,” on page 415. For information on

prelinking and linking object modules under z/OS UNIX System Services, refer to

“Prelinking and link-editing under the z/OS Shell” on page 558.

Note: When you use the prelinker to prelink C++ object modules, you may get

duplicate symbol warnings due to virtual function symbols generated by the

compiler. You can ignore these symbols and warnings. You will not get these

messages if you use the binder.

Restrictions on using the prelinker

You cannot use the prelinker if you specified either the XPLINK or GOFF compiler

option when you compiled.

Note: The prelinker cannot be used for 64-bit compiled object modules, therefore

you cannot use the prelinker if any of the object modules were compiled

using the LP64 option.

Prelinking an application

To prelink multiple object modules and then link with a load module, you must run

the multiple object modules through the prelinker and add the load module in the

link step (for example, when prelinking and linking a CICS program).

You must prelink together all components that require prelinking prior to linking. For

example, LINK(PRELINK(XOBJ1,XOBJ2)) and LINK(PRELINK(XOBJ1,XOBJ2),OBJ3) are

valid but LINK(PRELINK(XOBJ1), PRELINK(XOBJ2)) is not. The prelinker only handles

a subset of what the linker handles, in particular, it does not understand load

modules (or program objects).

© Copyright IBM Corp. 1996, 2005 527

For object modules with writable static references:

v The prelinker combines writable static initialization information

v The prelinker assigns relative offsets to objects in writable static storage

v The prelinker removes writable static name and relocation information

For object modules that contain long names, the prelinker maps long names to

short names on output. Long names are mixed-case external names of up to 1024

characters. Short names are eight character, uppercase external names.

For object modules that contain DLL code (C++ code, or C code that was compiled

with the DLL compiler option), the prelinker does the following:

v It generates a function descriptor (linkage section) in writable static for each DLL

referenced function

v It generates a variable descriptor (linkage section) for each unresolved DLL

referenced variable

v It generates an IMPORT control statement in the SYSDEFSD data set for each

exported function and variable

v It generates internal information for the load module that describes which

symbols are exported and which symbols are imported from other load modules

v It combines static DLL initialization information

z/OS Language Environment Library functions are not included as part of automatic

library calls. This omission can result in warning messages about unresolved

references to C library functions or C library objects. These unresolved C library

functions or objects will be resolved in a following link-edit step.

For C or C++ object modules from applications that were compiled with the DLL

compiler option, the prelinker uses long names to resolve exported and imported

symbols. For information on how to create a DLL or an application that uses DLLs,

see z/OS XL C/C++ Programming Guide.

Using DD Statements for the standard data sets - prelinker

The prelinker always requires three standard data sets. You must define these data

sets in DD statements with the ddnames SYSIN, SYSMOD, and SYSMSGS.

You may need five other data sets that are defined by DD statements with the

names STEPLIB, SYSLIB, SYSDEFSD, SYSOUT, and SYSPRINT. For a list of the data sets

and their usage see Table 40. For details on the attributes of specific data sets see

“Description of data sets used” on page 588.

 Table 40. Data sets used for prelinking

ddname Type Function

SYSIN Input Primary input data, usually the output of the compiler

SYSMSGS Input Location of prelinker message file

STEPLIB2 Utility Library Location of prelinker and z/OS Language Environment

run-time data sets

SYSLIB Library Secondary input

SYSDEFSD1 Output Definition side-deck

SYSOUT Output Prelinker Map

SYSMOD Output Output data set for the prelinked object module

528 z/OS V1R7.0 XL C/C++ User’s Guide

Table 40. Data sets used for prelinking (continued)

ddname Type Function

SYSPRINT Output Destination of error messages generated by the

prelinker

User-specified Input Obtain additional object modules and load modules

Notes:

1 Required output from the prelinker if you are exporting variables or functions.

2 Optional data sets, if the compiler and run-time library are installed in the LPA or

ELPA. To save resources and improve compile time, especially in z/OS UNIX

System Services, do not unnecessarily specify data sets on the STEPLIB DD name.

Primary input (SYSIN)

Primary input to the prelinker consists of a sequential data set, a member of a

partitioned data set, or an in-line object module. The primary input must consist of

one or more separately compiled object modules or prelinker control statements.

(See “INCLUDE control statement” on page 561.)

If the primary input to the prelinker consists of a mix of object modules and include

control statements, include control statements must be placed last (or after all

object modules).

If you are prelinking an application that imports symbols from a DLL, you must

include the definition side-deck for that DLL in SYSIN. The prelinker uses the

definition side-deck to resolve external symbols for functions and variables that are

imported by your application. If you call more than one DLL, you need to include a

definition side-deck for each.

Prelinker message file (SYSMSGS)

With this DD statement name, you provide the prelinker with the information it

needs to generate error messages and the Prelinker Map.

Prelinker and z/OS Language Environment library (STEPLIB)

To prelink your program, the system must be able to locate the data sets that

contain the prelinker and z/OS Language Environment run-time library. The DD

statement with the name STEPLIB points to these data sets. If the run-time library is

installed in the LPA or ELPA, it is found automatically. Otherwise, SCEERUN and

SCEERUN2 must be in the JOBLIB or STEPLIB. For information on the search order,

see Chapter 11, “Running a C or C++ application,” on page 405.

Secondary input (SYSLIB)

Secondary input to the prelinker consists of object modules that are not part of the

primary input data set, but are to be included in the output prelinked object module

from the automatic call library. The automatic call library contains object modules

that will be used as secondary input to the prelinker to resolve external symbols left

undefined after all the primary input has been processed. Concatenate multiple

object module libraries by using the DD statement with the name SYSLIB. For more

information on concatenating data sets, see page 295.

Note: SYSLIB data sets that are used as input to the prelinker must be cataloged.

Definition side-deck (SYSDEFSD)

The prelinker generates a definition side-deck if you are prelinking an application

that exports external symbols for functions and variables (a DLL). You must provide

this side-deck to any user of your DLL. The users of the DLL must prelink the

Appendix A. Prelinking and linking z/OS XL C/C++ programs 529

|
|
|

side-deck of the DLL with their other object modules. The definition side-deck

(SYSDEFSD) is not generated if the NODYNAM option is in effect.

Listing (SYSOUT)

If you specify the MAP prelinker option, the prelinker writes a map to the SYSOUT data

set. This map provides you with warnings, files that are included in input to the

prelinker, and names of external symbols.

Output (SYSMOD)

The prelinker produces a single prelinked object module, and stores it in the SYSMOD

data set. The linkage editor uses this data set as input.

Prelinker error messages (SYSPRINT)

If the prelinker encounters problems in its attempt to prelink your program, it

generates error messages and places them in the SYSPRINT data set.

Input to the prelinker

Input to the prelinker can be:

v One or more object modules (not previously prelinked)

v Prelinker control statements (INCLUDE, LIBRARY ...)

v Object module libraries

The process of resolving or including input from these sources depends on the type

of the source and the current input and prelink options.

Unresolved references or undefined writable static objects often result if you give

the prelinker input object modules produced with a mixture of inconsistent compiler

options (for example, RENT | NORENT, LONGNAME | NOLONGNAME, or DLL options).

These options may expose symbol names in different ways in your object file, so

that the prelinker may be unable to find the matching definition of a referenced

symbol if the definition and the reference are exposed differently.

Primary input

Primary input to the prelinker consists of a sequential data set (file) that contains

one or more separately compiled object modules, possibly with prelinker control

statements. Specify the primary input data set through the SYSIN ddname.

Secondary input

Secondary input to the prelinker consists of object modules that are not part of the

primary input data set but are to be included as a result of processing of primary

input. Object modules that are brought in because of INCLUDE control statements

are secondary input. Object modules brought in as a result of automatic call library

(library search) processing of currently unresolved symbols through a LIBRARY

control statement or through SYSLIB are also secondary input.

An automatic call library may be in the form of:

v PDS Libraries that contain object modules

v PDSE Libraries that contain object modules

v Archive Libraries that contain object modules (if you used OMVS prelinker option)

Prelinker output

Writable static references that are not resolved by the prelinker cannot be resolved

later. Only the prelinker can be used to resolve writable static. The output object

module of the prelinker should not be used as input to another prelink.

530 z/OS V1R7.0 XL C/C++ User’s Guide

Prelinker Map

When you use the MAP prelinker option, the z/OS Language Environment prelinker

produces a Prelinker Map. The default is to generate a listing file. The listing

contains several individual sections that are only generated if they are applicable.

Unresolved references generate error or warning messages to the Prelinker Map.

Mapping long names to short names

You can use the output object module of the prelinker as input to a system linkage

editor.

Because system linkage editors accept only short names, the z/OS Language

Environment prelinker maps long names to short names on output. It does not

change short names. Long names can be up to 1024 characters in length.

Truncation of the long names to the 8 character short name limit is therefore not

sufficient because name collisions may occur.

The z/OS Language Environment prelinker maps a given long name to a short

name on output according to the following hierarchy:

1. If any occurrence of the long name is a reserved run-time name, or was caused

by a #pragma map or C #pragma CSECT directive, then that same name is chosen

for all occurrences of the name. This name must not be changed, even if a

RENAME control statement for the name exists. For information on the RENAME

control statement, see “RENAME control statement” on page 563.

2. If the long name was found to have a matching short name, the same name is

chosen. For example, DOTOTALS is coded in both a C (or C++) and an assembler

program. This name must not be changed, even if a RENAME statement for the

name exists. This rule binds the long name to its short name.

3. If a valid RENAME statement for the long name is present, then the short name

specified on the RENAME statement is chosen.

4. If the name corresponds to a Language Environment Library function or library

object for which you did not supply a replacement, the name chosen is the

truncated, uppercased version of the long name library name (with _ mapped to

@).

5. If you specify the prelinker OMVS option and the name corresponds to a POSIX

Language Environment Library function for which you did not supply a

replacement, the name chosen is the internal Language Environment Library

short name.

This short name is not chosen, if either:

v A valid RENAME statement renames another long name to this short name. For

example, the RENAME statement RENAME mybigname PRINTF would make the

library function printf() unavailable if mybigname is found in input.

v Another long name is found to have the same name as this short name. For

example, explicitly coding and referencing SPRINTF in the C or C++ source

program would make the library function sprintf() unavailable.

Avoid such practices to ensure that the appropriate Language Environment

Library function is chosen.

6. If the UPCASE option is specified for a C application, names that are 8 characters

or fewer are changed to uppercase, with _ mapped to @. Names that begin with

IBM or CEE will be changed to IB$, and CE$, respectively. Because of this rule,

two different names can map to the same name. You should therefore exercise

care when using the UPCASE option. The prelinker issues a warning message is

issued if it finds a collision, but it still maps the names.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 531

7. If none of the above rules apply, a default mapping is performed. This mapping

is the same as the one the compiler option NOLONGNAME uses for external names,

taking collisions into account. That is, the name is truncated to 8 characters and

changed to uppercase (with _ mapped to @). Names that begin with IBM or CEE

will be changed to IB$ and CE$, respectively. If this name is the same as the

original name, it is always chosen. This name is also chosen if a name collision

does not occur. A name collision occurs if either

v The short name has already been seen in any input; that is, the name is not

new.

v After applying this default mapping, the same name is generated for at least

two, previously unmapped, names.

If a name collision occurs, a unique name is generated for the output name. For

example, the name @ST00033 is generated.

A C application that is compiled with the NOLONGNAME compiler option and link-edited,

except for collisions, presents the linkage editor with the same names as when the

application is compiled with the LONGNAME option and prelinked.

See z/OS Language Environment Debugging Guide for a list of error messages that

the prelinker returns.

Linking an application

The linkage editor processes your compiled program (object module) and readies it

for loading and execution. The processed object module becomes a load module

which is stored in a program library or HFS directory and can be retrieved for

execution at any time.

Using DD statements for standard data sets—linkage editor

The linkage editor always requires four standard data sets. You must define these

data sets in DD statements with the ddnames SYSLIN, SYSLMOD, SYSUT1, and

SYSPRINT.

A fifth data set, defined by a DD statement with the name SYSLIB, is necessary if

you want to use the automatic call library. Table 41 shows the five data set names

and their characteristics.

 Table 41. Data sets used for linking

ddname Type Function

SYSLIN Input Primary input data, the output of the prelinker, compiler, or

assembler

SYSPRINT Output Diagnostic messages

Informational messages

Module map

Cross-reference list

SYSLMOD Output Output data set for the linkage editor

SYSUT1 Utility Temporary workspace

SYSLIB1 Library Secondary input

User-specified Input Obtain additional object modules and load modules

Notes:

1 Required for library run-time routines

532 z/OS V1R7.0 XL C/C++ User’s Guide

Primary input (SYSLIN)

Primary input to the linkage editor consists of a sequential data set, a member of a

partitioned data set, or an in-line object module. The primary input must be

composed of one or more separately compiled object modules or linkage control

statements. A load module cannot be part of the primary input, although the control

statement INCLUDE can introduced it. (See “INCLUDE control statement” on page

561.)

Listing (SYSPRINT)

The linkage editor generates a listing that includes reference tables that are related

to the load modules that it produces. You must define the data set where you want

the linkage editor to store its listing in a DD statement with the name SYSPRINT.

Output (SYSLMOD)

Output (one or more linked load modules) from the linkage editor is always stored

in a partitioned data set that is defined by the DD statement with the name SYSLMOD,

unless you specify otherwise. This data set is known as a library.

Temporary workspace (SYSUT1)

The linkage editor requires a data set for use as a temporary workspace. The data

set is defined by a DD statement with the name SYSUT1. This data set must be on a

direct access device.

Secondary input (SYSLIB)

Secondary input to the linkage editor consists of object modules or load modules

that are not part of the primary input data set, but are to be included in the load

module from the automatic call library. The automatic call library contains load

modules or object modules that are to be used as secondary input to the linkage

editor to resolve external symbols that remain undefined after all the primary input

has been processed.

The call library used as input to the linkage editor or loader can be a system library,

a private program library, or a subroutine library.

Input to the linkage editor

Input to the linkage editor can be:

v One or more object modules (created through the OBJECT compiler option)

v Linkage editor control statements (NAME and ALIAS) that are generated by the

ALIAS compiler option

v Previously link-edited load modules that you want to combine into one load

module

v z/OS Language Environment library stub routines (SYSLIB)

v Other libraries

Primary input

Primary input to the linkage editor consists of a sequential data set that contains

one or more separately compiled object modules, possibly with linkage editor

control statements.

Specify the primary input data set with the SYSLIN statement. For more information

on the data sets that are used with z/OS XL C/C++, refer to “Description of data

sets used” on page 588.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 533

Secondary input

Secondary input to the linkage editor consists of object modules or load modules

that are not part of the primary input data set but are to be included in the load

module as the automatic call library.

The automatic call library contains object modules to be used as secondary input to

the linkage editor to resolve external symbols left undefined after all primary input

has been processed.

The automatic call library may be in the form of:

v Libraries that contain object modules, with or without linkage editor control

statements

v Libraries that contain load modules

v The Language Environment Library, if any of the library functions are needed to

resolve external references.

Secondary input is either all object modules or all load modules, but it cannot

contain both types.

Specify the secondary input data sets with a SYSLIB statement and, if the data sets

are object modules, add the linkage editor LIBRARY and INCLUDE control statements.

Additional object modules as input

You can use the INCLUDE and LIBRARY linkage editor control statements to do the

following:

1. Specify additional object modules that you want included in the output load

module (INCLUDE statement).

2. Specify additional libraries to be searched for object modules to be included in

the load module (LIBRARY statement). This statement has the effect of

concatenating any specified member names with the automatic call library.

Linkage editor control statements in the primary input must specify any linkage

editor processing beyond the basic processing that is described above.

Output from the linkage editor

The output from the linkage editor can be a single load module, or multiple load

modules, that are generated by using the NAME control statement of the linkage

editor.

For more information on using linkage editor control statements, see z/OS MVS

Program Management: User’s Guide and Reference.

SYSLMOD and SYSPRINT are the data sets that are used for link-edit output. The

output from the linkage editor varies, depending on the options you select, as

shown in Table 42.

 Table 42. Options for controlling link-edit output

To Get This Output Use This Option

A map of the load modules generated by the linkage editor. MAP

A cross-reference list of data variables XREF

Informational messages Default

Diagnostic messages Default

534 z/OS V1R7.0 XL C/C++ User’s Guide

Table 42. Options for controlling link-edit output (continued)

To Get This Output Use This Option

Listing of the linkage editor control statements LIST

One or more load modules (which you must assign to a library) Default

By default, you receive diagnostic and informative messages as the result of

link-editing. You can get the other output items by specifying options in the PARM

parameter in the EXEC statement in your link-edit JCL.

The load modules that are created are written in the data set that is defined by the

SYSLMOD DD statement in your link-edit JCL. All diagnostic output to be listed is

written in the data set that is defined by the SYSPRINT DD statement.

Detecting link-edit errors

You receive a listing of diagnostic messages in SYSPRINT. Check the linkage editor

map to make sure that all the object and load modules you expected were included.

You can find a description of link-edit messages in z/OS MVS Program

Management: User’s Guide and Reference .

The instructions for link-edit processing vary, depending on whether you are running

under z/OS batch or TSO.

Note: For information on link-editing modules for interlanguage calls, refer to z/OS

Language Environment Programming Guide.

Library routine considerations

The Language Environment Library consists of one run-time component that

contains all Language Environment-enabled languages, such as C, C++, COBOL,

and PL/I. For detailed instructions on linking and running z/OS XL C/C++ programs

under z/OS Language Environment, refer to z/OS Language Environment

Programming Guide.

The Language Environment Library is dynamic. This means that many of the

functions, such as library functions, available in z/OS XL C/C++ are not physically

stored as a part of your executable program. Instead, only a small portion of code is

stored with your executable program, resulting in a smaller executable module size.

This portion of code is known as a stub routine The stub routine represents each

required library function. Each of these stub routines has:

v The same name as the library function which it represents.

v Enough code to locate the true library function at run time.

The C stub routines are in the file CEE.SCEELKED, which is part of z/OS Language

Environment and must be specified as one of the libraries to be searched during

autocall.

Link-editing multiple object modules

z/OS XL C generates a CEESTART CSECT at the beginning of the object module for

any source program that contains the function main() (and for which the START

compiler option was specified) or a function for which a #pragma linkage (name,

FETCHABLE) preprocessor directive applies. When multiple object modules are

link-edited into a single load module, the entry point of the resulting load module is

Appendix A. Prelinking and linking z/OS XL C/C++ programs 535

resolved to the external symbol CEESTART. Run-time errors occur if the load module

entry point is forced to some other symbol by use of the linkage editor ENTRY control

statement.

If a C main() function is link-edited with object modules produced by C, other

language processors or by assembler, the module containing the C main() must be

the first module to receive control. You must also ensure that the entry point of the

resulting load module is resolved to the external symbol CEESTART. To ensure this,

the input to the linkage editor can include the following linkage editor ENTRY control

statement:

ENTRY CEESTART

If you are building a DLL, you may need to use the ENTRY control statement as

described above.

Building DLLs

Note: This section does not describe all of the steps that are required to build a

DLL. It only describes the prelink step. For a complete description of how to

build DLLs, see z/OS XL C/C++ Programming Guide.

Except for the object modules you require for creating the DLL, you do not require

additional object modules. The prelinker automatically creates a definition side-deck

that describes the functions and the variables that DLL applications can import.

Note: Although some C applications may need only the linkage editor to link them,

all DLLs require either the use of the binder with the DYNAM(DLL) option, or

the prelinker before the linkage editor.

When you build a DLL, the prelinker creates a definition side-deck, and associates

it with the SYSDEFSD ddname. You must provide the generated definition side-deck to

all users of the DLL. Any DLL application which implicitly loads the DLL must

include the definition side-deck when they prelink.

Example: The following is an example of a definition side-deck generated by the

prelinker when prelinking a C object module:

You can edit the definition side-deck to remove any functions or variables that you

do not want to export. For instance, in the above example, if you do not want to

expose function berror, remove the control statement IMPORT DATA ’BASICIO’

berror from the definition side-deck.

Note: You should also provide a header file that contains the prototypes for

exported functions and external variable declarations for exported variables.

Example: The following is an example of a definition side-deck generated by the

prelinker when prelinking a C++ object module:

IMPORT CODE ’BASICIO’ bopen

IMPORT DATA ’BASICIO’ bclose

IMPORT DATA ’BASICIO’ bread

IMPORT DATA ’BASICIO’ bwrite

IMPORT DATA ’BASICIO’ berror

536 z/OS V1R7.0 XL C/C++ User’s Guide

You can edit the definition side-deck to remove any functions and variables that you

do not want to export. For instance, in the above example, if you do not want to

expose getperim(), remove the control statement IMPORT CODE ’TRIANGLE’

getperim__8triangleFv from the definition side-deck.

The definition side-deck contains mangled names, such as getarea__8triangleFv.

If you want to know what the original function or variable name was in your source

module, look at the compiler listing created. Alternatively, use the CXXFILT utility to

see both the mangled and demangled names. For more information on the CXXFILT

utility, see Chapter 13, “Filter Utility,” on page 427.

Note: You should also provide users of your DLL with a header file that contains

the prototypes for exported functions and extern variable declarations for

exported variables.

The prelinker NODYNAM option must not be in effect when building DLLs.

Linking your code

When you link your code, ensure that you specify the RENT or REUS(SERIAL) options.

Using DLLs

The prelinker is used to build DLLs that export defined external functions and

variables, and to build programs or DLLs that import external functions and

variables from other DLLs.

Note: The prelinker NODYNAM option must not be in effect when using or building

DLLs.

To assign a name to a DLL, use either the DLLNAME() prelinker option, or the NAME

control statement. If you do not assign a name, and the data set SYSMOD is a PDS

member, the member name is used as the DLL name. Otherwise, the name

TEMPNAME is used.

To build a DLL, you need to compile object code that exports external functions or

variables, then prelink and link that code into a load module. During the prelink step

you need to capture the definition side-deck which is written to the ddname

SYSDEFSD. The definition side-deck is a list of IMPORT control statements that

correspond to the external functions and variables exported by the DLL.

Include the IMPORT statements at prelink time for any program that imports variables

or functions from the DLL.

Example: In the following C example, EXPONLY is a DLL which only exports a single

variable year:

IMPORT CODE ’TRIANGLE’ getarea__8triangleFv

IMPORT CODE ’TRIANGLE’ getperim__8triangleFv

IMPORT CODE ’TRIANGLE’ __ct__8triangleFv

/* EXPONLY.C */

int year = 2001; /* exported from this DLL */

Appendix A. Prelinking and linking z/OS XL C/C++ programs 537

Example: In the following example, IMPEXP is a DLL that both imports and exports

external functions and variables. It imports the external variable year from DLL

EXPONLY, and exports external functions next_year and get_year.

 Example: In the following example, IMPONLY is a program that only imports

functions and variables. It imports the variable year from DLL EXPONLY, and it

imports functions next_year and get_year from DLL IMPEXP.

Example: The following JCL builds the DLLs EXPONLY, IMPEXP, and the program

IMPONLY, and then runs IMPONLY:

/* IMPEXP.C */

extern int year; /* imported from DLL EXPONLY */

void next_year(void) { /* exported from this DLL */

 ++year; /* load DLL EXPONLY, modify ’year’ in DLL */

}

int get_year(void) { /* exported from this DLL */

 return year; /* get value of ’year’ from DLL EXPONLY */

}

/* IMPONLY.C */

#include <stdio.h>

extern int get_year(void); /* import from DLL IMPEXP */

extern void next_year(void); /* import from DLL IMPEXP */

extern int year; /* import from DLL EXPONLY */

int main(void)

{

 int y;

 next_year(); /* load DLL IMPEXP, call function from DLL */

 y = get_year(); /* call function in DLL IMPEXP */

 if (y == 2002

 && year == 2002) /* get value of ’year’ from DLL EXPONLY */

 printf("pass\n");

 else

 printf("fail\n");

 return 0;

}

538 z/OS V1R7.0 XL C/C++ User’s Guide

v Both EXPONLY and IMPEXP are compiled with the option EXPORTALL because they

export external functions and variables.

v Both IMPEXP and IMPONLY are compiled with the option DLL because they import

functions and variables from other DLLs.

v Step LINK1 generates a definition side-deck USERID.DLL.IMPORTS(EXPONLY) which

is a list of external functions and variables that are exported by DLL EXPONLY.

v Step LINK2 uses the definition side-deck that is generated in step LINK1 as part

of the prelinker input to import the variable year from DLL EXPONLY.

v Step LINK2 generates a definition side-deck USERID.DLL.IMPORTS(IMPEXP) that is

a list of external functions and variables that are exported by DLL IMPEXP.

v Both steps LINK1 and LINK2 use the prelinker DLLNAME option to set the DLL

name seen on IMPORT statements generated in the definition side-decks.

//* ---

//CEXPONLY EXEC EDCC,

// INFILE=’USERID.DLL.C(EXPONLY)’,

// OUTFILE=’USERID.DLL.OBJECT(EXPONLY),DISP=SHR ’,

// CPARM=’LONG RENT EXPORTALL’

//* ---

//CIMPEXP EXEC EDCC,

// INFILE=’USERID.DLL.C(IMPEXP)’,

// OUTFILE=’USERID.DLL.OBJECT(IMPEXP),DISP=SHR ’,

// CPARM=’LONG RENT DLL EXPORTALL’

//* ---

//CIMPONLY EXEC EDCC,

// INFILE=’USERID.DLL.C(IMPONLY)’,

// OUTFILE=’USERID.DLL.OBJECT(IMPONLY),DISP=SHR ’,

// CPARM=’LONG RENT DLL’

//* ---

//LINK1 EXEC CBCL,PPARM=’DLLNAME(EXPONLY)’,

// OUTFILE=’USERID.DLL.LOAD(EXPONLY),DISP=SHR ’

//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(EXPONLY),DISP=SHR

//PLKED.SYSDEFSD DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR

//* ---

//LINK2 EXEC CBCL,PPARM=’DLLNAME(IMPEXP)’,

// OUTFILE=’USERID.DLL.LOAD(IMPEXP),DISP=SHR ’

//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPEXP),DISP=SHR

// DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR

//PLKED.SYSDEFSD DD DSN=USERID.DLL.IMPORTS(IMPEXP),DISP=SHR

Figure 45. JCL to build DLLs (Part 1 of 2)

//* ---

//LINK3 EXEC CBCL,

// OUTFILE=’USERID.DLL.LOAD(IMPONLY),DISP=SHR ’

//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPONLY),DISP=SHR

// DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR

// DD DSN=USERID.DLL.IMPORTS(IMPEXP),DISP=SHR

//* ---

//GO EXEC PGM=IMPONLY

//STEPLIB DD DSN=USERID.DLL.LOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

Figure 45. JCL to build DLLs (Part 2 of 2)

Appendix A. Prelinking and linking z/OS XL C/C++ programs 539

v Step LINK3 uses the definition side-decks generated in step LINK1 and LINK2 as

part of the prelinker input to import the variable year from DLL EXPONLY and to

import the functions get_year and set_year from DLL IMPEXP.

v Step LINK3 does not specify a definition side-deck; program IMPONLY does not

export any functions or variables.

v If you explicitly specify link-time parameters, be sure to specify the RENT option.

The IBM-supplied cataloged procedure CBCL does this by default.

v The load module name of a DLL must match the DLLNAME seen on the

corresponding IMPORT statements.

v Step GO has the program IMPONLY and the DLLs. EXPONLY and IMPEXP in its

STEPLIB concatenation so that the DLLs can be dynamically loaded at run time.

To see which functions and variables are imported or exported use the Prelinker

Map. The following is a portion of the Prelinker Map from step LINK2:

�1� Load Module Map

This section lists the load modules from which functions and variables are

imported. The load module names come from the input IMPORT control

statements processed.

�2� Import Symbol Map

This section lists the imported functions and variables. The MODULE ID

indicates the DLL from which the function or variable is imported. The FILE

ID indicates the file in which the IMPORT control statement was processed

that resulted in this import.

�3� Export Symbol Map

This section lists the external functions and variables which are exported.

For each symbol that is listed in this section, an IMPORT control statement is

written out to the DDname SYSDEFSD, the definition side-deck.

==

| Load Module Map �1� |

==

MODULE ID MODULE NAME

 00001 EXPONLY

==

| Import Symbol Map �2� |

==

*TYPE FILE ID MODULE ID NAME

 D 00001 00001 year

*TYPE: D=imported data C=imported code

==

| Export Symbol Map �3� |

==

*TYPE FILE ID NAME

 C 00001 get_year

 C 00001 next_year

*TYPE: D=exported data C=exported code

540 z/OS V1R7.0 XL C/C++ User’s Guide

Note: The export symbol map will not be produced when the NODYNAM option is in

effect.

Prelinking and linking an application under z/OS batch and TSO

Figure 46 shows the basic prelinking and linking process for your C or C++

application.

The data set SYSIN, �1�, that contains your object modules forms the primary input

of the prelinker.

Note: If you are creating an application that imports symbols from DLLs, you must

provide the definition side-deck for each DLL referenced in SYSIN.

C/C++ Object
Modules

Prelinked
Text Deck

C/C++ Class
Libraries

Non-C++ User
Libraries

Load
Module

Definition
side-decks

Definition
side-deck

Language
Environment
Library

C/C++ User
Libraries

PRELINKER

LINKAGE
EDITOR

SYSLIB & User defined
libaries

SYSLIB & User defined
libaries

SYSLMOD

SYSLIN

SYSMOD

SYSIN

SYSDEFSD (If
exporting symbols)

2

5

43

1

Figure 46. Basic prelinker and linkage editor Processing

Appendix A. Prelinking and linking z/OS XL C/C++ programs 541

The prelinker uses its primary input, and its secondary input, �2�, from SYSLIB to

produce a prelinked object module and, if you are exporting symbols, a definition

side-deck. SYSLIB points to PDS libraries or PDSE libraries which may contain the

following:

v Object modules with long names

v Object modules with writable static references

v C/C++ object module libraries

v DLL definition side-decks

The prelinked output object module is put in SYSMOD. If a definition side-deck is

generated, it is put in SYSDEFSD, which is a sequential data set or a PDS member.

The linkage editor takes its primary input from SYSLIN which refers to the prelinked

object module data set, �3�. The linkage editor uses the primary input and

secondary input, �4�, to produce a load module, �5�. The secondary input consists

of non-C++ user defined libraries, and the z/OS Language Environment run-time

library (SCEELKED) specified using SYSLIB.

The load module, �5�, is put in the SYSLMOD data set. The load module becomes a

permanent member of SYSLMOD. You can be retrieve it at any time to run in the job

that created it, or in any other job.

z/OS Language Environment Prelinker Map

When you use the MAP prelinker option, the z/OS Language Environment prelinker

produces a Prelinker Map. The listing contains several individual sections that are

only generated if they are applicable.

Example: Consider the following example. The data set

USERID.DLL.SOURCE(EXPONLY) contains

/* EXPONLY.C */

 int year = 2001; /* exported from this DLL */

After step LINK0 in Figure 48 on page 543, the definition side-deck

USERID.DLL.IMPORTS(EXPONLY) contains the record IMPORT DATA ’EXPONLY’ year.

The map that is shown in Figure 49 on page 543 was created by compiling the

program that is shown in Figure 47 on page 543. Figure 49 on page 543 is the

corresponding Prelinker Map from step LINK1 The linkage editor places the resulting

load module in USERID.DLL.LOAD(IMPEXP2).

542 z/OS V1R7.0 XL C/C++ User’s Guide

/* IMPEXP2.C */

#pragma variable(this_int_not_in_writable_static, NORENT)

int this_int_not_in_writable_static = 2001;

extern int year;

int this_int_is_in_writable_static = 1900;

int get_year(void) {

 return year;

}

void next_year(void) {

 year++;

}

void Name_Collision_In_First8(void) {

}

void Name_Collision_In_First_Eight(void) {

}

Figure 47. z/OS XL C++ Source file used for the example Prelinker Map

//*

//COMP0 EXEC CBCC,CPARM=’EXPORTALL’,

// INFILE=’USERID.DLL.SOURCE(EXPONLY)’,

// OUTFILE=’USERID.DLL.OBJECT(EXPONLY),DISP=SHR’

//LINK0 EXEC CBCL,PPARM=’DLLNAME(EXPONLY) NONCAL MAP’,

// OUTFILE=’USERID.DLL.LOAD(EXPONLY),DISP=SHR’

//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(EXPONLY),DISP=SHR

//PLKED.SYSDEFSD DD DSN=USERID.DLL.DEFSD(EXPONLY),DISP=SHR

//*

//COMP1 EXEC CBCC,CPARM=’EXPORTALL’,

// INFILE=’USERID.DLL.SOURCE(IMPEXP2)’,

// OUTFILE=’USERID.DLL.OBJECT(IMPEXP2),DISP=SHR’

//LINK1 EXEC CBCL,PPARM=’DLLNAME(IMPEXP2) NONCAL MAP’,

// OUTFILE=’USERID.DLL.LOAD(IMPEXP2),DISP=SHR’

//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPEXP2),DISP=SHR

// DD DSN=USERID.DLL.DEFSD(EXPONLY),DISP=SHR

//PLKED.SYSDEFSD DD DSN=USERID.DLL.DEFSD(IMPEXP2),DISP=SHR

Figure 48. Example of JCL used to generate the example Prelinker Map for a C++ program.

===

| Prelinker Map �1� |

| |

| CPLINK:5647A01 V2 R10 M0 IBM Language Environment 2000/05/17 15:45:56 |

 ==

 Command Options. : NONCAL NOMEMORY ER DUP MAP

 : NOOMVS NOUPCASE DYNAM

 ==

 | Object Resolution Warnings �2� |

 ==

 WARNING EDC4015: Unresolved references are detected:

 CEESTART CEESG003 @@TRGLOR

Figure 49. Prelinker Map (Part 1 of 3)

Appendix A. Prelinking and linking z/OS XL C/C++ programs 543

==

 | File Map �3� |

 ==

 *ORIGIN FILE ID FILE NAME

 P 00001 DD:SYSIN

 A 00002 CEE210.SCEECPP(EDCHSG03)

 IN 00003 *** DESCRIPTORS ***

 *ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE

 A=automatic call R=RENAME card L=C Library

 IN=internal

 ==

 | Writable Static Map �4� |

 ==

 OFFSET LENGTH FILE ID INPUT NAME

 0 4 00001 this_int_is_in_writable_static

 8 10 00003 <year>

 18 4 00001 @STATIC

 ==

 | Load Module Map �5� |

 ==

 MODULE ID MODULE NAME

 00001 EXPONLY

 ==

 | Import Symbol Map �6� |

 ==

 *TYPE FILE ID MODULE ID NAME

 D 00001 00001 year

 *TYPE: D=imported data C=imported code

Figure 49. Prelinker Map (Part 2 of 3)

544 z/OS V1R7.0 XL C/C++ User’s Guide

The numbers in the following text correspond to the numbers that are shown in the

map.

�1� Heading

The heading is always generated. It contains the product number, the

library release number, the library version number, and the date and the

time the prelink step began. A list of the prelinker options that are in effect

for the step follow.

�2� Object Resolution Warnings

This section is generated if objects remained undefined at the end of the

prelink step, or the IPA Link step, or if duplicate objects were detected

during the step. The names of the applicable objects are listed.

�3� File Map

This section lists the object modules that were included in input. An object

module consisting only of RENAME control statements, for example, is not

shown. Also provided in this section are source origin (FILE NAME), and

identifier (FILE ID) information. The object module came from primary input

because of:

v An INCLUDE control statement in primary or secondary input

v A RENAME control statement

v The resolution of long name library references

 ==

 | Export Symbol Map �7� |

 ==

 *TYPE FILE ID NAME

 C 00001 get_year()

 C 00001 next_year()

 D 00001 this_int_is_in_writable_static

 C 00001 Name_Collision_In_First_Eight()

 C 00001 Name_Collision_In_First8()

 *TYPE: D=exported data C=exported code

 ==

 | ESD Map of Defined and Long Names �8� |

 ==

 OUTPUT

 *REASON FILE ID ESD NAME INPUT NAME

 P CEESTART CEESTART

 D 00001 THIS@INT this_int_not_in_writable_static

 D 00001 GET@YEAR get_year()

 D 00001 NEXT@YEA next_year()

 D 00001 @ST00003 Name_Collision_In_First8()

 D 00001 @ST00002 Name_Collision_In_First_Eight()

 P CEESG003 CEESG003

 P 00002 CBCSG003 CBCSG003

 P @@TRGLOR @@TRGLOR

 *REASON: P=#pragma or reserved S=matches short name R=RENAME card

 L=C Library U=UPCASE option D=Default

 ============ E N D O F P R E - L I N K A G E M A P =============

Figure 49. Prelinker Map (Part 3 of 3)

Appendix A. Prelinking and linking z/OS XL C/C++ programs 545

v The object module was internal and self-generated by the prelink step

The FILE ID may appear in other sections, and is used as a cross

reference to the object module. The FILE NAME can be one of:

v The data set name and, if applicable, the member name

v The ddname and, if applicable, the member name

v The HFS file name and directory

If you are prelinking an application that imports variables or functions from a

DLL, the variable descriptors and function descriptors are defined in a file

called *** DESCRIPTORS ***. This file has an origin of internal.

�4� Writable Static Map

This section is generated if an object module was encountered that

contains defined static external data. This area also contains variable

descriptors for any imported variables and, if required, function descriptors.

This section lists the names of such objects, their lengths, their relative

offset within the writable static area, and a FILE ID for the file containing

the definition of the object.

�5� Load Module Map

This section is generated if the application imports symbols from other load

modules. This section lists the names of the load modules.

�6� Import Symbol Map

This section is generated if symbols are imported from other load modules.

These otherwise unresolved DLL references are resolved through IMPORT

control statements. This section lists those symbols. It describes the type of

symbol; that is, D (variable) or C (function). It also lists the file id of the

object module containing the corresponding IMPORT control statements, the

module id of the load module on that control statement, and the symbol

name.

 A DLL application would generate this section.

�7� Export Symbol Map

This section is generated if an object module is encountered that exports

symbols. This section lists those symbols. It describes the type of symbol;

that is, D (variable) or C (function). It also lists the file id of the object where

the symbol is defined and the symbol name. Only externally defined data

objects in writable static or externally defined functions can be exported.

 Code that is compiled with the EXPORTALL compiler option or code that

contains the #pragma export directive would generate an object module that

exports symbols.

Note: The export symbol map will not be produced if the NODYNAM option is

in effect.

�8� ESD Map of Defined and Long Names

This section lists the names of external symbols that are not in writable

static. It also shows a mapping of input long names to output short names.

 If the object is defined, the FILE ID indicates the file that contains the

definition. Otherwise, this field is left blank. For any name, the input name

and output short name are listed. If the input name is indeed an long name,

the rule that is used to map the long name to the short name is applied. If

the name is not an long name, this field is left blank.

546 z/OS V1R7.0 XL C/C++ User’s Guide

Note: Although mangled names exist in the object modules, the Prelinker Map and

messages emit the demangled equivalent, which is like the names seen in

the C++ source code.

Processing the prelinker automatic library call

The following hierarchy is used to resolve a referenced and currently undefined

symbol.

v The undefined name is an short name, for example SNAME.

– If the NONCAL command option is in effect, the partitioned data sets that are

concatenated to SYSLIB are searched in order as follows:

- If the data set contains a C370LIB-directory created using the z/OS XL

C/C++ Object Library Utility, and the C370LIB-directory shows that a defined

symbol by that name exists, the member of the PDS containing that symbol

is read.

- If the data set does not contain a C370LIB-directory created using the z/OS

XL C/C++ Object Library Utility and the reference is not to static external

data, the member or alias, with the same name as SNAME is read.

v The undefined name is an long name.

– If the NONCAL command option is in effect, the partitioned data sets that are

concatenated to SYSLIB are searched. If the data set contains a

C370LIB-directory created using the z/OS XL C/C++ Object Library Utility, and

the C370LIB-directory shows that a defined symbol by that name exists, the

member of the PDS indicated as containing that symbol is read.

For more information about the z/OS XL C/C++ Object Library Utility, see

Chapter 12, “Object Library Utility,” on page 415.

References to currently undefined symbols (external references)

If the symbol is undefined after the prelink step, and is not a writable static symbol,

it may be subsequently defined during the link step. However, the definition must be

exactly the same as the output ESD name. For more information, see the Figure 49

on page 543.

If you are writing a C application, and the symbol is an long name that was not

resolved by automatic library call and for which a RENAME statement with the SEARCH

option exists, the symbol is resolved under the short name on the RENAME statement

by automatic library call.

See “RENAME control statement” on page 563 for a complete description of the

RENAME control statement.

Unresolved requests generate error or warning messages to the Prelinker Map.

Prelinking and linking under z/OS batch

Using IBM-supplied cataloged procedures

The IBM-supplied catalog procedures and REXX EXECs use the DLL versions of

the IBM-supplied class libraries by default. That is, the IBM-supplied Class Libraries

definition side-deck data set, SCLBSID, is included in the SYSIN concatenation.

If you are statically linking the relevant class library object code, you must override

the PLKED.SYSLIB concatenation to include the SCLBCPP or SCLBCPP2 data set. The

z/OS V1R2 version of the static library is in CBC.SCLBCPP2.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 547

Note: If your application consists of multiple modules (for example, a main module

and a DLL) that use the same class library, make sure that all your modules

link dynamically to the class library. Otherwise, the class library will be linked

in multiple times, and there will be multiple copies in use by your application.

You cannot use multiple copies of a class library within a single application. If

you do, you can have unexpected results.

You can use one of the following IBM-supplied cataloged procedures that include a

link-edit step to link-edit your z/OS XL C program:

EDCCL Compile and link-edit

EDCCLG Compile, link-edit, and run

EDCCPL Compile, prelink, and link-edit

EDCCPLG

Compile, prelink, link-edit, and run

Note: By default, the procedures EDCCL, EDCCLG, and EDCCPLG do not save the

compiled object. EDCCLG and EDCCPLG do not save load modules.
See Appendix D, “Cataloged procedures and REXX EXECs,” on page 583 for more

information on REXX EXECs and their uses.

Example: The following example shows the general job control procedure for

link-editing a program under z/OS batch using the Language Environment Library.

You can use one of the following IBM-supplied cataloged procedures that include a

prelink and link step to link your C++ program:

CBCCL Compile, prelink, and link

CBCL Prelink and link

CBCCLG Compile, prelink, link, and run

CBCLG Prelink, link, and run.

Specifying prelinker and link-edit options using cataloged

procedures

In the cataloged procedures use the PPARM statement to specify prelinker options

and the LPARM statement to specify link-edit options as follows:

PPARM=’"prelinker-options"’

LPARM=’"link-edit-options"’

// jobcard

//*

//* THE FOLLOWING STEP LINKS THE MEMBERS TESTFILE AND DECODE FROM

//* THE LIBRARIES USERID.WORK.OBJECT AND USERID.LIBRARY.OBJECT AND

//* PLACES THE LOAD MODULE IN USERID.WORK.LOAD(TEST)

//*

//LKED EXEC PGM=IEWL,REGION=1024K,PARM=’AMODE=31,RMODE=ANY,MAP’

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=USERID.WORK.LOAD(TEST),DISP=SHR

//OBJECT DD DSNAME=USERID.WORK.OBJECT,DISP=SHR

//LIBRARY DD DSNAME=USERID.LIBRARY.OBJECT,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30))

//SYSIN DD DATA,DLM=@@

 INCLUDE OBJECT(TESTFILE)

 INCLUDE LIBRARY(DECODE)

@@

Figure 50. Link-editing a program under z/OS batch

548 z/OS V1R7.0 XL C/C++ User’s Guide

where prelinker-options is a list of prelinker options and link-edit-options is a list of

link-edit options. Separate link-edit options and prelinker options with commas.

Writing JCL for the prelinker and linkage editor

You can use cataloged procedures rather than supply all of the job control language

(JCL) required for a job step that invokes the prelinker or linkage editor. However,

you should be familiar with these JCL statements. This familiarity enables you to

make the best use of the prelinker and linkage editor and, if necessary, override the

statements of the cataloged procedure.

For a description of the IBM-supplied cataloged procedures that include a prelink

and link step, see Appendix D, “Cataloged procedures and REXX EXECs,” on page

583.

The following sections describe the basic JCL statements for prelinking and linking.

Using the EXEC statement

Use the EXEC job control statement in your JCL to invoke the prelinker. The following

example shows an EXEC statement that invokes the prelinker:

//PLKED EXEC PGM=EDCPRLK

You can also use the EXEC job control statement in your JCL to invoke the linkage

editor. The following is a sample EXEC statement that invokes the linkage editor:

//LKED EXEC PGM=HEWL

Note: If you are using DLLs, you must use the RENT linkage editor option.

Using the PARM parameter

By using the PARM parameter of the EXEC statement, you can select one or more of

the optional facilities that the prelinker and linkage editor provide.

For example, if you want the prelinker to use the automatic call library to resolve

unresolved references, specify the NONCAL prelinker option using the PARM parameter

on the prelinker EXEC statement:

//PLKED EXEC PGM=EDCPRLK,PARM=’NONCAL’

If you want a mapping of the load modules produced by the linkage editor, specify

the MAP option with the PARM parameter on the linkage editor EXEC statement:

//LKED EXEC PGM=HEWL,PARM=’MAP’

For a description of prelinker options see “Prelinker options” on page 569, for

linkage editor options see “Linkage editor options” on page 571.

Example of JCL to prelink and link

Figure 51 on page 550 shows a typical sequence of job control statements to

link-edit an object module into a load module.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 549

Note: For a C++ application, this JCL uses static class libraries.

Specifying link-edit options through JCL

In your JCL for link-edit processing, use the PARM statement to specify link-edit

options:

PARM=(link-edit-options)

PARM.STEPNAME=('link-edit-options') (If a PROC is used)

where link-edit-options is a list of link-edit options. Separate the link-edit options

with commas.

You can prelink and link C/C++ applications under z/OS batch by submitting your

own JCL to the operating system or by using the IBM cataloged procedures. See

Appendix D, “Cataloged procedures and REXX EXECs,” on page 583 for more

information on the supplied procedures.

Secondary input to the linker

Secondary input is either all object modules or all load modules, but it cannot

contain both types.

Specify the secondary input data sets with a SYSLIB statement and, if the data sets

are object modules, add the linkage editor LIBRARY and INCLUDE control statements.

If you have multiple secondary input data sets, concatenate them as follows:

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR

// DD DSNAME=AREA.SALESLIB,DISP=SHR

To specify additional object modules or libraries, code INCLUDE and LIBRARY

statements after your DD statements as part of your job control procedure, such as

in Figure 52 on page 551.

 //*---

 //* PRE-LINKEDIT STEP:

 //*---

 //PLKED EXEC PGM=EDCPRLK,REGION=2048K,PARM=’MAP’

 //STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

 // DD DSN=CEE.SCEERUN2,DISP=SHR

 //SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR

 //SYSLIB DD DSN=CEE.SCEECPP,DISP=SHR

 // DD DSN=CBC.SCLBCPP,DISP=SHR

 //SYSIN DD DSN=USERID.TEXT(PROG1),DISP=SHR

 //SYSMOD DD DSN=&&PLKSET,UNIT=VIO,DISP=(MOD,PASS),

 // SPACE=(32000,(30,30)),

 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=32000)

 //SYSDEFSD DD DSN=USERID.TEXT(PROG1IMP),DISP=SHR

 //SYSOUT DD SYSOUT=*

 //SYSPRINT DD SYSOUT=*

 //*---

 //* LINKEDIT STEP:

 //*---

 //LKED EXEC PGM=HEWL,REGION=1024K,COND=(8,LE,PLKED),PARM=’MAP’

 //SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR

 //SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)

 //SYSLMOD DD DSN=USERID.LOAD(PROG1),DISP=SHR

 //SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30))

 //SYSPRINT DD SYSOUT=*

Figure 51. Creating a load module under z/OS batch

550 z/OS V1R7.0 XL C/C++ User’s Guide

A the linkage editor encounters the INCLUDE statement, it incorporates the data sets

that the control statement specifies. In contrast, the linkage editor uses the data

sets that are specified by the LIBRARY statement only when there are unresolved

references after it all the other input is processed.

When you use cataloged procedures or your own JCL to invoke the linkage editor,

external symbol resolution by automatic library call involves a search of the data set

defined by the DD statement with the name SYSLIB.

Using additional input object modules under z/OS batch

When you use cataloged procedures or your own JCL to invoke the prelinker and

linkage editor, external symbol resolution by automatic library call involves a search

of the SYSLIB data set. The prelinker and linkage editor locate the functions in which

the external symbols are defined (if such functions exist), and include them in the

output module.

You can use prelinker and linkage control statements INCLUDE and LIBRARY to do the

following:

1. Specify additional object modules that you want included in the output module

(INCLUDE statement).

2. Specify additional libraries to be searched for modules to be included in the

output module (LIBRARY statement). This statement has the effect of

concatenating any specified member names with the automatic call library.

Example: Code these statements after your DD statements as part of your job

control procedure; for example:

...
//SYSIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)

// DD *

 INCLUDE ddname(member)

 LIBRARY ADDLIB(CPGM10)

/*

Data sets specified by the INCLUDE statement are incorporated as the prelinker and

linkage editor encounter the statement. In contrast, data sets specified by the

LIBRARY statement are used only when there are unresolved references after all the

other input is processed.

Any prelinker and linkage editor processing beyond the basic processing described

above must be specified by linkage editor control statements in the primary input.

Under TSO

The z/OS Language Environment prelinker is started under TSO through REXX

EXECs. The IBM supplied REXX EXECs that invoke the prelinker and create an

executable module are called CXXMOD and CPLINK. If you want to create a reentrant

load module, you must use these REXX EXECs instead of the TSO LINK command.

...
//SYSLIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)

// DD *

 INCLUDE ddname(member)

 LIBRARY ADDLIB(CPGM10)

/*

Figure 52. Linkage Editor control statements

Appendix A. Prelinking and linking z/OS XL C/C++ programs 551

It is recommended that you use CXXMOD instead of CPLINK. For a description of the

CXXMOD REXX EXEC see “Prelinking and linking under TSO.” For a description of the

CPLINK command see “Other z/OS XL C utilities” on page 595.

When using the TSO LINK command processor, the data set defined by the LIB

operand will be used by the command processor for external symbol resolution. The

linkage editor locates the functions in which the external symbols are defined (if

such functions exist), and includes them in the load module.

Any linkage editor processing beyond the basic processing described above must

be specified by linkage editor control statements in the primary input. The

IBM-supplied catalog procedures and REXX EXECs use the DLL versions of the

IBM-supplied class libraries by default.

To link-edit your z/OS XL C program under TSO, use either the CXXMOD, CMOD, or the

LINK command. It is recommended that you use CXXMOD, particularly when linking

z/OS XL C and z/OS XL C++ object decks. For a description of the CXXMOD REXX

EXEC see “Prelinking and linking under TSO.” For a description of CMOD and the TSO

LINK command see “Other z/OS XL C utilities” on page 595.

Prelinking and linking under TSO

This section describes how to prelink and link your z/OS XL C++ or z/OS XL C

program by invoking the CXXMOD REXX EXEC. This REXX EXEC creates an

executable module.

The syntax for the CXXMOD REXX EXEC is:

��

CXXMOD

�

 ,

OBJ

(

object

)

'object'

�

�

�

,

POPT

(

prelink-option

)

�

,

PLIB

(

libname

)

'libname'

 �

�

�

,

LOPT

(

link-option

)

�

,

LIB

(

libname

)

'libname'

 �

�
PMOD

(

prelinked_object

)

'prelinked_object'

LOAD

(

module

)

'module'

 �

552 z/OS V1R7.0 XL C/C++ User’s Guide

�
PMAP

(

prelink-map

)

'prelink-map'

LIST

(

listing

)

'listing'

 �

�
PDEF

(

prelink-object

)

'prelink-object'

 ��

CXXMOD

OBJ You must always specify the input file names on the OBJ keyword

parameter. Each input file must be a C, C++ or assembler object module.

Note that the file can be either a PDS member, a sequential file or an HFS

file.

 If the high-level qualifier of a file is not the same as your user prefix, you

must use the fully qualified name of the file and place single quotation

marks around the entire name.

For HFS file names: Neither commas nor special characters need to be

escaped. But you must place file names containing

special characters or commas between single

quotes. If a single quote is part of the file name, the

quote must be specified twice. HFS filenames must

be absolute names, that is they must begin with a

slash (/).

POPT Prelinker options can be specified using the POPT keyword parameter. If the

MAP prelink option is specified, a prelink map will be written to the file

specified under the PMAP keyword parameter. For more details on

generating a prelink map, see the information on the PMAP option below.

LOPT Linkage editor options can be specified using the LOPT keyword parameter.

For details on how to generate a linkage editor listing, see the option LIST.

PLIB The library names that are to be used by the automatic call library facility of

the prelinker must be specified on the PLIB keyword parameter. The default

library used is the C++ base library, CEE.SCEECPP.

 If the high-level qualifier of a library data set is not the same as your user

prefix, you must use the fully qualified name of the data set and place

single quotation marks around the entire name.

LIB If you want to specify libraries for the link step to resolve external

references, use the LIB keyword parameter. The default library used is

CEE.SCEELKED.

 If the high-level qualifier of a library data set is not the same as your user

prefix, you must use the fully qualified name of the data set and place

single quotation marks around the entire name.

PMOD If you want to keep the output prelinked object module, specify the file that

it should be placed in by using the PMOD keyword parameter. The default

action is to create a file and erase it after the link is complete. The file can

be either a data set or an HFS file.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 553

If the high-level qualifier of the output prelinked object module is not the

same as your user prefix, you must use the fully qualified name of the file

and place single quotation marks around the entire name.

LOAD To specify where the resultant load module should be placed, use the LOAD

keyword parameter. The file can be either a data set or an HFS file.

 If the high-level qualifier of the load module is not the same as your user

prefix, you must use the fully qualified name of the file and place single

quotation marks around the entire name.

LIST To specify where the linkage editor listing should be placed, use the LIST

keyword parameter. The file can be either a data set or an HFS file. If you

specify *, the listing will be directed to your console.

 If the high-level qualifier of the linkage editor listing is not the same as your

user prefix, you must use the fully qualified name of the file and place

single quotation marks around the entire name.

PMAP To specify where the Prelinker Map should be placed, use the PMAP keyword

parameter. The file can be either a data set or an HFS file. If you specify *,

the Prelinker Map will be directed to your console.

 If the high-level qualifier of the Prelinker Map is not the same as your user

prefix, you must use the fully qualified name of the file and place single

quotation marks around the entire name.

PDEF To specify where the generated IMPORT control statements should be

placed by the prelinker. The file can be either a data set or an HFS file.

 If the high-level qualifier of the IMPORT control statement listing is not the

same as your user prefix, you must use the fully qualified name of the file

and place single quotation marks around the entire name.

Example of prelinking and linking under TSO

In the following example, the user prefix is RYAN and the input object module

members MAIN and FN are in the PDS called ’RYAN.ACCOUNT.OBJ’. A prelink map is

to be generated and placed in ’RYAN.ACCOUNT.MAP(SALES)’. The load module will be

placed in a PDS member called ’GROUP.ACCOUNT.LOAD(SALES)’. The linkage editor

listing will be written to ’RYAN.ACCOUNT.LIST(SALES)’.

 CXXMOD OBJ(ACCOUNT.OBJ(MAIN), ACCOUNT.OBJ(FN))

 POPT(MAP) LOPT(XREF, MAP)

 LOAD(’GROUP.ACCOUNT.LOAD(SALES)’) MAP(ACCOUNT.MAP(SALES))

 LIST(ACCOUNT.LIST(SALES))

In this instance, both the z/OS Language Environment stub library and the

partitioned data set (library) SALESLIB are available as the automatic call libraries.

The linkage editor LIBRARY control statement has the effect of concatenating any

specified member names with the automatic call library.

Using CPLINK

The CPLINK command has the following syntax:

�� CPLINK OBJ

�

 ()

,

'

object

'

 �

554 z/OS V1R7.0 XL C/C++ User’s Guide

�

�

POPT

(

)

,

'

options

'

�

PLIB

(

)

,

'

libname

'

 �

�

�

LOPT

(

)

,

'

options

'

�

LIB

(

)

,

'

libname

'

 �

�

�

LOAD

(

)

,

'

object

'

 ��

OBJ specifies an input data set name.

 This is a required parameter. Each input data set must be a C

object module compiled with the RENT or LONGNAME compiler options,

or a compiled program (C or otherwise) having no static external

data.

POPT specifies a string of prelink options.

 The prelinker options available for CPLINK are the same as for z/OS

batch. For example, if you want the prelinker to use the MAP option,

specify the following:

CPLINK file name POPT('MAP')..

When you specify the prelink MAP option (as opposed to the link MAP

option), the prelinker produces a file that shows the mapping of

static external data. This map shows name, length, and address

information. If there are any unresolved references or duplicate

symbols during the prelink step, the map displays them.

PLIB specifies the library names that the prelinker uses for the automatic

library call facility.

LOPT specifies a string of linkage editor options.

 For example, if you want the prelink utility to use the MAP option,

and the linkage editor to use the NOMAP option, use the following

CLIST command:

CPLINK file name POPT('MAP') LOPT('NOMAP...')

LIB specifies any additional library or libraries that the TSO LINK

command uses to resolve external references. These libraries are

appended to the default C library functions.

LOAD specifies an output data set name.

 If you do not specify an output data set name, a name is generated

for you. The name that the CLIST generates consists of your user

prefix, followed by CPOBJ.LOAD(TEMPNAME). For more information on

Appendix A. Prelinking and linking z/OS XL C/C++ programs 555

the file format for output data, refer to z/OS MVS Program

Management: User’s Guide and Reference.

 Examples

In the following example, your user prefix is RYAN, and the data set that contains the

input object module is the partitioned data set RYAN.C.OBJ(INCCOMM). This example

will generate a prelink listing without using the automatic call library. After the call,

the load module is placed in the partitioned data set RYAN.CPOBJ.LOAD(TEMPNAME),

and the prelink listing is placed in the sequential data set RYAN.CPOBJ.RMAP.

CPLINK OBJ('C.OBJ(INCCOMM)')

In the following examples, assume that your user prefix is PAUL, and the data set

that contains the input object module is the partitioned data set

PAUL.C.OBJ(INCPYRL). This example will not generate a prelink listing, and the

automatic call facility will use the library RAINBOW.LIB.SUB. The load module is

placed in the partitioned data set PAUL.TBD.LOAD(MOD).

Using LINK

The general form of the TSO LINK command is:

�� LINK

�

 data-set-name

,

(

data set name

)

LOAD

(

data set name

)
 LIB �

�

�

 data-set-name

,

(

data-set-name

)

 ��

Input to the LINK command

You must specify one or more object module names, or load module names, after

the LINK keyword. For example, to link-edit program2.obj, using the Language

Environment Library, you would issue the following:

LINK program2.obj LIB('CEE.SCEELKED')

//*---

//* Prelink and link ’PAUL.C.OBJ(INCPYRL)’

//*---

//P0014001 EXEC EDCPL,

// INFILE=’PAUL.C.OBJ(INCPYRL)’,

// OUTFILE=’PAUL.TBD.LOAD(MOD),DISP=SHR’,

// PPARM=’NOMAP,NONCAL’,

// LPARM=’AMODE(31),RMODE(ANY) ’

//*--

Figure 53. Example of prelinking under z/OS batch

CPLINK OBJ('''PAUL.C.OBJ(INCPYRL)''')

 POPT('NOMAP,NONCAL')

 PLIB('''RAINBOW.LIB.SUB''')

 LOAD('TBD.LOAD(MOD)')

Figure 54. Example of prelinking under TSO

556 z/OS V1R7.0 XL C/C++ User’s Guide

Notes:

1. You must always specify 'CEE.SCEELKED' in the LIB operand. It is not required

during the execution of a z/OS XL C/C++ program.

LIB operand of the LINK command

The LIB operand specifies the names of data sets that are to be used to resolve

external references by the automatic library call facility. Language Environment

Library is made available to your program in this manner and must always be

specified on the LIB operand. In the following example, SALESLIB.LIB.SBRT2 is

used to resolve external references used in program2.

LINK program2.obj LIB('CEE.SCEELKED.', 'SALESLIB.LIB.SBRT2')

A request coded this way searches CEE.SCEELKED and SALESLIB.LIB.SBRT2 to

resolve external references.

LOAD operand of the LINK command

In the LOAD operand, you can specify the name of the data set that is to hold the

load module as follows:

LINK LOAD(load-mod-name(member)) LIB('CEE.SCEELKED')

The load module produced by the linkage editor must be a member in a partitioned

data set.

If you do not specify a data set name for the load module, the system constructs a

name by using the first data set name that appears after the keyword LINK, and it

will be placed in a member of the user-prefix.program-name.LOAD data set. If the

input data set is sequential and you do not specify a member name, TEMPNAME is

used.

Example: The following example shows how to link-edit two object modules and

place the resulting load module in member TEMPNAME of the userid.LM.LOAD data set.

LINK program1,program2 LOAD(lm)

You can also specify link-edit options in the link statement:

LINK program1 LOAD(lm) LET

Options for the linkage editor are discussed in “Output from the linkage editor” on

page 534.

For more information about using the TSO command LINK, see z/OS TSO/E

Command Reference .

Specifying link-edit options through the TSO LINK command

TSO users specify link-edit options through the LINK command. For example, to use

the MAP, LET, and NCAL options when the object module in SMITH.PROGRAM1.OBJ is

placed in SMITH.PROGRAM1.LOAD(LM), enter:

LINK SMITH.PROGRAM1 ’LOAD(LM) MAP LET NCAL’

You can use link-edit-options to display a map listing at your terminal:

LINK PROGRAM1 MAP PRINT(*)

Appendix A. Prelinking and linking z/OS XL C/C++ programs 557

Storing load modules in a load library

If you want to link C functions, to store them in a load library, and to INCLUDE them

later with main procedures, use the NCAL and LET linkage editor options.

Prelinking and link-editing under the z/OS Shell

You can prelink and link your application under the shell by using the the OMVS

prelinker option. The OMVS option causes the prelinker to change its processing of

INCLUDE and LIBRARY control statements. The search library is pointed to

immediately for any currently unresolved symbols. If the processing of subsequent

INCLUDE or LIBRARY statements results in new or unresolved symbols, a previously

encountered library will not be searched again. You may need another LIBRARY

statement that points to the same library to search it again. For more information on

the OMVS prelinker option, see Appendix B, “Prelinker and linkage editor options,” on

page 569.

Using your JCL

The example JCL in Figure 55 links to an archive library and to z/OS data sets.

Include files may be PDS members, sequential files, or HFS files. Libraries may be

partitioned data sets, or archive libraries.

 The JCL in Figure 55 produces the following Prelinker Map:

//jobcard information...

//*--

//*----- prelink --

//RAWPLINK EXEC PGM=EDCPRLK,

// PARM=’OMVS,MEMORY,MAP,NONCAL’

//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=CEE.SCEERUN2

//SYSMSGS DD DISP=SHR,DSN=CEE.SCEEMSGP(EDCPMSGE)

//SYSLIB DD DUMMY

//* object file

//DDOBJ1 DD PATH=’/u/myuserid/callfoogoohoo.o’

//* PDS member

//DDOBJ2 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ(MEM1)

//* archive library

//DDLIB3 DD PATH=’/u/myuserid/mylibrary.a’

//* PDS Library

//DDLIB4 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ

//SYSIN DD DATA,DLM=@@

 INCLUDE DDOBJ1

 INCLUDE DDOBJ2

 LIBRARY DDLIB3

 LIBRARY DDLIB4

@@

//SYSMOD DD DISP=SHR,DSN=MYUSERID.TEMP.OBJ(MEM1)

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSDEFSD DD DUMMY

Figure 55. Using OMVS to prelink and link

558 z/OS V1R7.0 XL C/C++ User’s Guide

==

 | Prelinker Map |

 | |

 | CPLINK:5645001 V1 R7 M00 IBM Language Environment 1997/01/20 16:28:55|

 ==

 Command Options. : NONCAL MEMORY ER DUP MAP

 : OMVS NOUPCASE

 ==

 | Object Resolution Warnings |

 ==

 WARNING EDC4015: Unresolved references are detected:

 CEEBETBL CEEROOTA goo CEESG003 EDCINPL

 ==

 | File Map |

 ==

 *ORIGIN FILE ID FILE NAME

 PI 00001 /u/myusrd/callfoogoohoo.o

 PI 00002 MYUSRID.QAPARTNR.OBJ(MEM1)

 A 00003 /u/myusrd/mylibrary.a(foo.o)

 A 00004 MYUSRID.QAPARTNR.OBJ(MEMHOO)

 *ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE

 A=automatic call R=RENAME card L=C Library

 IN=internal

 ==

 | Writable Static Map |

 ==

 INFORMATIONAL EDC4013: No map displayed as no writable static was found.

 ==

 | ESD Map of Defined and Long Names |

 ==

 OUTPUT

 *REASON FILE ID ESD NAME INPUT NAME

 P 00001 CEESTART CEESTART

 P 00001 CEEMAIN CEEMAIN

 D 00001 MAIN main

 D 00003 FOO foo

 D GOO goo

 D 00004 HOO hoo

 P CEESG003 CEESG003

 P EDCINPL EDCINPL

 D 00002 FUNC@IN@ func_in_MEM1

 *REASON: P=#pragma or reserved S=matches short name R=RENAME card

 L=C Library U=UPCASE option D=Default

 ============ E N D O F P R E - L I N K A G E M A P =============

Figure 56. Prelinker Map produced when prelinking using OMVS

Appendix A. Prelinking and linking z/OS XL C/C++ programs 559

Setting c89 to invoke the prelinker

The c89, c++, and cc utilities invoke the binder by default, unless the output file of

the link-editing phase (-o option) is a PDS, in which case they use the prelinker.

You can set the prefix_STEPS environment for each of these utilities to use the

prelinker for link-edit output files that are PDSEs or HFS files.

Once you set the prefix_STEPS environment variable for a utility so that the

prelinker bit is turned on, that utility will always use the prelinker. If you want to use

the binder, you must unset the prefix_STEPS environment variable.

For a complete description of c89, c++, and cc, see Chapter 18, “c89 — Compiler

invocation using host environment variables,” on page 465. For a description of the

prefix_STEPS environment variable, see z/OS UNIX System Services Command

Reference.

Using the c89 utility

The c89 utility specifies default values for some prelinker and linkage editor options.

It also passes prelinker options and linkage editor options by using the -W option.

c89 specifies prelinker and linkage editor options in order for it to provide the user

with correct and consistent behavior. In order to determine exactly the prelinker and

linkage editor options that c89 specifies, you should use the c89 -V option.

Some c89 options, such as -V, will change the settings of the prelinker options and

the linkage editor options that c89 specifies. For example, when you do not specify

-V, c89 specifies the prelinker option NOMAP, and when you specify -V, c89 specifies

the prelinker option MAP.

To explicitly override the options that c89 specifies, use the c89 -W option. For

example, to use the prelinker option MAP even when the c89 -V option is not

specified, invoke

c89 -Wl,p,map ...

For a list of prelinker options and their uses, see “Prelinker options” on page 569.

Prelinker control statement processing

The only control statements that the prelinker processes are IMPORT, INCLUDE,

LIBRARY, and RENAME statements. The remaining control statements remain

unchanged until the link step.

You can place the control statements in the input stream, or store them in a

permanent data set. If you cannot fit all of the information on one control statement,

you can use one or more continuations. The long name, for example, can be split

across more than one statement. You can enable continuations in one of two ways:

v Place a non-blank character in column 72 of the statement that is to be

continued. The continuation must begin in column 16 of the next statement.

v Enclose the name in single quotation marks. When such a name is continued

across statements, it extends up to and includes column 71. Although column 72

is not considered part of the name, it must be non-blank for the name to be

560 z/OS V1R7.0 XL C/C++ User’s Guide

|

|

|

|

continued. On the following statement, column 1 must be blank (containing the

X'40' character); the name then continues in column 2.

If you have a name that contains a single quotation mark, and you want to

enclose the whole name in single quotation marks, put two single quotation

marks next to each other where you want the single one to appear in the name.

Example: If you want the name

SymbolNameWithAQuote’InTheMiddle

specify it as follows:

’SymbolNameWithAQuote’’InTheMiddle’

If you mix the two style of continuation in one control statement, after you continue

a statement in column 2 due to a quote in the name, all subsequent statements will

continue in column two.

IMPORT control statement

The IMPORT control statement has the following syntax:

�� IMPORT CODE dll-name function

'

dll-name

'

'

function

'

DATA

dll-name

variable

'

dll-name

'

'

variable

'

 ��

dll-name

The name or alias of the load module for the DLL. The maximum length of

an alias is 8 characters. However, the name itself can be a long name. The

dll-name comes from the value specified on the DLLNAME prelinker option.

For more information, see “Prelinker options” on page 569.

variable

An exported variable name. It is a mixed case long name. To indicate a

continuation across statements, either use a non-blank character in column

72 of the card and begin the next line in column 16, or enclose the name in

single quotation marks, end the first line in column 71, and put a blank

character in column 1 of the next line.

function

An exported function name. It is a mixed case long name. You can indicate

a continuation the same way you would for a variable.

 The prelinker processes IMPORT statements, but does not pass them on to the link

step.

INCLUDE control statement

The INCLUDE control statement has the following syntax:

�� INCLUDE

�

 ddname (member)

'

ddname

'

,

'

member

'

 ��

ddname A ddname associated with a file to be included. You can use the same

kinds of continuations that you can for the variable on the IMPORT control

statement.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 561

member The member of the DD to be included. You can use the same kinds of

continuations that you can for the variable on the IMPORT control statement.

The prelinker processes INCLUDE statements like the z/OS linkage editor with the

following exceptions:

An attempt is made to read the DD or member of the DD (whichever is specified).

This request is resolved if the read is successful.

v INCLUDEs of identical member names are not allowed.

v INCLUDEs of both a ddname and a member from the same ddname are not allowed.

The prelinker ignores the second INCLUDE.

Note: The INCLUDE control statement is removed and not placed in the prelinker

output object module; the system linkage editor does not see the INCLUDE

control statement.

For more information on the linkage editor, refer to z/OS MVS Program

Management: User’s Guide and Reference .

LIBRARY control statement

The LIBRARY control statement has the following syntax:

NOOMVS

��

LIBRARY

�

�

name

(

member

)

'

name

'

'

member

'

(

external

)

*

'

external

'

��

OMVS

�� LIBRARY name ��

name

the name of a DD that defines a library, under z/OS. This could be a

concatenation of one or more libraries that are created with or without the

Object Library Utility. You can use the same kinds of continuations that you can

for the variable on the IMPORT control statement.

member

the name or alias of a member of the specified library. Because both short

names and long names can be specified, case distinction is significant. If you

use an long name, you can use the same kinds of continuations that you can

for the variable on the IMPORT control statement.

 Under z/OS, automatic library calls search the library and each subsequent

library in the concatenation, if necessary, for the name instead of searching the

primary input. If you specify the OMVS option, the only form of the LIBRARY card

the prelinker accepts is LIBRARY ddname statement in SYSLIB.

external

an external reference that may be unresolved after primary input processing. An

Automatic Library call will not resolve this external reference. Because both

562 z/OS V1R7.0 XL C/C++ User’s Guide

short names and long names can be specified, case distinction is significant. If

you use an long name, you can use the same kinds of continuations that you

can for the variable on the IMPORT control statement.

Note: The LIBRARY control statement is removed and not placed in the prelinker

output object module; the system linkage editor does not see the LIBRARY

control statement.

RENAME control statement

The RENAME control statement has the following syntax:

NOOMVS

�� RENAME long name

'

long name

'
 short name

SEARCH
 ��

OMVS

�� RENAME long name

'

long name

'
 short name ��

long name

the name of the long name to be renamed on output. All occurrences of this

long name are renamed. You can use the same kinds of continuations that

you can for the variable on the IMPORT control statement.

short name

the name of the short name to which the long name will be changed. This

name can be at most 8 characters, and case is respected.

SEARCH

an optional parameter specifying that if the short name is undefined, the

prelinker searches by an automatic library call for the definition of the short

name. This is not available with the OMVS option.

 The RENAME control statement is processed by the prelinker. You can use this

statement to do the following:

v Explicitly override the default name that is given to an long name when an long

name is mapped to a short name.

You can explicitly control the names that are presented to the system linkage

editor so that external variable and function names are consistent from one

linkage editor run to the next. This consistency makes it easier to recognize

control section and label names that appear in system dumps and linkage editor

listings. Another mapping rule can provide the suitable name, but if you need to

replace the linkage editor control section, you need to maintain consistent

names. See “Mapping long names to short names” on page 531 for a description

of this rule.

v Explicitly bind a long name to a short name. This binding may be necessary

when linking with other languages that use a different name for the same object.

A RENAME control statement cannot be used to rename a writable static object

because its name is not contained in the output from the prelinker.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 563

You can place RENAME control statements before, between, or after other control

statements or object modules. An object module can contain only RENAME

statements. RENAME statements can also be placed in input that is included because

of other RENAME statements.

Usage notes

v A RENAME statement is ignored if the long name is not encountered in the input.

v A RENAME statement for an long name is valid provided all of the following are

true:

– The long name was not already mapped because of a rule that preceded the

RENAME statement rule in the hierarchy described in “Mapping long names to

short names” on page 531.

– The long name was not already mapped because of a previous valid RENAME

statement for the long name.

– The short name is not itself an long name. This rule holds true even if the

short name has its own RENAME statement.

– A previous valid RENAME statement did not rename another long name to the

same short name.

– Either the long name or the short name is not defined. Either the long name

or the short name can be defined, but not both. This rule holds true even if

the short name has its own RENAME statement.

Reentrancy

This section discusses how to use the prelinker to make your program reentrant.

For detailed information on reentrancy, see z/OS XL C/C++ Programming Guide.

Reentrant programs are structured to allow more than one user to share a single

copy of a load module or to use a load module repeatedly without reloading it.

Natural or constructed reentrancy

Reentrant programs can be categorized as having natural or constructed

reentrancy. Programs that contain no references to the writable static objects that

are listed above have natural reentrancy. Programs that refer to writable static

objects must be processed with the IBM Language Environment Prelinker to make

them reentrant; such programs have constructed reentrancy.

If you are using C, you do not need to use the ″RENT″ compiler option if your

program is naturally reentrant.

Because all C++ programs are categorized as having constructed reentrancy, C++

code must be bound by the binder using the DYNAM(DLL) option. Alternatively, the

C++ code must be processed by the prelinker before being processed by the

linkage editor.

Using the prelinker to make your program reentrant

The prelinker concatenates compile-time initialization information (for writable static)

from one or more object modules into a single initialization unit. In the process, the

writable static part is mapped.

If you are not using the binder, and your program contains writable static, you can

use the prelinker to make your program reentrant. If the program is C and does not

564 z/OS V1R7.0 XL C/C++ User’s Guide

contain writable static, you do not need to use the prelinker to ensure reentrancy;

the program is naturally reentrant. C++ programs always contain writable static.

If you compile your code and wish to link it using the z/OS system link procedures

such as IEWL, you must first call the prelinker.

The z/OS UNIX System Services features require that all z/OS UNIX System

Services C/C++ application programs be reentrant. If you are using the c89 utility, it

automatically invokes the z/OS XL C/C++ compiler with the RENT option and also

invokes the prelinker.

The prelinker is not a post-compiler. That is, you do not prelink the object modules

individually into separate prelinked object modules as if running the prelinker was

an extension of the compile step. Instead, you prelink all the object modules

together in the same job into one output prelinked object module. This is because

the prelinker cannot process each object deck one at a time: it assigns offsets to

each data item in the writable static area for the program, and thus needs all of the

object decks that refer to data items in writable static input in a single step.

The prelinker does all of the following:

v It maps input long names from the object modules to output short names (8

characters maximum)

v It collects compile-time initialization information on static objects

v It collects constructor calls and destructor calls for static objects in C++

v It collects DLL information

v It collects objects that exist in writable static into one area by assigning an offset

within the writable static area to each object

v It removes all relocation and name information of objects in the writable static

area

The output of the prelinker is a single prelinked object module. You can link this

object module only on the same platform where you prelinked it.

Because the prelinker maps names and removes the relocation information, you

cannot use the resulting object module as input for another prelink. Also, you

cannot use the linkage editor to replace a control section (CSECT) that either

defines or references writable static objects.

Steps for generating a reentrant load module in C

Perform the following steps to generate a reentrant load module in C:

1. Determine whether or not your program contains writable static. If you are

unsure about whether your program contains writable static, compile it with the

RENT option. Invoking the prelinker with the MAP option and the object module as

input produces a Prelinker Map. Any writable static data in the object module

appears in the writable static section of the map. Unresolved writable static

references may also appear in the map as errors.

If you see the symbol @STATIC defined in the writable static section, your

code contains unnamed writable static such as modifiable literal strings, or

variables with the static qualifier. To ensure that literal strings stay in the code

area, recompile with #pragma strings(readonly), and prelink again.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 565

2. If your program contains no writable static, compile your program as you would

normally (without any special compiler options), and then go directly to step 4.

3. If your program contains writable static, you must compile your C source files

with the RENT compiler option.

4. Use the z/OS Language Environment prelinker to combine all input object

modules into a single output object module.

Notes:

a. The prelinker can handle compiled programs in languages other than C or

C++. However, only C, C++, OO COBOL, or assembler code using the

macros EDCDXD and EDCLA may refer to writable static.

b. You cannot use the output object module as further input to the z/OS

Language Environment prelinker.

5. Optionally, you can use the output object module to link the program in the LPA

or ELPA area of the system.

6. Under the z/OS shell, you can run the installed program by invoking it from the

HFS. To do so you must install the program in the HFS, and, from a superuser

ID, enter a chmod Shell command to turn on the sticky bit for the program. See

z/OS UNIX System Services Planning for more information.

Steps for generating a reentrant load module in C++

Perform the following steps to generate a reentrant load module in C++:

1. Compile your source code.

If you see the symbol @STATIC defined in the writable static section, your

code contains unnamed writable static such as modifiable literal strings, or

variables with the static qualifier. To ensure that literal strings stay in the code

area, recompile with #pragma strings(readonly), and prelink again.

2. Use the supplied prelink and link utilities on the module. Under TSO, you can

use the CXXMOD REXX EXEC to both prelink and link your module. Under z/OS

batch, use these JCL procedures:

v CBCCL: compile and link

v CBCL: link

v CBCCLG: compile, link, and go

v CBCLG: link and go

For all of these, linking involves two steps: invocation of the prelinker, and then

a call to the system linker.

Resolving multiple definitions of the same template function

Note: For complete information on using C++ templates, see z/OS XL C/C++

Programming Guide

566 z/OS V1R7.0 XL C/C++ User’s Guide

When the prelinker generates template functions, it resolves multiple function

definitions as follows:

v If a function has both a specialization and a generalization, the specialization

takes precedence.

v If there is more than one specialization, the prelinker issues a warning message.

Because the link step does not remove unused instantiations from the executable

program, instantiating the same functions in multiple compilation units may generate

very large executable programs.

External variables

For more information on external variables, see z/OS XL C/C++ Programming

Guide.

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C

system header files declare certain external (global) variables. Additional variables

are defined for use with POSIX or XPG4.2 functions. If you define one of the

POSIX or XPG4 feature test macros and include one of these headers, the global

variables will be declared in your program. These global variables are treated

differently than other global variables in a multi-threaded environment (values are

thread-specific rather than global to the process) and across a call to a fetched

module (values are propagated rather than module-specific). To access the global

variables, you must use either C with the RENT compiler option, C++, or the XPLINK

compiler option. If you are not using XPLINK, you must also specify the SCEEOBJ

autocall library. The SCEEOBJ library must be specified before the SCEELKEX and

the SCEELKED libraries in the bind step. If the SCEEOBJ library is specified after

the SCEELKEX and SCEELKED libraries, the bind step will resolve the external

variables to the user application, but at run-time Language Environment will not use

those same external variables, and so run-time errors can occur. You are also able

to access the external variables by defining the _SHARE_EXT_VARS feature test

macro during the compile step (or the _SHR_name feature test macro

corresponding to the variable names you are accessing). For further information on

feature test macros, see z/OS XL C/C++ Run-Time Library Reference. In this case,

functions which access the thread-specific values of the external variables are

provided for use in a multi-threaded environment. If you use the XPLINK compiler

option for a 32-bit program, the global variables are resolved by import using the

CELHS003 member of the SCEELIB data set. The thread-specific values are

always used.

For a dynamically called DLL module to share access to the POSIX external

variables, with its caller, the DLL module must define the _SHARE_EXT_VARS

feature test macro. For more information, see the section on feature test macros in

the z/OS XL C/C++ Run-Time Library Reference.

Appendix A. Prelinking and linking z/OS XL C/C++ programs 567

568 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix B. Prelinker and linkage editor options

This chapter contains the prelink options and link options for your programs under

z/OS Language Environment. For more information on using the z/OS Language

Environment Prelinker, see Appendix A, “Prelinking and linking z/OS XL C/C++

programs,” on page 527.

Prelinker options

The following section describes the prelink options available in z/OS XL C/C++ by

using z/OS Language Environment.

DLLNAME(dll-name)

DLLNAME specifies the DLL name that appears on generated IMPORT control

statements, described in “IMPORT control statement” on page 561. If you specify

the DLLNAME option, the prelinker sets the DLL name to the value that you listed on

the option.

If you do not specify DLLNAME, the prelinker sets the DLL name to the name that

appeared on the last NAME control statement that it processed. If there are no NAME

control statements, and the output object module of the prelinker is a PDS member,

it sets the DLL name to the name of that member. Otherwise, the prelinker sets the

DLL name to the value TEMPNAME, and issues a warning.

DUP | NODUP

DEFAULT: DUP

DUP specifies that if duplicate symbols are detected, their names should be directed

to the console, and the return code minimally set to a warning level of 4. NODUP

does not affect the return code setting when the prelinker detects duplicates.

DYNAM | NODYNAM

DEFAULT: DYNAM

When the NODYNAM option is in effect, export symbol processing is not performed by

the prelinker even when export symbols are present in the input objects. The

side-deck is not created and the resulting module will not be a DLL. Specify

NODYNAM for prelinked C/C++ programs involved in COBOL C/C++ ILC calls.

ER | NOER

DEFAULT: ER

Note: For the z/OS UNIX Systems Services environment, the default is NOER.

If there are unresolved symbols, ER instructs the prelinker to write a messages and

a list of unresolved symbols to the console. If there are unresolved references, the

prelinker sets the return code to a minimum warning level of 4. If there are

unresolved writable static references, the prelinker sets the return code to a

minimum error level of 8. If you use NOER, the prelinker does not write the list of

unresolved symbols to the console. If there are unresolved references, the return

code is not affected. If there are unresolved writable static references, prelinker sets

the return code to a minimum warning level of 4.

© Copyright IBM Corp. 1996, 2005 569

MAP | NOMAP

DEFAULT: MAP

In the z/OS UNIX System Services environment, the c89, cc, and c++ utilities

specify MAP when you use the -V flag, and NOMAP when you do not.

The MAP option specifies that the prelinker should generate a prelink listing. See

“z/OS Language Environment Prelinker Map” on page 542 for a description of the

map.

MEMORY | NOMEMORY

DEFAULT: NOMEMORY

The MEMORY option instructs the prelinker to retain in storage, for the duration of the

prelink step, those object modules that it reads and processes.

You can use the MEMORY option to increase prelinker speed. However, you may

require additional memory to use this option. If you use MEMORY and the prelink fails

because of a storage error, you must increase your storage size or use the

prelinker without the MEMORY option.

NCAL | NONCAL

DEFAULT: NONCAL

The NCAL option specifies that the prelinker should not use the automatic library call

to resolve unresolved references.

The prelinker performs an automatic library call when you specify the NONCAL option.

An automatic library call applies to a library of user routines. For NOOMVS, the data

set must be partitioned, but for OMVS the data set that the prelinker searches can be

either a PDS or an archive library. Automatic library call cannot apply to a library

that contains load modules.

Note: If you are prelinking C++ object modules, you must use the NONCAL option

and include the C++ base library in the CEE.SCEECPP data set in your SYSLIB

concatenation.

OMVS | NOOMVS

DEFAULT: NOOMVS

The OMVS option causes the prelinker to change the way that it processes INCLUDE

and LIBRARY control statements. The c89 utility turns on the OE option (which maps

to the OMVS option) by default. Object files and object libraries from c89 are passed

as primary input to the prelinker. Object files are passed via INCLUDE control

statements, and object libraries via LIBRARY control statements. Only those LIBRARY

control statements that are included in primary input are accepted by the prelinker.

Their syntax is:

LIBRARY libname

where libname is the name of a DD that defines a library. The library may be either

an archive file created through the ar utility or a partitioned data set (PDS) with

object modules as members. The prelinker uses LIBRARY control statements like

SYSLIBs, to resolve symbols through autocalls.

570 z/OS V1R7.0 XL C/C++ User’s Guide

When you specify the OMVS option, the prelinker accepts INCLUDE and LIBRARY

statements which refer to HFS files (PATH=) and data set name (DSNAME=)

allocations.

When you use the OMVS option, the order in which object files and object libraries

are passed is significant. The prelinker processes its primary input sequentially. It

searches the library that you specified on the LIBRARY statement only at the point

where it encounters the LIBRARY statement. It does not refer to that library or

processes it again. For example, if you pass your object files and object libraries as

follows:

c89 file1.o lib1.a file2.o lib2.a

The prelinker processes the INCLUDE control statement for file1.o, and

incorporates new symbol definitions and unresolved references from the object file

into the output file. The prelinker then processes the LIBRARY control statement for

lib1.a, and searches the library for currently unresolved symbols. It then processes

file2.o followed by lib2.a. If the processing of file2.o results in unresolved

symbols, the prelinker will not search the library lib1.a again, because it has

already processed it. If you have unresolved symbols that may be defined in a

library that has already been processed, you must specify a new LIBRARY statement

after your INCLUDE statement to resolve those symbols. You can do this on a c89

command line as follows:

c89 file1.o lib1.a file2.o lib1.a lib2.a

RENAME control statements are processed on output from the prelinker, after all of its

input has been processed. Because a library can be processed once only, the

SEARCH option on the RENAME control statement has no effect.

Note: The OE prelinker option maps to the OMVS prelinker option.

UPCASE | NOUPCASE

DEFAULT: NOUPCASE

The UPCASE option enforces the uppercase mapping of long names that are 8

characters or fewer and have not been explicitly mapped by another mechanism.

These long names are uppercased (with _ mapped to @), and names that begin with

IBM or CEE are changed to IB$ and CE$, respectively.

The UPCASE option is useful when calling routines that are written in languages other

than z/OS XL C/C++. For example, in COBOL and assembler, all external names

are in uppercase. So, if the names are coded in lowercase in the z/OS XL C/C++

program and you use the LONGNAME option, the names will not match by default. You

can use the UPCASE option to enforce this matching. You can also use the RENAME

control statement for this purpose.

Note: Use of this option can be dangerous, since names with a length of 8

characters or less will lose their case sensitivity. A better way to get the

linkage and names correct is through the use of the appropriate pragmas.

Linkage editor options

You can specify link-edit options in either of two ways:

v Through JCL

v Through the TSO LINK command

Appendix B. Prelinker and linkage editor options 571

For a description of link-edit options, see Chapter 5, “Binder options and control

statements,” on page 279 or the z/OS MVS Program Management: User’s Guide

and Reference manuals.

572 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix C. Diagnosing problems

This appendix tells you how to diagnose failures in the z/OS XL C/C++ compiler. If

you discover that the problem is a valid compiler problem, refer to

techsupport.services.ibm.com/guides/handbook.html for further information on

obtaining IBM service and support.

Problem checklist

The following list contains suggestions to help you rule out some common sources

of problems.

v Check that the program has not changed since you last compiled or executed it

successfully. If it has, examine the changes. If the error occurs in the changed

code and you cannot correct it, note the change that caused the error. Whenever

possible, you should retain copies of both the original and the changed source

programs.

v Be sure to correct all problems that are diagnosed by error messages, and

ensure that the messages that were previously generated have no correlation to

the current problem. Be sure to pay attention to warning messages.

v The message prefix can identify the system or subsystem that issued the

message. This can help you determine the cause of the problem. Following are

some of the prefixes and their origins.

– CCN - indicates messages from the z/OS XL C/C++ compiler, its utility

components, or the z/OS XL C/C++ IPA Link step. Information on the

messages is found in z/OS XL C/C++ Messages.

– EDC - a numeric portion between 0090 and 0096 indicates a severe error,

and the solution should be self-evident from the accompanying text. If it is not,

contact your Service Representative. If the numeric portion is in the 4000

series, this specifically relates to the prelinker and alias utility. Otherwise, the

message relates to the z/OS XL C/C++-specific messages from the run-time

environment. Information on Language Environment messages is found in

z/OS Language Environment Run-Time Messages.

– CEE - for language-independent messages from the common execution

environment (CEE) library component of z/OS Language Environment.

Information on Language Environment messages is found in z/OS Language

Environment Run-Time Messages.

– IBM, PLI, IGZ - for language-specific messages from z/OS Language

Environment. Information on Language Environment messages is found in

z/OS Language Environment Run-Time Messages.

– CLE - for messages that relate to z/OS class libraries. See z/OS XL C/C++

Messages for more information.

– BPX - messages that relate to z/OS UNIX System Services.

– FSUM - messages for the c89 and xlc utilities.

You can cross reference the prefix to the message manual in most cases by

using the table at the beginning of the z/OS MVS System Messages volumes

which accompany the z/OS operating system.

v Ensure that you are compiling the correct version of the source code. It is

possible that you have incorrectly indicated the location of your source file. For

example, check your high-level qualifiers.

v In any program failure, keep a record of the conditions and options in effect at

the time the problem occurred. The listing file shows the options. To get the

© Copyright IBM Corp. 1996, 2005 573

http://techsupport.services.ibm.com/guides/handbook.html

listing, compile with the SOURCE option. The listing only contains options that

appear after the command line is processed, hence C #pragma options do not

appear.

Information about some of the options appears as a comment at the end of the

object file. For both C or C++ compiles, there is always a comment showing the

OPTIMIZE level. For C compiles, information about some of the options (for

example, ALIAS, GONUMBER, INLINE, RENT, or UPCONV options) is included only if you

specify the option when you compile. Note any changes from the previous

compilation.

v Your installation may have received an IBM Program Temporary Fix (PTF) for the

problem. Verify that you have received all issued PTFs and have installed them,

so that your installation is at the current maintenance level. Specifying the

compiler option PHASEID when doing a compile provides information about the

maintenance level of each compiler component (phase).

v The preventive service planning (PSP) bucket, which is an online database

available to IBM customers through IBM service channels. It gives information

about product installation problems and other problems. See the z/OS Program

Directory for more details.

v Use the Debug Tool, dbx (for z/OS UNIX System Services) or some other

debugging aid to determine the statement where the program fails and possible

causes of the failure.

v If a failing application is communicating with other IBM products, make sure that

it uses the correct interface procedure as documented in z/OS XL C/C++

Programming Guide. In many cases, you can localize the failing condition by

taking out the function calls or making them no-ops.

v If your application has been developed on a different platform (such as a

microcomputer or workstation) and you try to compile and run using the z/OS XL

C/C++ compiler, the following may cause problems:

– The source code does not support the applicable following standards:

- ISO C Standard

- ISO C++ Standard

– The source code includes dependencies on the ASCII character set or uses

the long double data type in the IEEE floating-point format. You need the

ASCII compiler option to process the ASCII characters, and you need the

FLOAT(IEEE) option to process IEEE floating-point data types. Note that the

IEEE long double data types may have different sizes on a different platform.

– The source code is system dependent

v If your application was prelinked, make sure that the prelinking was successful as

indicated in Appendix A, “Prelinking and linking z/OS XL C/C++ programs,” on

page 527.

When does the error occur?

Determine when the problem is occurring (at compile time, bind time, prelink time,

link time or run time), and use the procedures in the appropriate list on the following

pages. If the problem occurs when using the z/OS Language Environment, for

prelink-time and run-time diagnosis and debugging errors you should use z/OS

Language Environment Customization and z/OS Language Environment Debugging

Guide. For bind-time and link-time diagnosis, refer to z/OS MVS Program

Management: User’s Guide and Reference.

574 z/OS V1R7.0 XL C/C++ User’s Guide

After you identify the failure, you can write a small, self-contained test case that

does not have any dependencies on third-party header files and libraries and that

recreates the problem. A test case helps you to isolate the problem and to report

problems to IBM.

To create a small test case from a large program that appears to be failing, try the

suggestions listed below, after you have either backed up or made a copy of your

original source code. Begin with the suggestion that seems most appropriate for the

problem that you are having. If the problem persists after you have tried one of the

steps below, try another in the list. Continue to break your program down until you

obtain the smallest possible segment of code that still reproduces the error. Compile

with the PPONLY option and send the expanded file as your source code. This is to

ensure that all embedded header files are included. Save this last failing test case

because you might need it if you have to contact an IBM Support Center.

Remove any code that has not been processed at the time of failure (except for

code necessary to ensure the syntactic and semantic validity of the program).

Find unreferenced variables using the IPA(XREF) option, the CHECKOUT(GEN) option,

which is for C only, or the INFO(USE) option, which is for C++ only, and remove the

unreferenced variables.

Remove all code and declarations from the body of any other functions that are not

necessary to reproduce the problem. The function should be removed if it is not

necessary.

If your program uses structure variables, try replacing them with scalar variables.

Steps for problem diagnosis using optimization levels

Before you begin: For diagnostic purposes, you should always begin by using the

simplest optimization level on your program. Once you address all problems at your

current level, progress toward the more complex levels of optimization.

Perform the following steps to progress through the various levels of optimization:

1. Begin with a non-IPA compile and link using progressively higher levels of

optimization:

v OPT(0)

v OPT(2)

v OPT(3)

If your program works successfully at OPT(0) and fails at OPT(2), try rebuilding

the program specifying the compiler option NOANSIALIAS and re-running. You

may suffer a performance penalty for this as the optimizer has to make

worst-case aliasing assumptions but it may resolve the problem.

2. Use IPA(OBJONLY) and OPT(2). This adds the IPA compile-time optimizations

and often locates the problematic source file before you invest a lot of time and

effort diagnosing problems in your code at IPA Link time.

3. Use the full IPA Compile and IPA(Level(1)) Link path. IPA Compile-time

optimizations are performed on the IPA object. IPA Link-time optimizations are

performed on the entire application.

Appendix C. Diagnosing problems 575

|
|
|
|

4. Use the full IPA Compile and IPA(Level(2)) Link path. IPA Level 2 performs

additional link-time optimizations.

You know you are done when you have exploited all optimizations offered by the

compiler.

Steps for diagnosing errors that occur at compile time

Perform the following steps to diagnose errors that occur at compile time:

1. If your program uses any of the library routines, insert an #include directive for

the appropriate header files. Also insert an #include directive for any of your

own header files. The compiler uses function prototypes, when present, to help

detect type mismatches on function calls. You can use the C CHECKOUT option to

find missing prototyping. Note that z/OS XL C++ does not allow missing

prototypes.

2. Compile your program with either the CHECKOUT (C-only) or the INFO (C++ only)

option. These options specify that the compiler is to give informational

messages that indicate possible programming errors. These options will give

messages about such things as variables that are never used, and the tracing

of #include files.

3. Compile your program with the PPONLY option to see the results of all #define

and #include statements. This option also expands all macros; a macro may

have a different result from the one you intended.

4. If your program was originally compiled using the OPT(2) compiler option, try to

recompile it using the NOOPTIMIZE option, and run it. If you can successfully

compile and run the program with NOOPTIMIZE, you have bypassed the problem,

but not solved it. This does not however, exclude the possibility of an error in

your program. You can run the program as a temporary measure, until you find

a permanent solution. If your program works successfully at OPT(0) and fails at

OPT(2), try rebuilding the program specifying the compiler option NOANSIALIAS

and re-running. You may suffer a performance penalty for this as the optimizer

has to make worst-case aliasing assumptions but it may resolve the problem.

5. If you compiled your program with either the SEQUENCE or the MARGINS option,

the error may be due to a loss of code. If you compiled the source code with

the NOSEQUENCE option, the compiler will try to parse the sequence numbers as

code, often with surprising results. This can happen in a source file that was

meant to be compiled with margins but was actually compiled without margins

or different margins (available in z/OS XL C only).

Either oversight could result in syntax errors or unexpected results when your

program runs. Try recompiling the program with either the NOSEQUENCE or the

NOMARGINS option.

6. Your source file may contain characters that are not supported by your

terminal. You have two options at this point:

a. Replace any characters that cannot be displayed in literals with the

corresponding digraph (specify the DIGRAPH compiler option), or trigraph

576 z/OS V1R7.0 XL C/C++ User’s Guide

representation, or the corresponding escape sequence. Verify that the error

did not result from using one of these incorrectly.

b. You can use the #pragma filetag support and the LOCALE option to allow

the compiler to work with non-standard code pages. See z/OS XL C/C++

Programming Guide for more details on #pragma filetag.

7. Check for duplicate static constructors and destructors in your C++ source.

Entries for constructors are created in the object and in a table. When a static

constructor is removed, the entry in the object is removed, but the table entry

stays. This will cause the static constructor and destructor to be called multiple

times. If the destructor deletes (or frees) dynamically allocated storage that is

associated with a pointer, it will tend to fail on subsequent invocations.

8. A compile-time abend can indicate an error in the compiler. An unsuccessful

compilation due to an error in the source code or an error from the operating

system should result in error messages, not an abend. However, the cause of

the compiler failure may be a syntax error or an error from the operating

system. Use the PHASEID compiler option to obtain the maintenance service

level of the compiler, as well as the name of the failing compiler component, in

the output listing.

If you still have a compilation problem, contact IBM support.

Steps for diagnosing errors that occur at IPA Link time

Perform the following steps to diagnose errors that occur at IPA Link time:

1. Ensure that the region that is used for the IPA Link step is sufficient. In a

number of instances where OPT(2) has been used with IPA Link, more than 256

MB was required.

2. Ensure that the object module which defines main() contains an IPA object.

3. Ensure that all application program parts (object modules, load modules) and

all necessary interface libraries (Language Environment object modules and

load module, SQL, CICS, etc) are made available to the IPA Link step.

4. Ensure that the IPA Compile step has processed all object modules for which

source is available.

5. Use the IPA(LINK,MAP) option to obtain an IPA Link listing.

6. Do not attempt to IPA Link unsupported file formats, such as Program Objects.

7. Verify that there are no unresolved symbol references. All user symbols must

be resolved before invoking the binder (or prelinker and linkage editor). Any

run-time symbol references generated by IPA Link must be resolved by the

subsequent step to that no unresolved symbols remain.

Appendix C. Diagnosing problems 577

If you have unresolved symbols, make sure that the definition of an object and

all its references are used consistently in both the code area and the writable

static area. Also, make sure that symbol references appear consistently in the

same case.

If you have unresolved symbols after using autocall, and you are searching for

longnamed or writable static objects, make sure that each object module library

has a current directory generated by the C370LIB utility. Without this directory,

autocall can only be done on the member name of the object module and not

on what is actually defined within the member.

8. If problems occur during IPA Link processing of DLL code, note that a symbol

can only be imported if all of the following conditions hold true:

v The symbol remains unresolved after autocall

v Only DLL references were seen for the symbol

v An IMPORT control statement was encountered for the symbol

9. A compiler ABEND during IPA Link step processing can indicate an error in the

compiler. An unsuccessful IPA Link due to an error in the program source code,

an invalid object module, an invalid load module, or an error from the operating

system should result in error messages, not an ABEND.

If the compiler ABEND during IPA Link step processing is related to an invalid

IPA object module, it will require further diagnosis:

v Save and recompile any IPA object modules created by a previous release

of OS/390 C/C++ or z/OS XL C/C++. If the problem is corrected, contact IBM

service and be prepared to supply the relevant source (PPONLY) and IPA

object modules.

v Try compiling at OPT(2), and then OPT(2) plus IPA(OBJONLY). If you are

linking with IPA Level 2, try linking with Level 1. Ensure that you have first

tried lower optimization levels.

v Perform a binary search for the invalid IPA object module. To do this,

compile one half of your source files with NOIPA (with or without OBJONLY),

and the other half with IPA. When the IPA Link succeeds, reduce the set of

NOIPA objects until you identify the compilation unit which produced the

invalid IPA objects.

Note that the object module which defines main() must always contain IPA

object. It may be necessary to break the source file with main() into multiple

pieces to determine the point of failure.

You should now have a clean IPA Link compilation. If you still have a problem with

the IPA Link step, contact IBM support.

The error occurs at bind time

For information on bind-time errors, see “Error recovery” on page 398.

The error occurs at prelink time

If the error occurs at prelink time:

v Do not prelink the object modules separately.

v Use the prelinker option MAP to obtain a full map of input data sets and symbols.

v Use the prelinker options DUP and ER to obtain a full list of duplicate and

unresolved symbols.

578 z/OS V1R7.0 XL C/C++ User’s Guide

v If you have unresolved symbols, make sure that the definition of an object and all

references to that object are used consistently in both the code area and the

writable static area. Also, make sure that symbol references appear consistently

in the same case.

v A symbol can only be imported if all of the following conditions hold true:

– The symbol remains unresolved after autocall.

– Only DLL references were seen for the symbol.

– An IMPORT control statement was encountered for the symbol.

For more information on using DLL, see “Using DLLs” on page 537, or the DLL

description in z/OS XL C/C++ Programming Guide.

v If you have unresolved symbols after using autocall, make sure that the libraries

that are searched contain only object modules and no load modules. If you are

searching for longnamed or writable static objects, make sure that each library

has a current directory member generated by the C370LIB utility. Without this

directory, autocall can only be done on the member name of the object module

and not on what is actually defined within the member.

v Only naturally reentrant code can be linked with the output of the prelinker. For

more information on reentrancy, see z/OS XL C/C++ Programming Guide.

The error occurs at link time

If the error occurs at link time:

v If you have a link-time error while working with the XL C/C++ component of z/OS

Language Environment, you can find diagnostics and debugging information in

z/OS MVS Program Management: User’s Guide and Reference .

v If you have a link-time error while working with common execution environment

(CEE) library component of z/OS Language Environment, you can find

diagnostics and debugging information for link-time errors in z/OS Language

Environment Customization and z/OS Language Environment Debugging Guide.

Steps for diagnosing errors that occur at run time

Before you begin: If you are diagnosing run-time errors when executing with z/OS

Language Environment, refer to z/OS Language Environment Customization and

z/OS Language Environment Debugging Guide.

Perform the following steps to diagnose errors that occur at run time:

1. Specify one or more of the following compiler options, in addition to the options

originally specified, to produce the most diagnostic information:

Option Information produced

AGGREGATE (C only). Aggregate layout.

ATTRIBUTE (C++ only). Cross reference listing with attribute information.

CHECKOUT (C only). Indication of possible programming errors.

DEBUG Instructs the compiler to generate debug information based on

the DWARF Version 3 debugging information format, which has

been developed by the UNIX International Programming

Languages Special Interest Group (SIG), and is an industry

standard format.

EXPMAC Macro expansions with the original source.

FLAG Specifies the minimum message severity level that you want

returned from the compiler.

GONUMBER Generates line number information that corresponds to input

source files. This applies to 31-bit compiles only.

INFO (C++ only). Indication of possible programming errors.

Appendix C. Diagnosing problems 579

INLINE Inline Summary and Detailed Call Structure Reports. (Specify

with the REPORT suboption.)

INLRPT Generates a report on status of functions that were inlined. The

OPTIMIZE option must also be specified.

LIST Listing of the pseudo-assembly listing produced by the

compiler.

OFFSET Offset addresses of functions in the listing.

PPONLY Completely expanded C or C++ source code, by activating the

preprocessor (PPONLY). The output shows, for example, all the

#include and #define directives.

SHOWINC All included text in the listing.

SOURCE Listing of the source file.

TEST For 31-bit only, used to obtain information about the contents of

variables at the point of the error, and to enable the use of

Debug Tool.

XREF Cross reference listing with reference, definition, and

modification information. If you specify ATTRIBUTE, the listing

also contains attribute information.

2. If the failure is in a statement that can be isolated, for example, an if, switch,

for, while, or do-while statement, try placing the failing statement in the

mainline code. If the problem is occurring as a result of a switch statement,

make sure that you have “breaks” on all appropriate statements.

3. If you have used the compiler options RENT or NORENT in #pragma options or

#pragma variable statements, and compiled your program at OPT(2), you can

detect a possible pointer initialization error by compiling your program at

OPT(0).

4. Check if you are running IBM C/370 Version 1 or Version 2 modules. Some

IBM C/370 Version 1 and Version 2 modules may not be compatible with z/OS

Language Environment. In some cases, old and new modules that run

separately may not run together. You may need to recompile or relink the old

modules, or change their source. z/OS XL C/C++ Compiler and Run-Time

Migration Guide for the Application Programmer documents these solutions.

5. If IPA Link processed the program:

a. Ensure that the program functions correctly when compiled NOIPA at the

same OPT level.

b. Subprograms (functions and C++ methods) which are not referenced will be

removed unless appropriate ″retain″ directives are present in the IPA Link

control file.

c. IPA Link may expose existing problems in the program:

v Ensure that any coalesced global variables which are character strings

have sufficient space to contain all characters plus an additional byte for

the terminating null.

v Ensure that there are no dependencies on the order in which data items

or subprograms (functions, C++ methods) are generated.

d. Do the following to check for a code generation problem:

580 z/OS V1R7.0 XL C/C++ User’s Guide

v Specify a different OPT level during IPA Link processing. If the program

executes correctly, contact IBM service and be prepared to supply the

relevant source (PPONLY) and object modules.

v Specify the option NOOPT during IPA Link processing. If the program

executes correctly, contact IBM service and be prepared to supply the

relevant source (PPONLY) and object modules.

If the program executes correctly at a different OPT level or NOOPT, perform a

binary search for the IPA object file which contains the function for which

code is incorrectly generated. Contact IBM service and be prepared to

supply the relevant source (PPONLY) and object modules.

e. Do the following to check for an IPA optimization problem:

v Specify NOINLINE IPA(LEVEL(1))during IPA Link processing.

If the program executes correctly, perform a binary search using INLINE

IPA(LEVEL(1)) for the IPA object file which contains the function which is

incorrectly optimized. Once you have located the IPA object file with the

problem, use ″noinline″ directives within the IPA Link control file to

determine the functions that are not correctly inlined. Contact IBM

service and be prepared to supply the relevant source (PPONLY) and

object modules and the IPA Link control file.

Functions that are inconsistently prototyped may cause problems of this

type. Verify that all interfaces are consistent and complete.

v Specify IPA(LEVEL(0)) during IPA Link processing.

If the program executes correctly, perform a binary search using INLINE

IPA(LEVEL(1)) for the IPA object file which contains the function which is

incorrectly optimized. Contact IBM service and be prepared to supply the

relevant source (PPONLY) and object modules.

v Specify IPA(LEVEL(1)) instead of IPA(LEVEL(2))

If you are linking with IPA Level 2, try linking with Level 1.

At this point, if you still encounter problems that you think are the result of the

compilation, contact IBM support.

Steps for avoiding installation problems

Perform the following steps to avoid or solve most installation problems:

1. Review the step-by-step installation procedure that is documented in the z/OS

Program Directory that is applicable to your environment.

2. Consult the PSP bucket as described on page 574.

If you still cannot solve the problem, contact your IBM Support Center.

You may need to reinstall the z/OS XL C/C++ product by using the procedure that

is documented in the z/OS Program Directory. This procedure is tested for each

product release and successfully installs the product.

Appendix C. Diagnosing problems 581

582 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix D. Cataloged procedures and REXX EXECs

This appendix describes the REXX EXECs (TSO) and cataloged procedures that

the z/OS XL C/C++ compiler provides in conjunction with z/OS Language

Environment, to call the various z/OS XL C/C++ utilities.

When you specify a data set name without enclosing it in single quotation marks (’),

your user prefix will be added to the beginning of the data set name. If you enclose

the data set name in quotation marks, it is treated as a fully qualified name.

For more information on the REXX EXECs and EXECs that z/OS Language

Environment provides, and on the cataloged procedures that do not contain a

compile step, see z/OS Language Environment Programming Guide.

For a description of CXXBIND see Chapter 9, “Binding z/OS XL C/C++ programs,” on

page 351. For a description of CXXMOD see “Prelinking and linking under TSO” on

page 552. For a list of the old syntax REXX EXECs, see “Other z/OS XL C utilities”

on page 595.

 Name Task Description

REXX EXECs for z/OS 31-bit C and C++

C370LIB Maintain an object library under TSO

CXXBIND Generate an executable module under TSO

using the binder

CXXMOD Generate an executable module under TSO

using the pre-link and link

Cataloged procedures for z/OS XL C and z/OS XL C++

EDCLIB Maintain an object library

CCNPD1B Bind C or C++ object compiled using the

IPA(PDF1) and NOXPLINK options

CCNQPD1B Bind C or C++ object compiled using the

IPA(PDF1) and LP64 options

CCNXPD1B Bind C or C++ object compiled using the

IPA(PDF1) and XPLINK options

REXX EXECs for z/OS XL C

CC Compile (new syntax - recommended approach)

Note: It applies to 31-bit only.

CDSECT Run DSECT utility

CPLINK Interactively prelink and link a C program (31-bit

only)

GENXLT Generate a translate table

ICONV Run the character conversion utility

LOCALEDEF Produce a locale object

Catalogued procedures for z/OS XL C

EDCC Compile a 31-bit program

EDCCB Compile and bind a 31-bit program

EDCCBG Compile, bind, and run a 31-bit program

EDCCL Compile and link-edit a 31-bit program

© Copyright IBM Corp. 1996, 2005 583

|

|

|

|

Name Task Description

EDCCLG Compile, link-edit, and run a 31-bit program

EDCCLIB Compile and maintain an object library

EDCI Run IPA Link step for a 31-bit program

EDCPL Prelink and link-edit a 31-bit program

EDCCPLG Compile, prelink, link-edit, and run a 31-bit

program

EDCDSECT Run the DSECT Conversion Utility

EDCGNXLT Generate a translate table

EDCICONV Run the character conversion utility

EDCLDEF Produce a locale object

EDCQB Bind a 64-bit program

EDCQBG Bind and run a 64-bit program

EDCQCB Compile and bind a 64-bit program

EDCQCBG Compile, bind, and run a 64-bit program

EDCXCB Compile, and bind an XPLINK 31-bit program

EDCXCBG Compile, bind, and run an XPLINK 31-bit

program

EDCXI Run IPA Link step for an XPLINK 31-bit or 64-bit

program

EDCXLDEF Create z/OS XL C source from a locale,

compile, and bind the XPLINK program to

produce an XPLINK locale object

REXX EXECs for z/OS XL C++

CXX Compile under TSO

Cataloged procedures for z/OS XL C++

CBCC Compile a 31-bit program

CBCCB Compile and bind a 31-bit program

CBCCBG Compile, bind and run a 31-bit program

CBCB Bind a 31-bit program

CBCBG Bind and run a 31-bit program

CBCCL Compile, prelink and link a 31-bit program

CBCCLG Compile, prelink, link and run a 31-bit program

CBCG Run a 31-bit program

CBCI Run IPA Link step for a 31-bit program

CBCL Prelink and link a 31-bit program

CBCLG Prelink, link and run a 31-bit program

CBCQB Bind a 64-bit program

CBCQBG Bind and run a 64-bit program

CBCQCB Compile and bind a 64-bit program

CBCQCBG Compile, bind, and run a 64-bit program

CBCXB Bind an XPLINK program

CBCXBG Bind and run an XPLINK program

584 z/OS V1R7.0 XL C/C++ User’s Guide

|
|

Name Task Description

CBCXCB Compile and bind an XPLINK program

CBCXCBG Compile, bind, and run an XPLINK program

CBCXG Run a 31-bit or 64-bit program

CBCXI Run IPA Link step for an XPLINK 31-bit or 64-bit

program

Tailoring cataloged procedures, REXX EXECs, and EXECs

A system programmer must modify the cataloged procedures, and REXX EXECs

before they are used.

The following data sets contain the cataloged procedures and REXX EXECs that

are to be modified:

v CBC.SCCNPRC

v CBC.SCCNUTL

v CEE.SCEEPROC

v CEE.SCEECLST

Most customization for REXX EXECs is in CBC.SCCNUTL(CCNCCUST) and

CEE.SCEECLST(CEL4CUST).

The system programmer can make the following changes to REXX EXEC

CCNCCUST by editing member CCNCCUST, which resides in data set

CBC.SCCNUTL:

v Change or add more binder options by modifying BINDOPTS parameter.

v Change the prefix for Language Environment LIBPRFX from the IBM-supplied

default to the high-level qualifier that you chose.

v Change the prefix for C/C++ Base Compiler LNGPRFX from the IBM supplied

default to the high-level qualifier that you chose.

v Change the prefix for Run–Time Library Extensions CLBPRFX from the

IBM-supplied default to the high-level qualifier that you chose.

v To use Japanese prelinker messages, change PLANG from EDCPMSGE to

EDCPMSGK.

v Change the unit parameter TUNIT if the default SYSDA does not suit your

system.

v If you need to use the old syntax of CC, change CCSYNTAX to OLD or BOTH.

We also have kept the support for the old syntax for compatibility with IBM

C/C++ for MVS/ESA V3R1M0. It is highly recommended to choose the new

syntax, especially for customers who do not have IBM C/C++ for MVS/ESA

V3R1M0 installed or who do not have any dependency on the old syntax. The

support for the old syntax will be withdrawn in the future. The new syntax allows

more flexibility. Refer to the z/OS XL C/C++ Compiler and Run-Time Migration

Guide for the Application Programmer for more information.

v (Optional) You can supply your run-time options for the compiler by modifying

variable CBCRTOPT. To use Japanese compiler messages, change

NATLANG(ENU) to NATLANG(JPN).

v (Optional) Specify C compiler options in the CBCCCOPT parameter.

v (Optional) Specify C++ compiler options in the CBCCXOPT parameter.

Appendix D. Cataloged procedures and REXX EXECs 585

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|

|

|

The members in the following table reside in the CBC.SCCNPRC data set.

 Table 43. Customization modifications

MEMBER LNGPRFX LIBPRFX CLBPRFX PLANG

CBCB U U

CBCBG U U

CBCC U U U

CBCCB U U U

CBCCBG U U U

CBCCL U U U U

CBCCLG U U U U

CBCG U U

CBCI U U U

CBCL U U U

CBCLG U U U

CBCQB U U

CBCQBG U U

CBCQCB U U U

CBCQCBG U U U

CBCXB U U

CBCXBG U U

CBCXCB U U U

CBCXCBG U U U

CBCXG U U

CBCXI U U U

CCNPD1B U U U

CCNQPD1B U U U

CCNXPD1B U U U

CXXFILT U U

EDCC U U

EDCCB U U

EDCCBG U U

EDCCL U U

EDCCLG U U

EDCCLIB U U U

EDCCPLG U U U

EDCDSECT U U

EDCI U U

EDCQB U

EDCQBG U

EDCQCB U U

EDCQCBG U U

EDCXCB U U

586 z/OS V1R7.0 XL C/C++ User’s Guide

|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 43. Customization modifications (continued)

MEMBER LNGPRFX LIBPRFX CLBPRFX PLANG

EDCXCBG U U

EDCXI U U

The IBM-supplied cataloged procedures provide many parameters to allow each

site to customize them easily. The table below describes the commonly used

parameters. Use only those parameters that apply to the cataloged procedure you

are using. For example, if you are only compiling (EDCC), do not specify any binder

parameters.

 Parameter Description

INFILE For compile procedures, the input z/OS XL C/C++ source file name,

PDS name of source files, or directory name of source files. For IPA

link procedures (for example, EDCI, and CBCI), the input IPA object.

For prelink, link and bind procedures, the input object.

If you do not specify the input data set name, you must use JCL

statements to override the appropriate SYSIN DD statement in the

cataloged procedure.

OUTFILE Output module name and file characteristics. For the cataloged

procedures ending in a link-edit, bind or go step, specify the name of

the file where the load module is to be stored. For most other

cataloged procedures, specify the name of the file where the object

module is to be stored.

If you do not specify an OUTFILE name, a temporary data set will be

generated.

CPARM Compiler options: If two contradictory options are specified, the last is

accepted and the first ignored.

STDLIBSD Enables procedures that contain a bind or prelink/link step to use

C128N (NOXPLINK version of the C++ Standard Library).

BPARM Bind utility options: If two contradictory options are specified, the last

is accepted and the first ignored.

IPARM IPA Link step options: If two contradictory options are specified, the

last is accepted and the first ignored.

PPARM Prelink utility options: If two contradictory options are specified, the

last is accepted and the first ignored.

LPARM Linkage-editor options: If two contradictory options are specified, the

last is accepted and the first ignored.

GPARM Language Environment run-time (Go step) options and parameters: If

two contradictory Language Environment run-time options are

specified, the last is accepted and the first ignored.

CRUN Compile step execution run-time parameters for the z/OS XL C/C++

compiler.

IRUN IPA Link step run-time parameters: for the z/OS XL C/C++ compiler.

OPARM Object Library Utility parameters. Required for EDCLIB.

OBJECT Object module to be added to the library. The data-set name

(DSN=...) and any applicable keyword parameters (such as, DCB,

DISP,) can be specified using this parameter. The default is

OBJECT=DUMMY. OBJECT is required for EDCLIB if the ADD function is

selected.

Appendix D. Cataloged procedures and REXX EXECs 587

|

|||||

|||||

|||||
|

||
|

Parameter Description

LIBRARY Data-set name for the library for the requested function (ADD, DEL,

MAP, or DIR). An example is LIBRARY=’FRED.LIB.OBJ’. LIBRARY is

required for EDCLIB and EDCCLIB.

MEMBER Member of the library to contain the object module. An example is

MEMBER=’MYPROG’. In z/OS XL C, MEMBER is required for EDCCLIB.

Data sets used

The following table gives a cross-reference of the data sets that each job step

requires, and a description of how the data set is used. Refer to the input/output

section of the z/OS XL C/C++ Programming Guide for more information about the

attributes that are used when opening different types of files.

 Table 44. Cross reference of data set used and job step

DD Statement COMPILE IPALINK BIND PLKED

(Prelink)

LKED

(Link-Edit)

GO

(Run)

EDCALIAS

(Object

Library)

STEPLIB1 X X X X X X

SYSCPRT X X

SYSIN X X X X X X

SYSLIB X X X X X X

SYSLIN X X X X

SYSLMOD X X

SYSMOD X

SYSMSGS X X

SYSOUT X X X X

SYSPRINT X X X X X

SYSUTx X X X (SYSUT1)

IPACNTL X

Note:

1 Optional data sets, if the compiler is in DLPA and the run-time library is in

LPA, DLPA, or ELPA. To save resources (especially in z/OS UNIX System

Services), do not unnecessarily specify data sets on the STEPLIB ddname.

Description of data sets used

The following table lists the data sets that the IBM-supplied cataloged procedures

use. It describes the uses of the data set, and the attributes that it supports. You

require compiler work data sets only if you specified NOMEM at compile time.

Notes:

1. You should check the defaults at your site for SYSOUT=*

2. The compiler does not directly deal with the SYSOUT DD statement. It uses

stderr, which in turn is associated with SYSOUT. However, this is just a default

ddname, which can be changed by specifying the MSGFILE run-time option.

Since the compiler does not directly deal with the DD statement associated with

the stderr, it cannot provide an alternate DD statement for SYSOUT.

Applications that invoke the compiler using one of the documented assembler

588 z/OS V1R7.0 XL C/C++ User’s Guide

|
|
|

|
|
|
|
|
|

macros can affect the DD statement that is associated with the stderr only by

specifying the MSGFILE run-time option in the parameter list, but not via an

alternate DD statement.

 Table 45. Data set descriptions for cataloged procedures

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

COMPILE SYSIN For a C++, C, or IPA compilation, the

input data set containing the source

program.

RECFM=VS, V, VB, VBS, F, FB, FBS,

or FS, LRECL≤32760. It can be a PDS.

COMPILE SYSLIB For a C++, C, or IPA compilation, the

data set for z/OS XL C/C++ system

header files for a source program.

SYSLIB must be a PDS or PDSE

(DSORG=PO) and RECFM=VS, V, VB,

VBS, F, FB LRECL≤32760.

RECFM cannot be mixed.

The LRECLs for F or FB RECFM must

match.

For more information on searching

system header files, see “SEARCH |

NOSEARCH” on page 176.

COMPILE SYSLIN Data set for object module.

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS.

It can be a PDS. LRECL=80

COMPILE SYSOUT Data set for displaying compiler error

messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.

(Defaults for SYSOUT=*).

COMPILE STEPLIB Data set for z/OS XL C/C++ compiler

and run-time library modules.

STEPLIB must be a PDS or PDSE

(DSORG=PO) with RECFM=U,

BLKSIZE=32760, LRECL=0.

COMPILE SYSCPRT Output data set for compiler listing.

LRECL>=137, RECFM=VB,VBA,

BLKSIZE=882 (default for SYSOUT=*)

LRECL=133, RECFM=FB,FBA,

BLKSIZE=133*n(where n is an integer

value)

COMPILE SYSUT1 Obsolete work data set.

LRECL=80 and RECFM=F or FB or FBS.

Appendix D. Cataloged procedures and REXX EXECs 589

|
|
|

|

Table 45. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

COMPILE SYSUT5, SYSUT6, SYSUT7,

SYSUT8, SYSUT10, SYSUT14,

SYSUT16, and SYSUT17

Work data sets.

LRECL=3200, RECFM=FB, and

BLKSIZE=3200*n (where n is an integer

value).

COMPILE SYSUT9 Work data set.

LRECL=137, RECFM=VB, and

BLKSIZE=137*n (where n is an integer

value) in z/OS XL C, or 882 in z/OS

XL C++.

COMPILE SYSUT10 PPONLY output data set.

72≤LRECL≤32760, RECFM=VS, V, VB,

VBS, F, FB, FBS or FS (if not

pre-allocated, V is the default). It can

be a PDS.

COMPILE SYSEVENT Events output file. Must be allocated

by the user.

COMPILE TEMPINC (C++ only) Template instantiation file. Must be a

PDS or PDSE.

72≤LRECL≤32760, RECFM=VS, V, VB,

VBS, F or FB (default is V).

COMPILE USERLIB User header files. Must be a PDS or

PDSE.

LRECL≤32760, and RECFM=VS, V, VB,

VBS, F or FB.

For more information on searching

user header files, see “SEARCH |

NOSEARCH” on page 176.

IPALINK SYSIN Data set containing object module for

the IPA Link step.

LRECL=80 and RECFM=F or FB.

IPALINK IPACNTL IPA Link control file directives.

RECFM=VS, V, VB, VBS, F, FB, FBS,

or FS, LRECL≤32760.

590 z/OS V1R7.0 XL C/C++ User’s Guide

Table 45. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

IPALINK SYSLIB IPA Link step secondary input.

SYSLIB can be a mix of two types of

libraries:

v Object module libraries. These can

be PDSs (DSORG=PO) or PDSEs,

with attributes RECFM=F or RECFM=FB,

and LRECL=80.

v Load module libraries. These must

be PDSs (DSORG=PO) with attributes

RECFM=U and BLKSIZE≤32760.

SYSLIB member libraries must be

cataloged.

IPALINK SYSLIN Data set for generated object module.

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS

IPALINK SYSOUT Data set for displaying compiler error

messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.

(Defaults for SYSOUT=*).

IPALINK STEPLIB Data set for z/OS XL C/C++

compiler/run-time library modules.

STEPLIB must be a PDS or PDSE

(DSORG=PO) with RECFM=U,

BLKSIZE≤32760.

IPALINK SYSCPRT Output data set for IPA Link step

listings.

LRECL=137, RECFM=VBA, BLKSIZE=882

(default for SYSOUT=*).

IPALINK SYSUT1 Obsolete work data set.

LRECL=80 and RECFM=F or FB or FBS.

IPALINK SYSUT5, SYSUT6, SYSUT7,

SYSUT8, SYSUT10, SYSUT14,

SYSUT16, and SYSUT17

Work data sets.

LRECL=3200, RECFM=FB, and

BLKSIZE=3200*n (where n is an integer

value).

IPALINK SYSUT9 Work data set.

LRECL=137, RECFM=VB, and

BLKSIZE=137*n (where n is an integer

value).

BIND SYSDEFSD Output from binding a DLL (an

application that exports symbols).

LRECL=80 and RECFM=F or FB or FBS

Appendix D. Cataloged procedures and REXX EXECs 591

Table 45. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

BIND SYSIN Data set for additional object for the

binder. It defaults to Dummy.

LRECL=80 and RECFM=F, FB or FBS.

BIND SYSLIB Data set for binder automatic call

libraries.

BIND SYSLIN Primary input data set for the binder

One of the following: RECFM=F or FS

RECFM=FB or FBS.

BIND SYSLMOD Output Program Object Library. PDSE

with RECFM=U and BLKSIZE<=32760.

BIND SYSPRINT Data set for listing of binder

diagnostic messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.

(Default attributes for SYSOUT=*).

PLKED STEPLIB Data set containing prelink utility

modules.

STEPLIB must be a PDS or PDSE

(DSORG=PO) and RECFM=U and

BLKSIZE≤32760.

PLKED SYSDEFSD Output from prelinking a DLL (an

application that exports symbols).

LRECL=80 and RECFM=F or FB or FBS

PLKED SYSIN Data set containing object module for

the prelink utility. This is the primary

input data set.

LRECL=80 and RECFM=F, FB or FBS.

PLKED SYSLIB Data set for automatic call libraries to

be used with the prelinker.

SYSLIB must be cataloged and

LRECL=80 and RECFM=F or FB or FBS.

DSORG=PO

PLKED SYSMOD Data set for output of the prelink

utility

LRECL=80 and RECFM=F or FB or FBS.

PLKED SYSMSGS Data set containing prelink utility

messages.

LRECL=150, RECFM=F or FB or FBS and

BLKSIZE=6150.

PLKED SYSOUT Data set for the prelinker map.

LRECL=80 and RECFM=F or FB or FBS

592 z/OS V1R7.0 XL C/C++ User’s Guide

Table 45. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

PLKED SYSPRINT Data set for listing of prelink utility

diagnostic messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.

(Default attributes for SYSOUT=*).

LKED SYSLIB Data set for z/OS XL C/C++ autocall

library.

SYSLIB must be a PDS or PDSE and

have the attributes RECFM=U and

BLKSIZE≤32760.

LKED SYSLIN Primary input data set for linkage

editor

One of the following:

v RECFM=F or FS

v RECFM=FB or FBS

LKED SYSLMOD Output load module library.

RECFM=U and BLKSIZE≤32760.

LKED SYSPRINT Data set for listings and diagnostics

produced by the linkage editor.

One of the following:

v LRECL=121, and RECFM=FA

v LRECL=121, RECFM=FBA, and

BLKSIZE=121*n (where n is less

than or equal to 40).

LKED SYSIN Data set for additional object for the

binder. It defaults to Dummy.

LRECL=80 and RECFM=F, FB or FBS.

LKED SYSUT1 Work data set.

The data set attributes will be

supplied by the linkage editor.

GO STEPLIB Run-time libraries.

STEPLIB must be one or more

PDSes or PDSEs and have the

attributes RECFM=U and BLKSIZE≤32760.

GO CEEDUMP Data set for error messages

generated by Language Environment

Dump Services. CEEDUMP must be

a sequential data set and it must be

allocated to SYSOUT, a terminal, or a

unit record device, or a data set with

the attributes RECFM=VBA, LRECL=125,

and BLKSIZE=882.

Appendix D. Cataloged procedures and REXX EXECs 593

Table 45. Data set descriptions for cataloged procedures (continued)

In Job Step DD Statement Description and Supported

Attributes (You should check the

defaults at your site for SYSOUT=*)

GO SYSPRINT Data set for listings and diagnostics

from user program.

LRECL=137, RECFM=VBA, BLKSIZE=882.

(default attributes for SYSOUT=*).

OUTILITY SYSIN Input data set for object module to be

added to the library. It can be

sequential or partitioned (with a

member name specified).

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSLIB Library for which the member name is

to be added (ADD); for which the

member name is to deleted (DEL);

which is to be listed (MAP); for which

the C370LIB-directory is to be built.

This DD must point to a single

partitioned data set. Concatenations

cannot be used. Member names must

not be specified.

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSOUT Output data set for the

C370LIB-directory map. It can be

sequential or partitioned (with a

member name specified).

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSMSGS Data set containing the input

messages.

LRECL=150, RECFM=F or FB or FBS.

OUTILITY SYSPRINT Data set diagnostics from the C370LIB

program. The default is to SYSOUT=*.

LRECL=137, RECFM=VBA, BLKSIZE=882

594 z/OS V1R7.0 XL C/C++ User’s Guide

Examples using cataloged procedures

Other z/OS XL C utilities

Starting with C/C++ for MVS/ESA V3R2, several improvements were made to the

REXX EXECs provided with the C/C++ compiler. The improved REXX EXECs use a

different syntax, which we refer to as the new syntax. The old syntax is the syntax

of the REXX EXECs prior to the C/C++ for MVS/ESA V3R2 release of the compiler.

This section describes the old syntax for these REXX EXECs, which is still

supported. In the following table we indicate the corresponding updated REXX

EXECs which will provide new features and greater flexibility.

 For a description of CXXMOD see “Prelinking and linking under TSO” on page 552.

Using the old syntax for CC

The CC command can now be invoked using a new syntax. At installation time,

your system programmer can customize the CC EXEC to accept:

//*--

//* Compile a Partitioned Data Set program with various options

//*--

//EXAMPLE1 EXEC EDCC,

// INFILE=’PATRICK.TEST.PDSSRC(CPROG1)’,

// OUTFILE=’PATRICK.TEST.OBJECT(CPROG1),DISP=SHR’,

// CPARM=’OPT NOSEQ NOMAR LIST’

//COMPILE.USERLIB DD DSNAME=PATRICK.HDR.FILES,DISP=SHR

//*

//*--

//* Compile a Sequential program with various options

//*--

//EXAMPLE2 EXEC EDCC,

// INFILE=’PATRICK.TEST.SEQSRC.CPROG2’,

// OUTFILE=’PATRICK.TEST.OBJECT(CPROG2),DISP=SHR’,

// CPARM=’OPT SOURCE XREF FLAG(E)’

//COMPILE.USERLIB DD DSNAME=PATRICK.HDR.FILES,DISP=SHR

Figure 57. Example compilation for z/OS XL C using EDCC

//*

//CCMEM EXEC CBCC, * Compile C++ source member

// INFILE=’MIKE.CPP(ONLYONE)’,

// OUTFILE=’MIKE.SAMPLE.OBJ(ONLYONE),DISP=SHR ’,

// CPARM=’OPT SOURCE SHOWINC LIST’

//*

//CCPDS EXEC CBCC, * Compile C++ source PDS

// INFILE=’MIKE.CPP’,

// OUTFILE=’MIKE.PROJECT.OBJ,DISP=SHR ’,

// CPARM=’NOOPT’

Figure 58. Example Compilation for z/OS XL C++ Using CBCC

 Name Task Description Substitute

CC (old syntax) Compile CC (new syntax)

CMOD Generate an executable module CXXMOD

Figure 59. Utilities for z/OS XL C

Appendix D. Cataloged procedures and REXX EXECs 595

v Only the old syntax (the one supported by compilers prior to C/MVS™ Version 3

Release 2)

v Only the new syntax

v Both syntaxes

The CC EXEC should be customized to accept only the new syntax. If you customize

the CC EXEC to accept only the old syntax, keep in mind that it does not support

Hierarchical File System (HFS) files. If you customize the CC EXEC to accept both

the old and new syntaxes, you must invoke it using either the old syntax or the new

syntax, but not a mixture of both. If you invoke this EXEC with the old syntax, it will

not support HFS files.

For information on the new syntax, see “Using the CC and CXX REXX EXECs” on

page 296. Refer to the z/OS Program Directory for more information about

installation and customization.

The old syntax for the CC REXX EXEC is:

�� CC source

OBJ

(

object

)

�

,

COPT

(

)

option

 �

�

�

,

USERLIB

(

)

libname

C370LIB

LISTING

(

listing

)
 ��

You can override the default compiler options by specifying the options:

v In the COPT keyword parameter

v In a #pragma options directive in your source file

v By specifying them directly on the invocation line

However, any options specified on #pragma options directives are overridden by

options specified on the invocation line.

The following rules apply when you use the old syntax for the CC REXX EXEC:

v When you are specifying a data set name, if the name is not enclosed in single

quotation mark (’), your user prefix will be added to the beginning of the data set

name. If the data set name is enclosed in single quotation marks, it will be

treated as a fully qualified name.

v When you need to use spaces, commas, single quotation marks, or parentheses

within a REXX EXEC option, the text must be placed inside a string using single

quotation marks.

v If you want to use a single quotation mark inside a string, you must use two

quotation marks in place of each quotation mark.

Example: The following example demonstrates these rules:

CC TEST.C(STOCK) COPT (’SEARCH(CLOTHES.H ’’MARK.SUPPLY.C(ORDER)’’)’)

Using CMOD

The CMOD REXX EXEC makes a call to LINK with the appropriate library. The syntax of

the CMOD REXX EXEC is:

596 z/OS V1R7.0 XL C/C++ User’s Guide

��

CMOD

OBJ

(

�

object_deck

)

�

LIB

(

libname

)

�

�
LOAD

(

libname

)

�

LOPT

(

link_option

)

 ��

OBJ Specifies the object decks that you want to link.

LIB Specifies the libraries that are to be used to resolve external

entries.

LOAD Specifies the output library in which the load module is to be stored.

LOPT Specifies the options that you want to pass to the linkage editor. All

options are passed to the TSO LINK command.

 A non-zero return code indicates that an error has occurred. For diagnostic

information, refer to Appendix C, “Diagnosing problems,” on page 573. CMOD can

also return the return code from LINK. See the appropriate document in your TSO

library for more information on LINK.

Appendix D. Cataloged procedures and REXX EXECs 597

598 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix E. Calling the Compiler from Assembler

To invoke the compiler dynamically under z/OS, you can use macro instructions

such as ATTACH, LINK, or CALL in an assembler language program. For complete

information on these macro instructions, refer to the list of manuals in z/OS

Information Roadmap.

The following is the syntax of each macro instruction:

 where:

EP Specifies the symbolic name of the z/OS XL C/C++ compiler

CCNDRVR. The control program determines the entry point at which

execution is to begin.

PARAM Specifies a list that contains the addresses of the parameters to be

passed to the z/OS XL C/C++ compiler

option_list Specifies the address of a list that contains the options that you

want to use for the compilation.

 The option list must begin on a halfword boundary. The first 2 bytes

must contain a count of the number of bytes in the remainder of the

list. You specify the options in the same manner as you would on a

JCL job, with spaces between options. If you do not want to specify

any options, the count must be zero.

 For C++ compiler invocation, you must include the characters CXX,

and a blank before the list of compiler options. The number of bytes

therefore should be 4 bytes longer.

ddname_list Specifies the address of a list that contains alternative ddnames for

the data sets that are used during the compiler processing. If you

use standard ddnames, you can omit this parameter.

 The ddname list must begin on a halfword boundary. The first two

bytes must contain a count of the number of bytes in the remainder

of the list. You must left-justify each name in the list, and pad it with

blanks to a length of 8 bytes.

�� ATTACH EP=CCNDRVR , PARAM= (

label
 �

� option_list

,

ddname_list
 �

�) , VL=1 , DCB=dcb_addr , TASKLIB=dcb_addr ��

�� LINK EP=CCNDRVR , PARAM= (

label
 option_list

,

ddname_list
 �

�) , VL=1 ��

�� CALL EP=CCNDRVR , (

label
 option_list

,

ddname_list
 �

�) , VL ��

© Copyright IBM Corp. 1996, 2005 599

The sequence of ddnames in the list is:

v SYSIN

v SYSLIN

v SYSMSGS - this ddname is no longer used, but is kept in the list for

compatibility with old assembler macros.

v SYSLIB

v USERLIB

v SYSPRINT

v SYSCPRT

v SYSPUNCH

v SYSUT1

v SYSUT4

v SYSUT5

v SYSUT6

v SYSUT7

v SYSUT8

v SYSUT9

v SYSUT10

v SYSUT14

v SYSUT15

v SYSUT16

v SYSUT17

v SYSEVENT

v TEMPINC

You can omit an alternative ddname from the list by entering binary

zeros in its 8-byte entry, or if it is at the end of the list, by

shortening the list. If you omit a ddname, the compiler will use the

appropriate default ddname from the above list.

VL or VL=1 Specifies that the sign bit is to be set to 1 in the last fullword of the

address parameter.

DCB Specifies the address of the control block for the partitioned data

set that contains the compiler.

TASKLIB Specifies the address of the DCB for the library that is to be used

as the attached tasks library.

The return code from the compiler is returned in register 15.

If you code the macro instructions incorrectly, the compiler is not invoked, and the

return code is 32. This error could be caused if the count of bytes in the alternative

ddnames list is not a multiple of 8, or is not between 0 to 128.

If you specify an alternative ddname for SYSPRINT, the stdout stream is redirected

to refer to the alternate ddname.

The following examples show the use of three assembler macros that rename

ddnames completely or partially. Following each macro is the JCL that is used to

invoke it.

600 z/OS V1R7.0 XL C/C++ User’s Guide

Example of using the Assembler ATTACH macro (CCNUAAP)

* *

* This assembler routine demonstrates DD Name renaming *

* (Dynamic compilation) using the Assembler ATTACH macro. *

* *

* In this specific scenario all the DDNAMES are renamed. *

* *

* The TASKLIB option of the ATTACH macro is used *

* to specify the steplib for the ATTACHed command (ie. the compiler) *

* *

* The Compiler and Library should be specified on the DD *

* referred to in the DCB for the TASKLIB if one or both *

* are not already defined in LPA. The compiler and library do not *

* need to be part of the steplib concatenation. *

* *

ATTACH CSECT

 STM 14,12,12(13)

 BALR 3,0

 USING *,3

 LR 12,15

 ST 13,SAVE+4

 LA 15,SAVE

 ST 15,8(,13)

 LR 13,15

*

* Invoke the compiler using ATTACH macro

*

 OPEN (COMPILER)

 ATTACH EP=CCNDRVR,PARAM=(OPTIONS,DDNAMES),VL=1,DCB=COMPILER, X

 ECB=ECBADDR,TASKLIB=COMPILER

 ST 1,TCBADDR

 WAIT 1,ECB=ECBADDR

 DETACH TCBADDR

 CLOSE (COMPILER)

 L 13,4(,13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

*

* Constant and save area

*

 SAVE DC 18F’0’

ECBADDR DC F’0’

TCBADDR DC F’0’

OPTIONS DC H’12’,C’SOURCE EVENT’

Figure 60. Using the assembler ATTACH Macro (Part 1 of 2)

Appendix E. Calling the Compiler from Assembler 601

* For C++, substitute the above line with

* OPTIONS DC H’10’,C’CXX SOURCE’

DDNAMES DC H’152’

 DC CL8’NEWIN’

 DC CL8’NEWLIN’

 DC CL8’DUMMY’ PLACEHOLDER - NO LONGER USED

 DC CL8’NEWLIB’

 DC CL8’NEWRLIB’

 DC CL8’NEWPRINT’

 DC CL8’NEWCPRT’

 DC CL8’NEWPUNCH’

 DC CL8’NEWUT1’

 DC CL8’NEWUT4’

 DC CL8’NEWUT5’

 DC CL8’NEWUT6’

 DC CL8’NEWUT7’

 DC CL8’NEWUT8’

 DC CL8’NEWUT9’

 DC CL8’NEWUT10’

 DC CL8’NEWUT14’

 DC CL8’NEWUT15’

 DC CL8’NEWEVENT’

COMPILER DCB DDNAME=MYCOMP,DSORG=PO,MACRF=R

 END

Figure 60. Using the assembler ATTACH Macro (Part 2 of 2)

602 z/OS V1R7.0 XL C/C++ User’s Guide

Example of JCL for the Assembler ATTACH macro (CCNUAAQ)

 Note that the sharing of resources between attached programs is not supported.

//*---

//* Standard DDname Renaming (ASM ATTACH from driver program)

//* compiles MYID.MYPROG.SOURCE(HELLO)

//* and places the object in MYID.MYPROG.OBJECT(HELLO)

//*

//* User header files come from MYID.MYHDR.FILES

//* using MYCOMP as the compile time steplib.

//*

//* Compilation is controlled by the assembler module named

//* CCNUAAP which is stored in MYID.ATTACHDD.LOAD

//*

//* This example uses the Language Environment Library

//*---

//G001001B EXEC PGM=CCNUAAP

//STEPLIB DD DSN=MYID.ATTACHDD.LOAD,DISP=SHR

//MYCOMP DD DSN=CBC.SCCNCMP,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR

//NEWLIB DD DSN=CEE.SCEEH.H,DISP=SHR

//NEWLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR

//NEWPRINT DD SYSOUT=*

//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)

//NEWPUNCH DD DSN=...

//SYSTERM DD DUMMY

//NEWUT1 DD DSN=...

//NEWUT4 DD DSN=...

//NEWUT5 DD DSN=...

//NEWUT6 DD DSN=...

//NEWUT7 DD DSN=...

//NEWUT8 DD DSN=...

//NEWUT9 DD DSN=...

//NEWUT10 DD SYSOUT=*

//NEWUT14 DD DSN=...

//NEWUT15 DD DSN=...

//NEWEVENT DD DSN=...

//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

//*--

Figure 61. JCL for the assembler ATTACH macro

Appendix E. Calling the Compiler from Assembler 603

Example of using the Assembler LINK macro (CCNUAAR)

* *

* This assembler routine demonstrates DD Name renaming *

* (Dynamic compilation) using the assembler LINK macro. *

* *

* In this specific scenario a subset of all the DDNAMES are *

* renamed. The DDNAMES you do not want to rename are set to zero. *

* *

* The Compiler and the Library should be in the LPA, or should *

* be specified on the STEPLIB DD in your JCL *

* *

*

LINK CSECT

 STM 14,12,12(13)

 BALR 3,0

 USING *,3

 LR 12,15

 ST 13,SAVE+4

 LA 15,SAVE

 ST 15,8(,13)

 LR 13,15

*

* Invoke the compiler using LINK macro

*

 LINK EP=CCNDRVR,PARAM=(OPTIONS,DDNAMES),VL=1

 L 13,4(,13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

Figure 62. Using the assembler LINK macro (Part 1 of 2)

604 z/OS V1R7.0 XL C/C++ User’s Guide

*

* Constant and save area

*

* This macro will compile for the Language Environment Library

*

SAVE DC 18F’0’

OPTIONS DC H’8’,C’SO EVENT’

* For C++, substitute the above line with

* OPTIONS DC H’6’,C’CXX SO’

DDNAMES DC H’152’

 DC CL8’NEWIN’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC CL8’NEWRLIB’

 DC XL8’0000000000000000’

 DC CL8’NEWCPRT’

 DC XL8’0000000000000000’

 DC 2XL8’0000000000000000’

 DC 2XL8’0000000000000000’

 DC 2XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 DC XL8’0000000000000000’

 END

Figure 62. Using the assembler LINK macro (Part 2 of 2)

Appendix E. Calling the Compiler from Assembler 605

Example of JCL for the Assembler LINK macro (CCNUAAS)

//*---

//* Standard DDname Renaming using the assembler LINK macro

//* compiles MYID.MYPROG.SOURCE(HELLO)

//* and places the object in MYID.MYPROG.OBJECT(HELLO)

//*

//* User header files come from MYID.MYHDR.FILES

//*

//* Compilation is controlled by the assembler module named

//* CCNUAAR that is stored in MYID.LINKDD.LOAD

//*

//* This JCL uses the Language Environment Library.

//*

//*---

//G001003A EXEC PGM=CCNUAAR

//STEPLIB DD DSN=CBC.SCCNCMP,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=MYID.LINKDD.LOAD,DISP=SHR

//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR

//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR

//SYSLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR

//SYSPRINT DD SYSOUT=*

//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)

//SYSPUNCH DD SYSOUT=*

//SYSTERM DD DUMMY

//SYSUT1 DD DSN=...

//SYSUT5 DD DSN=...

//SYSUT6 DD DSN=...

//SYSUT7 DD DSN=...

//SYSUT8 DD DSN=...

//SYSUT9 DD DSN=...

//SYSUT10 DD SYSOUT=*

//SYSUT14 DD DSN=...

//SYSEVENT DD DSN=...

//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

//*--

Figure 63. JCL for the assembler LINK macro

606 z/OS V1R7.0 XL C/C++ User’s Guide

Example of using the Assembler CALL macro (CCNUAAT)

* *

* This assembler routine demonstrates DD Name renaming *

* (Dynamic compilation) using the Assembler CALL macro. *

* *

* In this specific scenario, a subset of all the DDNAMES are *

* renamed. This renaming is accomplished by shortening *

* the list of ddnames. *

* *

* The Compiler and the Library should be either be in the LPA or *

* be specified on the STEPLIB DD in your JCL *

* *

*

LINK CSECT

 STM 14,12,12(13)

 USING LINK,15

 LA 3,MODE31

 O 3,=X’80000000’

 DC X’0B03’

MODE31 DS 0H

 USING *,3

 LR 12,15

 ST 13,SAVE+4

 LA 15,SAVE

 ST 15,8(,13)

 LR 13,15

*

* Invoke the compiler using CALL macro

*

 LOAD EP=CCNDRVR

 LR 15,0

 CALL (15),(OPTIONS,DDNAMES),VL

 L 13,4(,13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

Figure 64. Using the assembler CALL macro (Part 1 of 2)

Appendix E. Calling the Compiler from Assembler 607

*

* Constant and save area

*

SAVE DC 18F’0’

OPTIONS DC H’2’,C’SO’

* For C++, substitute the above line with

* OPTIONS DC H’6’,C’CXX SO’

DDNAMES DC H’96’

 DC CL8’NEWIN’

 DC CL8’NEWLIN’

 DC CL8’DUMMY’ PLACEHOLDER - NO LONGER USED

 DC CL8’NEWLIB’

 DC CL8’NEWRLIB’

 DC CL8’NEWPRINT’

 DC CL8’NEWCPRT’

 DC CL8’NEWPUNCH’

 DC CL8’NEWUT1’

 DC CL8’NEWUT4’

 DC CL8’NEWUT5’

 DC CL8’NEWUT6’

 END

Figure 64. Using the assembler CALL macro (Part 2 of 2)

608 z/OS V1R7.0 XL C/C++ User’s Guide

Example of JCL for Assembler CALL macro (CCNUAAU)

//*---

//* Standard DDname Renaming using the assembler CALL macro

//* compiles MYID.MYPROG.SOURCE(HELLO)

//* and places the object in MYID.MYPROG.OBJECT(HELLO)

//*

//* User Header files come from MYID.MYHDR.FILES

//*

//* Compilation is controlled by the assembler module named

//* CCNUAAT which is stored in MYID.CALLDD.LOAD

//*

//* This JCL uses the Language Environment Library.

//*

//*---

//G001004C EXEC PGM=CCNUAAT

//STEPLIB DD DSN=CBC.SCCNCMP,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=MYID.CALLDD.LOAD,DISP=SHR

//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR

//NEWLIB DD DSN=CEE.SCEEH.H,DISP=SHR

//NEWLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR

//NEWPRINT DD SYSOUT=*

//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)

//NEWPUNCH DD DSN=...

//SYSTERM DD DUMMY

//NEWUT1 DD DSN=...

//NEWUT4 DD DSN=...

//NEWUT5 DD DSN=...

//NEWUT6 DD DSN=...

//SYSUT7 DD DSN=...

//SYSUT8 DD DSN=...

//SYSUT9 DD DSN=...

//SYSUT10 DD SYSOUT=*

//SYSUT14 DD DSN=...

//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

//*--

Figure 65. JCL for the assembler CALL macro

Appendix E. Calling the Compiler from Assembler 609

610 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix F. Layout of the Events file

This appendix specifies the layout of the SYSEVENT file. SYSEVENT is an events

file that contains error information and source file statistics. The SYSEVENT file is

not the same as the binder Input Event Log. Use the EVENTS compiler option to

produce the SYSEVENT file. For more information on the EVENTS compiler option,

see “EVENTS | NOEVENTS” on page 96.

In the following example, the source file simple.c is compiled with the

EVENTS(USERID.LIST(EGEVENT)) compiler option. The file err.h is a header file that

is included in simple.c. Figure 68 is the event file that is generated when simple.c

is compiled.

There are three different record types generated in the event file:

v FILEID

v FILEEND

v ERROR

Description of the Fileid field

The following is an example of the FILEID field from the sample SYSEVENT file

that is shown in Figure 68. Table 46 on page 612 describes the FILEID identifiers.

FILEID 0 1 0 10 ./simple.c

 A B C D E

 1 #include "./err.h"

 2 main() {

 3 add some error messages;

 4 return(0);

 5 here and there;

 6 }

Figure 66. simple.c

1 add some;

2 errors in the header file;

Figure 67. err.h

------- start simple.events ------

 FILEID 0 1 0 10 ./simple.c

 FILEID 0 2 1 9 ././err.h

 ERROR 0 2 0 0 1 1 0 0 CCN1AAA E 12 48 Definition of function add require

 FILEEND 0 2 2

 ERROR 0 2 0 0 1 5 0 0 CCN1BBB E 12 35 Syntax error: possible missing ’{’

 ERROR 0 1 0 0 3 3 0 0 CCN1CCC E 12 26 Undeclared identifier add.

 ERROR 0 1 0 0 5 8 0 0 CCN1DDD E 12 42 Syntax error: possible missing ’;’

 ERROR 0 1 0 0 5 3 0 0 CCN1EEE E 12 27 Undeclared identifier here.

 FILEEND 0 1 6

------- end simple.events ------

Figure 68. Sample SYSEVENT file

© Copyright IBM Corp. 1996, 2005 611

Table 46. Explanation of the FILEID field layout

Column Identifier Description

A Revision Revision number of the event

record.

B File number Increments starting with 1 for

the primary file.

C Line number The line number of the #

include directive. For the

primary source file, this value

is 0.

D File name length Length of file or data set.

E File name String containing file/data set

name.

Description of the Filend field

The following is an example of the FILEEND field from the sample SYSEVENT file

that is shown in Figure 68 on page 611. Table 47 describes the FILEEND identifiers.

FILEEND 0 1 6

 A B C

 Table 47. Explanation of the FILEEND field layout

Column Identifier Description

A Revision Revision number of the event

record

B File number File number that has been

processed to end of file

C Expansion Total number of lines in the

file

Description of the Error field

The following is an example of the ERROR field from the sample SYSEVENT file

that is shown in Figure 68 on page 611. Table 48 describes the ERROR identifiers.

ERROR 0 1 0 0 3 3 0 0 CBCMMMM E 12 26 Undeclared identifier add.

 A B C D E F G H I J K L M

 Table 48. Explanation of the ERROR field layout

Column Identifier Description

A Revision Revision number of the event

record.

B File number Increments starting with 1 for

the primary file.

C Reserved Do not build a dependency

on this identifier. It is

reserved for future use.

D Reserved Do not build a dependency

on this identifier. It is

reserved for future use.

612 z/OS V1R7.0 XL C/C++ User’s Guide

Table 48. Explanation of the ERROR field layout (continued)

Column Identifier Description

E Starting line number The source line number for

which the message was

issued. A value of 0 indicates

the message was not

associated with a line

number.

F Starting column number The column number or

position within the source line

for which the message was

issued. A value of 0 indicates

the message was not

associated with a line

number.

G Reserved Do not build a dependency

on this identifier. It is

reserved for future use.

H Reserved Do not build a dependency

on this identifier. It is

reserved for future use.

I Message identifier String Containing the

message identifier.

J Message severity character I=Informational

W=Warning

E=Error

S=Severe

U=Unrecoverable

K Message severity number Return code associated with

the message.

L Message length Length of message text.

M Message text String containing message

text.

Appendix F. Layout of the Events file 613

614 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix G. Customizing default options for z/OS XL C/C++

compiler

System programmers can customize the default options for the z/OS XL C/C++

compiler by modifying USERMODs and jobs. The USERMOD can then be applied

by submitting the jobs, which are also provided. See the following table for

information on the USERMODs and jobs that can be modified.

 Table 49. z/OS XL C/C++ compiler USERMODs and jobs

Element name USERMODS Resides in Jobs to submit

z/OS XL C compiler CCNEOPT CBC.SCCNJCL(CCNJOPT) CBC.SCCNJCL(CCNJMOD)

z/OS XL C++ compiler CCNEOPX CBC.SCCNJCL(CCNJOPX) CBC.SCCNJCL(CCNJMOX)

For the z/OS XL C compiler, the USERMOD CCNEOPT modifies the CCNEO00C

assembler source file, which defines the z/OS XL C compiler options. It also defines

the system include file SEARCH path, which includes Language Environment

header files.

For the z/OS XL C++ compiler, the USERMOD CCNEOPX modifies the CCNEO00X

assembler source file, which defines the z/OS XL C++ compiler options. It also

defines the system include file SEARCH path, which includes Language

Environment header files.

If you plan to apply these USERMODs and have used a different prefix than the

one supplied by IBM for the language environment and the Run-Time Library

Extensions, please change the value of CEE and CBC to your chosen prefix on the

SEARCH statements. Do not accept your USERMOD into the distribution library, as

you might want to remove your USERMOD if you find it does not suit the needs of

the programmers at your site.

© Copyright IBM Corp. 1996, 2005 615

|

|

|

|
|
|
|

||

||||

||||

||||
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

616 z/OS V1R7.0 XL C/C++ User’s Guide

Appendix H. Accessibility

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2005 617

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

618 z/OS V1R7.0 XL C/C++ User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2005 619

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming interface information

This publication documents intended Programming Interfaces that allow the

customer to write z/OS or z/OS.e XL C/C++ programs.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries or both:

 AIX BookManager BookMaster

C/370 C/MVS CICS

CICS/ESA DB2 DB2 Universal Database

DRDA eServer GDDM

Hiperspace IBM IMS

IMS/ESA Language Environment MVS

MVS/ESA Open Class OS/2

620 z/OS V1R7.0 XL C/C++ User’s Guide

OS/390 OS/400 QMF

S/370 S/390 VisualAge

VSE/ESA z/OS z/Architecture

zSeries z/VM

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States and/or other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Standards

The following standards are supported in combination with the z/OS Language

Environment:

v The C language is consistent with Programming languages - C (ISO/IEC

9899:1999). For more information on ISO, visit their web site at: www.iso.org

v The C++ language is consistent with Programming languages - C++ (ISO/IEC

14882:2003(E)) and Programming languages - C++ (ISO/IEC 14882:1998).

The following standards are supported in combination with the z/OS Language

Environment and z/OS UNIX System Services:

v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 1: System Application Program

Interface (API) [C language], copyright 1990 by the Institute of Electrical and

Electronic Engineers, Inc. For more information on IEEE, visit their web site at:

www.ieee.org

v A subset of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information

Technology—Portable Operating System Interface (POSIX), Part 1: System

Application Program Interface (API) [C Language], copyright 1992 by the Institute

of Electrical and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990

by the Institute of Electrical and Electronic Engineers, Inc.

v A subset of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information

Technology—Portable Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 2: Threads Extension [C

language], copyright 1990 by the Institute of Electrical and Electronic Engineers,

Inc.

v A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic

Engineers, Inc.

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,

copyright 1994 by The Open Group

Notices 621

|
|

|
|

http://www.iso.org
http://www.ieee.org

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The

Open Group

v X/Open Specification Programming Languages, Issue 3, Common Usage C,

copyright 1988, 1989, and 1992 by The Open Group

v United States Government’s Federal Information Processing Standard (FIPS)

publication for the programming language C, FIPS-160, issued by National

Institute of Standards and Technology, 1991

622 z/OS V1R7.0 XL C/C++ User’s Guide

Glossary

This glossary defines technical terms and

abbreviations that are used in z/OS XL C/C++

documentation. If you do not find the term you are

looking for, refer to the index of the appropriate

z/OS XL C/C++ manual or view IBM Glossary of

Computing Terms, located at:

www.ibm.com/ibm/terminology/goc/gocmain.htm.

This glossary includes terms and definitions from:

v American National Standard Dictionary for

Information Systems, ANSI/ISO X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI/ISO). Copies may be

purchased from the American National

Standards Institute, 11 West 42nd Street, New

York, New York 10036. Definitions are indicated

by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699.

These definitions are indicated by the registered

trademark IBM after the definition.

v X/Open CAE Specification, Commands and

Utilities, Issue 4. July, 1992. These definitions

are indicated by the symbol X/Open after the

definition.

v ISO/IEC 9945-1:1990/IEEE POSIX

1003.1-1990. These definitions are indicated by

the symbol ISO.1 after the definition.

v The Information Technology Vocabulary,

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of this

vocabulary are identified by the symbol

ISO-JTC1 after the definition; definitions taken

from draft international standards, committee

drafts, and working papers being developed by

ISO/IEC JTC1/SC1 are identified by the symbol

ISO Draft after the definition, indicating that final

agreement has not yet been reached among

the participating National Bodies of SC1.

A

abstract class. (1) A class with at least one pure

virtual function that is used as a base class for other

classes. The abstract class represents a concept;

classes derived from it represent implementations of the

concept. You cannot create a direct object of an

abstract class, but you can create references and

pointers to an abstract class and set them to refer to

objects of classes derived from the abstract class. See

also base class. (2) A class that allows polymorphism.

There can be no objects of an abstract class; they are

only used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that

includes a structure for storing data and operations that

can be performed on that data. Common abstract data

types include sets, trees, and heaps.

abstraction (data). A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

access. An attribute that determines whether or not a

class member is accessible in an expression or

declaration.

access declaration. A declaration used to restore

access to members of a base class.

access mode. (1) A technique that is used to obtain a

particular logical record from, or to place a particular

logical record into, a file assigned to a mass storage

device. ANSI/ISO. (2) The manner in which files are

referred to by a computer. Access can be sequential

(records are referred to one after another in the order in

which they appear on the file), access can be random

(the individual records can be referred to in a

nonsequential manner), or access can be dynamic

(records can be accessed sequentially or randomly,

depending on the form of the input/output request). IBM.

(3) A particular form of access permitted to a file.

X/Open.

access resolution. The process by which the

accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,

private, and protected, used to define the access to a

member.

ACU (abstract code unit). A measurement used by

the z/OS XL C/C++ compiler for judging the size of a

function. The number of ACUs that comprise a function

is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available

to a computer program. ANSI/ISO. (2) The complete

range of addresses that are available to a programmer.

See also virtual address space. (3) The area of virtual

storage available for a particular job. (4) The memory

locations that can be referenced by a process. X/Open.

ISO.1.

© Copyright IBM Corp. 1996, 2005 623

http://www.ibm.com/ibm/terminology/goc/gocmain.htm

aggregate. (1) An array or a structure. (2) A

compile-time option to show the layout of a structure or

union in the listing. (3) In programming languages, a

structured collection of data items that form a data type.

ISO-JTC1. (4) In C++, an array or a class with no

user-declared constructors, no private or protected

non-static data members, no base classes, and no

virtual functions.

alert. (1) A message sent to a management services

focal point in a network to identify a problem or an

impending problem. IBM. (2) To cause the user's

terminal to give some audible or visual indication that an

error or some other event has occurred. When the

standard output is directed to a terminal device, the

method for alerting the terminal user is unspecified.

When the standard output is not directed to a terminal

device, the alert is accomplished by writing the alert

character to standard output (unless the utility

description indicates that the use of standard output

produces undefined results in this case). X/Open.

alert character. A character that in the output stream

should cause a terminal to alert its user via a visual or

audible notification. The alert character is the character

designated by a '\a' in the C and C++ languages. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the alert function. X/Open.

 This character is named <alert> in the portable

character set.

alias. (1) An alternate label; for example, a label and

one or more aliases may be used to refer to the same

data element or point in a computer program. ANSI/ISO.

(2) An alternate name for a member of a partitioned

data set. IBM. (3) An alternate name used for a

network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of

underscores, digits, and alphabetics from the portable

file name character set, and any of the following

characters: ! % , @. Implementations may allow other

characters within alias names as an extension. X/Open.

(2) An alternate name. IBM. (3) A name that is defined

in one network to represent a logical unit name in

another interconnected network. The alias name does

not have to be the same as the real name; if these

names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain

machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that

permits a substitute code point to be used. For

example, the left brace ({) can be represented by X'B0'

and also by X'C0'.

American National Standard Code for Information

Interchange (ASCII). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), that is used for

information interchange among data processing

systems, data communication systems, and associated

equipment. The ASCII set consists of control characters

and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code

(characters 128–255).

American National Standards Institute (ANSI/ISO).

An organization consisting of producers, consumers,

and general interest groups, that establishes the

procedures by which accredited organizations create

and maintain voluntary industry standards in the United

States. ANSI/ISO.

AMODE (addressing mode). In z/OS, a program

attribute that refers to the address length that a program

is prepared to handle upon entry. In z/OS, addresses

may be 24, 31, or 64 bits in length. IBM.

angle brackets. The characters < (left angle bracket)

and > (right angle bracket). When used in the phrase

“enclosed in angle brackets”, the symbol < immediately

precedes the object to be enclosed, and > immediately

follows it. When describing these characters in the

portable character set, the names <less-than-sign> and

<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a

structure or class and does not have a name. It must

not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional

interface supplied by the operating system or by a

separately orderable licensed program that allows an

application program written in a high-level language to

use specific data or functions of the operating system or

the licensed program. IBM.

application. (1) The use to which an information

processing system is put; for example, a payroll

application, an airline reservation application, a network

application. IBM. (2) A collection of software

components used to perform specific types of

user-oriented work on a computer. IBM.

application generator. An application development

tool that creates applications, application components

(panels, data, databases, logic, interfaces to system

services), or complete application systems from design

specifications.

application program. A program written for or by a

user that applies to the user's work, such as a program

that does inventory control or payroll. IBM.

archive libraries. The archive library file, when

created for application program object files, has a

special symbol table for members that are object files.

624 z/OS V1R7.0 XL C/C++ User’s Guide

argument. (1) A parameter passed between a calling

program and a called program. IBM. (2) In a function

call, an expression that represents a value that the

calling function passes to the function specified in the

call. (3) In the shell, a parameter passed to a utility as

the equivalent of a single string in the argv array

created by one of the exec functions. An argument is

one of the options, option-arguments, or operands

following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) A bit field, or an integral,

floating-point, or packed decimal (IBM extension) object.

(2) A real object or objects having the type float, double,

or long double.

array. In programming languages, an aggregate that

consists of data objects with identical attributes, each of

which may be uniquely referenced by subscripting.

ISO-JTC1.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for

Information Interchange.

Assembler H. An IBM licensed program. Translates

symbolic assembler language into binary machine

language.

assembler language. A source language that includes

symbolic language statements in which there is a

one-to-one correspondence with the instruction formats

and data formats of the computer. IBM.

assembler user exit. In the z/OS Language

Environment a routine to tailor the characteristics of an

enclave prior to its establishment.

assignment expression. An expression that assigns

the value of the right operand expression to the left

operand variable and has as its value the value of the

right operand. IBM.

atexit list. A list of actions specified in the z/OS XL

C/C++ atexit() function that occur at normal program

termination.

auto storage class specifier. A specifier that enables

the programmer to define a variable with automatic

storage; its scope restricted to the current block.

automatic call library. Contains modules that are

used as secondary input to the binder to resolve

external symbols left undefined after all the primary

input has been processed.

 The automatic call library can contain:

v Object modules, with or without binder control

statements

v Load modules

v z/OS XL C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control

sections are processed by the binder or loader to

resolve references to members of partitioned data sets.

IBM.

automatic storage. Storage that is allocated on entry

to a routine or block and is freed on the subsequent

return. Sometimes referred to as stack storage or

dynamic storage.

B

background process. (1) A process that does not

require operator intervention but can be run by the

computer while the workstation is used to do other

work. IBM. (2) A mode of program execution in which

the shell does not wait for program completion before

prompting the user for another command. IBM. (3) A

process that is a member of a background process

group. X/Open. ISO.1.

background process group. Any process group,

other than a foreground process group, that is a

member of a session that has established a connection

with a controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named

<backslash> in the portable character set.

base class. A class from which other classes are

derived. A base class may itself be derived from another

base class. See also abstract class.

based on. The use of existing classes for

implementing new classes.

binary expression. An expression containing two

operands and one operator.

binary stream. (1) An ordered sequence of

untranslated characters. (2) A sequence of characters

that corresponds on a one-to-one basis with the

characters in the file. No character translation is

performed on binary streams. IBM.

bind. (1) To combine one or more control sections or

program modules into a single program module,

resolving references between them. (2) To assign virtual

storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the

output of language translators and compilers into an

executable program (load module or program object). It

replaces the linkage editor and batch loader in the

MVS/ESA, OS/390, or z/OS operating system.

bit field. A member of a structure or union that

contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the

value of an object at the bit level.

Glossary 625

blank character. (1) A graphic representation of the

space character. ANSI/ISO. (2) A character that

represents an empty position in a graphic character

string. ISO Draft. (3) One of the characters that belong

to the blank character class as defined via the

LC_CTYPE category in the current locale. In the POSIX

locale, a blank character is either a tab or a space

character. X/Open.

block. (1) In programming languages, a compound

statement that coincides with the scope of at least one

of the declarations contained within it. A block may also

specify storage allocation or segment programs for

other purposes. ISO-JTC1. (2) A string of data elements

recorded or transmitted as a unit. The elements may be

characters, words or physical records. ISO Draft. (3)

The unit of data transmitted to and from a device. Each

block contains one record, part of a record, or several

records.

block statement. In the C or C++ languages, a group

of data definitions, declarations, and statements

appearing between a left brace and a right brace that

are processed as a unit. The block statement is

considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of

a fixed-length field, such as a halfword or doubleword,

on a byte-level boundary for that unit of information.

IBM.

braces. The characters { (left brace) and } (right

brace), also known as curly braces. When used in the

phrase “enclosed in (curly) braces” the symbol {

immediately precedes the object to be enclosed, and }

immediately follows it. When describing these

characters in the portable character set, the names

<left-brace> and <right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right

bracket), also known as square brackets. When used in

the phrase enclosed in (square) brackets the symbol [

immediately precedes the object to be enclosed, and]

immediately follows it. When describing these

characters in the portable character set, the names

<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that

contains the keyword “break” and a semicolon. IBM. It is

used to end an iterative or a switch statement by exiting

from it at any point other than the logical end. Control is

passed to the first statement after the iteration or switch

statement.

built-in. (1) A function that the compiler will

automatically inline instead of making the function call,

unless the programmer specifies not to inline. (2) In

programming languages, pertaining to a language

object that is declared by the definition of the

programming language; for example, the built-in function

SIN in PL/I, the predefined data type INTEGER in

FORTRAN. ISO-JTC1. Synonymous with predefined.

IBM.

byte-oriented stream. See orientation of a stream.

C

C library. A system library that contains common C

language subroutines for file access, string operators,

character operations, memory allocation, and other

functions. IBM.

C or C++ language statement. A C or C++ language

statement contains zero or more expressions. A block

statement begins with a { (left brace) symbol, ends with

a } (right brace) symbol, and contains any number of

statements.

 All C or C++ language statements, except block

statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an

application program from the z/OS shell. It invokes the

compiler using host environment variables.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common

C++ language subroutines for file access, memory

allocation, and other functions.

callable services. A set of services that can be

invoked by z/OS Language Environment-conforming

high level languages using the conventional z/OS

Language Environment-defined call interface, and

usable by all programs sharing the z/OS Language

Environment conventions.

 Use of these services helps to decrease an application's

dependence on the specific form and content of the

services delivered by any single operating system.

call chain. A trace of all active functions.

caller. A function that calls another function.

cancelability point. A specific point within the current

thread that is enabled to solicit cancel requests. This is

accomplished using the pthread_testintr() function.

carriage-return character. A character that in the

output stream indicates that printing should start at the

beginning of the same physical line in which the

carriage-return character occurred. The carriage-return

is the character designated by '\r' in the C and C++

languages. It is unspecified whether this character is the

exact sequence transmitted to an output device by the

system to accomplish the movement to the beginning of

the line. X/Open.

case clause. In a C or C++ switch statement, a CASE

label followed by any number of statements.

626 z/OS V1R7.0 XL C/C++ User’s Guide

case label. The word case followed by a constant

integral expression and a colon. When the selector

evaluates the value of the constant expression, the

statements following the case label are processed.

cast expression. An expression that converts or

reinterprets its operand.

cast operator. The cast operator is used for explicit

type conversions.

cataloged procedures. A set of control statements

placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that

receives control when an exception matching its

argument is thrown.

char specifier. A char is a built-in data type. In the

C++ language, char, signed char, and unsigned char

are all distinct data types.

character. (1) A letter, digit, or other symbol that is

used as part of the organization, control, or

representation of data. A character is often in the form

of a spatial arrangement of adjacent or connected

strokes. ANSI/ISO. (2) A sequence of one or more bytes

representing a single graphic symbol or control code.

This term corresponds to the ISO C standard term

multibyte character (multibyte character), where a

single-byte character is a special case of the multibyte

character. Unlike the usage in the ISO C standard,

character here has no necessary relationship with

storage space, and byte is used when storage space is

discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing

an attribute associated with the name of the class. The

classes and the characters that they contain are

dependent on the value of the LC_CTYPE category in

the current locale. X/Open.

character constant. A string of any of the characters

that can be represented, usually enclosed in quotes.

character set. (1) A finite set of different characters

that is complete for a given purpose; for example, the

character set in ISO Standard 646, 7-bit Coded

Character Set for Information Processing Interchange.

ISO Draft. (2) All the valid characters for a programming

language or for a computer system. IBM. (3) A group of

characters used for a specific reason; for example, the

set of characters a printer can print. IBM. (4) See also

portable character set.

character special file. (1) A special file that provides

access to an input or output device. The character

interface is used for devices that do not use block I/O.

IBM. (2) A file that refers to a device. One specific type

of character special file is a terminal device file. X/Open.

ISO.1.

character string. A contiguous sequence of

characters terminated by and including the first null

byte. X/Open.

child. A node that is subordinate to another node in a

tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result

of certain commands being issued from a parent

enclave.

CICS (Customer Information Control System).

Pertaining to an IBM licensed program that enables

transactions entered at remote terminals to be

processed concurrently by user-written application

programs. It includes facilities for building, using, and

maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an

application containing EXEC CICS commands and

produces as output an equivalent application in which

each CICS command has been translated into the

language of the source.

class. (1) A C++ aggregate that may contain functions,

types, and user-defined operators in addition to data. A

class may be derived from another class, inheriting the

properties of its parent class. A class may restrict

access to its members. (2) A user-defined data type. A

class data type can contain both data representations

(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and

union.

class library. A collection of classes.

class member operator. An operator used to access

class members through class objects or pointers to

class objects. The class member operators are:

 . -> .* ->*

class name. A unique identifier that names a class

type.

class scope. An indication that a name of a class can

be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of

related classes can be constructed.

class template declaration. A class template

declaration introduces the name of a class template and

specifies its template parameter list. A class template

declaration may optionally include a class template

definition.

class template definition. A class template definition

describes various characteristics of the class types that

are its specializations. These characteristics include the

Glossary 627

names and types of data members of specializations,

the signatures and definitions of member functions,

accessibility of members, and base classes.

client program. A program that uses a class. The

program is said to be a client of the class.

CLIST. A programming language that typically

executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list

containing the name of the program and the load

address.

COBCOM. Control block containing information about

a COBOL partition.

COBOL (common business-oriented language). A

high-level language, based on English, that is primarily

used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address

of the library routines.

code element set. (1) The result of applying a code to

all elements of a coded set, for example, all the

three-letter international representations of airport

names. ISO Draft. (2) The result of applying rules that

map a numeric code value to each element of a

character set. An element of a character set may be

related to more than one numeric code value but the

reverse is not true. However, for state-dependent

encodings the relationship between numeric code

values to elements of a character set may be further

controlled by state information. The character set may

contain fewer elements than the total number of

possible numeric code values; that is, some code

values may be unassigned. X/Open. (3) Synonym for

codeset.

code generator. The part of the compiler that

physically generates the object code.

code page. (1) An assignment of graphic characters

and control function meanings to all code points; for

example, assignment of characters and meanings to

256 code points for an 8-bit code, assignment of

characters and meanings to 128 code points for a 7-bit

code. (2) A particular assignment of hexadecimal

identifiers to graphic characters.

code point. (1) A representation of a unique character.

For example, in a single-byte character set each of 256

possible characters is represented by a one-byte code

point. (2) An identifier in an alert description that

represents a short unit of text. The code point is

replaced with the text by an alert display program.

coded character set. (1) A set of graphic characters

and their code point assignments. The set may contain

fewer characters than the total number of possible

characters: some code points may be unassigned. IBM.

(2) A coded set whose elements are single characters;

for example, all characters of an alphabet. ISO Draft. (3)

Loosely, a code. ANSI/ISO.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to

determine the logical ordering of character or

wide-character strings. A collating element consists of

either a single character, or two or more characters

collating as a single entity. The value of the

LC_COLLATE category in the current locale determines

the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used

in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering

assigned to a set of items, such that any two sets in

that assigned order can be collated. ANSI/ISO. (3) The

relative ordering of collating elements as determined by

the setting of the LC_COLLATE category in the current

locale. The character order, as defined for the

LC_COLLATE category in the current locale, defines the

relative order of all collating elements, such that each

element occupies a unique position in the order. This is

the order used in ranges of characters and collating

elements in regular expressions and pattern matching.

In addition, the definition of the collating weights of

characters and collating elements uses collating

elements to represent their respective positions within

the collation sequence.

collation. The logical ordering of character or

wide-character strings according to defined precedence

rules. These rules identify a collation sequence between

the collating elements, and such additional rules that

can be used to order strings consisting or multiple

collating elements. X/Open.

collection. (1) An abstract class without any ordering,

element properties, or key properties. (2) In a general

sense, an implementation of an abstract data type for

storing elements.

Collection Class Library. A set of classes that

provide basic functions for collections, and can be used

as base classes.

column position. A unit of horizontal measure related

to characters in a line.

 It is assumed that each character in a character set has

an intrinsic column width independent of any output

device. Each printable character in the portable

character set has a column width of one. The standard

utilities, when used as described in this document set,

assume that all characters have integral column widths.

The column width of a character is not necessarily

related to the internal representation of the character

(numbers of bits or bytes).

 The column position of a character in a line is defined

as one plus the sum of the column widths of the

628 z/OS V1R7.0 XL C/C++ User’s Guide

preceding characters in the line. Column positions are

numbered starting from 1. X/Open.

comma expression. An expression (not a function

argument list) that contains two or more operands

separated by commas. The compiler evaluates all

operands in the order specified, discarding all but the

last (rightmost). The value of the expression is the value

of the rightmost operand. Typically this is done to

produce side effects.

command. A request to perform an operation or run a

program. When parameters, arguments, flags, or other

operands are associated with a command, the resulting

character string is a single command.

command processor parameter list (CPPL). The

format of a TSO parameter list. When a TSO terminal

monitor application attaches a command processor,

register 1 contains a pointer to the CPPL, containing

addresses required by the command processor.

COMMAREA. A communication area made available

to applications running under CICS.

Common Business-Oriented Language. See

COBOL.

common expression elimination. Duplicated

expressions are eliminated by using the result of the

previous expression. This includes intermediate

expressions within expressions.

compilation unit. (1) A portion of a computer program

sufficiently complete to be compiled correctly. IBM. (2) A

single compiled file and all its associated include files.

(3) An independently compilable sequence of high-level

language statements. Each high-level language product

has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a

nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library

that provides the facilities to manipulate complex

numbers and perform standard mathematical operations

on them.

computational independence. No data modified by

either a main task program or a parallel function is

examined or modified by a parallel function that might

be running simultaneously.

concrete class. (1) A class that is not abstract. (2) A

class defining objects that can be created.

condition. (1) A relational expression that can be

evaluated to a value of either true or false. IBM. (2) An

exception that has been enabled, or recognized, by the

z/OS Language Environment and thus is eligible to

activate user and language condition handlers. Any

alteration to the normal programmed flow of an

application. Conditions can be detected by the

hardware/operating system and result in an interrupt.

They can also be detected by language-specific

generated code or language library code.

conditional expression. A compound expression that

contains a condition (the first expression), an expression

to be evaluated if the condition has a nonzero value

(the second expression), and an expression to be

evaluated if the condition has the value zero (the third

expression).

condition handler. A user-written condition handler or

language-specific condition handler (such as a PL/I

ON-unit or z/OS XL C/C++ signal() function call)

invoked by the z/OS XL C/C++ condition manager to

respond to conditions.

condition manager. Manages conditions in the

common execution environment by invoking various

user-written and language-specific condition handlers.

condition token. In the z/OS Language Environment,

a data type consisting of 12 bytes (96 bits). The

condition token contains structured fields that indicate

various aspects of a condition including the severity, the

associated message number, and information that is

specific to a given instance of the condition.

const. (1) An attribute of a data object that declares

the object cannot be changed. (2) A keyword that allows

you to define a variable whose value does not change.

(3) A keyword that allows you to define a parameter that

is not changed by the function. (4) A keyword that

allows you to define a member function that does not

modify the state of the class for which it is defined.

constant. (1) In programming languages, a language

object that takes only one specific value. ISO-JTC1. (2)

A data item with a value that does not change. IBM.

constant expression. An expression having a value

that can be determined during compilation and that

does not change during the running of the program.

IBM.

constant propagation. An optimization technique

where constants used in an expression are combined

and new ones are generated. Mode conversions are

done to allow some intrinsic functions to be evaluated at

compile time.

constructed reentrancy. The attribute of applications

that contain external data and require additional

processing to make them reentrant. Contrast with

natural reentrancy.

constructor. A special C++ class member function

that has the same name as the class and is used to

create an object of that class.

control character. (1) A character whose occurrence

in a particular context specifies a control function. ISO

Draft. (2) Synonymous with non-printing character. IBM.

Glossary 629

(3) A character, other than a graphic character, that

affects the recording, processing, transmission, or

interpretation of text. X/Open.

control statement. (1) A statement that is used to

alter the continuous sequential execution of statements;

a control statement may be a conditional statement,

such as if, or an imperative statement, such as return.

(2) A statement that changes the path of execution.

controlling process. The session leader that

establishes the connection to the controlling terminal. If

the terminal ceases to be a controlling terminal for this

session, the session leader ceases to be the controlling

process. X/Open. ISO.1.

controlling terminal. A terminal that is associated with

a session. Each session may have at most one

controlling terminal associated with it, and a controlling

terminal is associated with exactly one session. Certain

input sequences from the controlling terminal cause

signals to be sent to all processes in the process group

associated with the controlling terminal. X/Open. ISO.1.

conversion. (1) In programming languages, the

transformation between values that represent the same

data item but belong to different data types. Information

may be lost because of conversion since accuracy of

data representation varies among different data types.

ISO-JTC1. (2) The process of changing from one

method of data processing to another or from one data

processing system to another. IBM. (3) The process of

changing from one form of representation to another; for

example to change from decimal representation to

binary representation. IBM. (4) A change in the type of a

value. For example, when you add values having

different data types, the compiler converts both values

to a common form before adding the values.

conversion descriptor. A per-process unique value

used to identify an open codeset conversion. X/Open.

conversion function. A member function that

specifies a conversion from its class type to another

type.

coordinated universal time (UTC). Synonym for

Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class

object of the same class type.

CSECT (control section). The part of a program

specified by the programmer to be a relocatable unit, all

elements of which are to be loaded into adjoining main

storage locations.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed

programs designed to permit the user to develop and

run applications using independently defined maps

(display and printer formats), data items (records,

working storage, files, and single items), and processes

(logic). The Cross System Product set consists of two

parts: Cross System Product/Application Development

(CSP/AD) and Cross System Product/Application

Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated

with a process, that is used in path name resolution for

path names that do not begin with a slash. X/Open.

ISO.1. (2) In the OS/2® operating system, the first

directory in which the operating system looks for

programs and files and stores temporary files and

output. IBM. (3) In the z/OS UNIX System Services

environment, a directory that is active and that can be

displayed. Relative path name resolution begins in the

current directory. IBM.

cursor. A reference to an element at a specific

position in a data structure.

Customer Information Control System. See CICS.

D

data abstraction. A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

data definition (DD). (1) In the C and C++ languages,

a definition that describes a data object, reserves

storage for a data object, and can provide an initial

value for a data object. A data definition appears

outside a function or at the beginning of a block

statement. IBM. (2) A program statement that describes

the features of, specifies relationships of, or establishes

context of, data. ANSI/ISO. (3) A statement that is

stored in the environment and that externally identifies a

file and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of

complete data. Elements are composed of data

members.

data object. (1) A storage area used to hold a value.

(2) Anything that exists in storage and on which

operations can be performed, such as files, programs,

classes, or arrays. (3) In a program, an element of data

structure, such as a file, array, or operand, that is

needed for the execution of a program and that is

named or otherwise specified by the allowable character

set of the language in which a program is coded. IBM.

data set. Under z/OS, a named collection of related

data records that is stored and retrieved by an assigned

name.

630 z/OS V1R7.0 XL C/C++ User’s Guide

data stream. A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

IBM.

data structure. The internal data representation of an

implementation.

data type. The properties and internal representation

that characterize data.

Data Window Services (DWS). Services provided as

part of the Callable Services Library that allow

manipulation of data objects such as VSAM linear data

sets and temporary data objects known as

TEMPSPACE.

DBCS (double-byte character set). A set of

characters in which each character is represented by 2

bytes. Languages such as Japanese, Chinese, and

Korean, which contain more symbols than can be

represented by 256 code points, require double-byte

character sets.

 Because each character requires 2 bytes, the typing,

display, and printing of DBCS characters requires

hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains

an entry for each extrapartition, intrapartition, and

indirect destination. Extrapartition entries address data

sets external to the CICS region. Intrapartition

destination entries contain the information required to

locate the queue in the intrapartition data set. Indirect

destination entries contain the information required to

locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name

of a file within an application. The ddname provides the

means for the logical file to be connected to the

physical file. (2) The part of the data definition before

the equal sign. It is the name used in a call to fopen or

freopen to refer to the data definition stored in the

environment.

DD statement (data definition statement). (1) In

z/OS, serves as the connection between the logical

name of a file and the physical name of the file. (2) A

job control statement that defines a file to the operating

system, and is a request to the operating system for the

allocation of input/output resources.

dead code elimination. A process that eliminates

code that exists for calculations that are not necessary.

Code may be designated as dead by other optimization

techniques.

dead store elimination. A process that eliminates

unnecessary storage use in code. A store is deemed

unnecessary if the value stored is never referenced

again in the code.

decimal constant. (1) A numerical data type used in

standard arithmetic operations. (2) A number containing

any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one

or more nonzero digits are lost because the destination

field in a decimal operation is too short to contain the

results.

declaration. (1) In the C and C++ languages, a

description that makes an external object or function

available to a function or a block statement. IBM. (2)

Establishes the names and characteristics of data

objects and functions used in a program.

declarator. Designates a data object or function

declared. Initializations can be performed in a

declarator.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a

call to the function omits this argument, the default

value is used. Arguments with default values must be

the trailing arguments in a function prototype argument

list.

default clause. In the C or C++ languages, within a

switch statement, the keyword default followed by a

colon, and one or more statements. When the

conditions of the specified case labels in the switch

statement do not hold, the default clause is chosen.

IBM.

default constructor. A constructor that takes no

arguments, or, if it takes arguments, all its arguments

have default values.

default initialization. The initial value assigned to a

data object by the compiler if no initial value is specified

by the programmer.

default locale. (1) The C locale, which is always used

when no selection of locale is performed. (2) A system

default locale, named by locale-related environmental

variables.

define directive. A preprocessor directive that directs

the preprocessor to replace an identifier or macro

invocation with special code.

definition. (1) A data description that reserves storage

and may provide an initial value. (2) A declaration that

allocates storage, and may initialize a data object or

specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage

deallocation operator. (2) A C++ operator used to

destroy objects created by new.

demangling. The conversion of mangled names back

to their original source code names. During C++

Glossary 631

compilation, identifiers such as function and static class

member names are mangled (encoded) with type and

scoping information to ensure type-safe linkage. These

mangled names appear in the object file and the final

executable file. Demangling (decoding) converts these

names back to their original names to make program

debugging easier. See also mangling.

deque. A queue that can have elements added and

removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element

of a queue.

dereference. In the C and C++ languages, the

application of the unary operator * to a pointer to access

the object the pointer points to. Also known as

indirection.

derivation. In the C++ language, to derive a class,

called a derived class, from an existing class, called a

base class.

derived class. A class that inherits from a base class.

All members of the base class become members of the

derived class. You can add additional data members

and member functions to the derived class. A derived

class object can be manipulated as if it is a base class

object. The derived class can override virtual functions

of the base class.

descriptor. PL/I control block that holds information

such as string lengths, array subscript bounds, and area

sizes, and is passed from one PL/I routine to another

during run time.

destination control table. See DCT.

destructor. A special member function that has the

same name as its class, preceded by a tilde (~), and

that "cleans up" after an object of that class, for

example, freeing storage that was allocated when the

object was created. A destructor has no arguments and

no return type.

detach state attribute. An attribute associated with a

thread attribute object. This attribute has two possible

values:

0 Undetached. An undetached thread keeps its

resources after termination of the thread.

1 Detached. A detached thread has its resources

freed by the system after termination.

device. A computer peripheral or an object that

appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)

is the set of all elements in A but not in B. For bags,

there is an additional rule for duplicates: If bag P

contains an element m times and bag Q contains the

same element n times, then, if m>n, the difference

contains that element m-n times. If m≤n, the difference

contains that element zero times.

digraph. A combination of two keystrokes used to

represent unavailable characters in a C or C++ source

program. Digraphs are read as tokens during the

preprocessor phase.

directory. (1) In a hierarchical file system, a container

for files or other directories. IBM. (2) The part of a

partitioned data set that describes the members in the

data set.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If

the output is not directed to the terminal, the results are

undefined. X/Open.

DLL. See dynamic link library.

do statement. In the C and C++ compilers, a looping

statement that contains the keyword “do”, followed by a

statement (the action), the keyword “while”, and an

expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character

(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two

computer words to represent a number in accordance

with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as

quotation mark. X/Open.

 This character is named <quotation-mark> in the

portable character set.

doubleword. A contiguous sequence of bytes or

characters that comprises two computer words and is

capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the

time it is needed rather than at a predetermined or fixed

time. IBM.

dynamic allocation. Assignment of system resources

to a program when the program is executed rather than

when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to

external variables and functions at run time. In C++,

dynamic binding is supported by using virtual functions.

dynamic link library (DLL). A file containing

executable code and data bound to a program at run

time. The code and data in a dynamic link library can be

shared by several applications simultaneously.

Compiling code with the DLL option does not mean that

632 z/OS V1R7.0 XL C/C++ User’s Guide

the produced executable will be a DLL. To create a

DLL, use #pragma export or the EXPORTALL compiler

option.

DSA (dynamic storage area). An area of storage

obtained during the running of an application that

consists of a register save area and an area for

automatic data, such as program variables. DSAs are

generally allocated within Language

Environment-managed stack segments. DSAs are

added to the stack when a routine is entered and

removed upon exit in a last in, first out (LIFO) manner.

In Language Environment, a DSA is known as a stack

frame.

dynamic storage. Synonym for automatic storage.

dynamic storage area . See DSA

E

EBCDIC. See extended binary-coded decimal

interchange code.

effective group ID. An attribute of a process that is

used in determining various permissions, including file

access permissions. This value is subject to change

during the process lifetime, as described in the exec

family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the

last authenticated user or the last setuid() program. It

is equal to either the real or the saved user ID. (2) The

current user ID, but not necessarily the user's login ID;

for example, a user logged in under a login ID may

change to another user's ID. The ID to which the user

changes becomes the effective user ID until the user

switches back to the original login ID. All discretionary

access decisions are based on the effective user ID.

IBM. (3) An attribute of a process that is used in

determining various permissions, including file access

permissions. This value is subject to change during the

process lifetime, as described in exec and setuid().

X/Open. ISO.1.

elaborated type specifier. A specifier typically used in

an incomplete class declaration to qualify types that are

otherwise hidden.

element. The component of an array, subrange,

enumeration, or set.

element equality. A relation that determines if two

elements are equal.

element occurrence. A single instance of an element

in a collection. In a unique collection, element

occurrence is synonymous with element value.

element value. All the instances of an element with a

particular value in a collection. In a nonunique

collection, an element value may have more than one

occurrence. In a unique collection, element value is

synonymous with element occurrence.

else clause. The part of an if statement that contains

the word else, followed by a statement. The else clause

provides an action that is started when the if condition

evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line

character. X/Open.

empty string. (1) A string whose first byte is a null

byte. Synonymous with null string. X/Open. (2) A

character array whose first element is a null character.

ISO.1.

enabled signal. The occurrence of an enabled signal

results in the default system response or the execution

of an established signal handler. If disabled, the

occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of

data objects and implementation details of functions

from the client program. This enables the end user to

focus on the use of data objects and functions without

having to know about their representation or

implementation.

enclave. In z/OS Language Environment, an

independent collection of routines, one of which is

designated as the main routine. An enclave is roughly

analogous to a program or run unit.

enqueue. (1) An operation that adds an element as

the last element to a queue. (2) Request control of a

serially reusable resource.

entry point. The address or label of the first

instruction that is executed when a routine is entered for

execution.

enumeration constant. In the C or C++ language, an

identifier, with an associated integer value, defined in an

enumerator. An enumeration constant may be used

anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and

C++ language, a data type that represents a set of

values that a user defines. IBM. (2) A type that

represents integers and a set of enumeration constants.

Each enumeration constant has an associated integer

value.

enumeration tag. In the C and C++ language, the

identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set

of enumeration constants. In the C++ language, an

enumeration type is a distinct data type that is not an

integral type.

enumerator. In the C and C++ language, an

enumeration constant and its associated value. IBM.

Glossary 633

equivalence class. (1) A grouping of characters that

are considered equal for the purpose of collation; for

example, many languages place an uppercase

character in the same equivalence class as its

lowercase form, but some languages distinguish

between accented and unaccented character forms for

the purpose of collation. IBM. (2) A set of collating

elements with the same primary collation weight.

 Elements in an equivalence class are typically elements

that naturally group together, such as all accented

letters based on the same base letter.

 The collation order of elements within an equivalence

class is determined by the weights assigned on any

subsequent levels after the primary weight. X/Open.

escape sequence. (1) A representation of a character.

An escape sequence contains the \ symbol followed by

one of the characters: a, b, f, n, r, t, v, ', ", x, \, or

followed by one or more octal or hexadecimal digits. (2)

A sequence of characters that represent, for example,

non-printing characters, or the exact code point value to

be used to represent variant and nonvariant characters

regardless of code page. (3) In the C and C++

language, an escape character followed by one or more

characters. The escape character indicates that a

different code, or a different coded character set, is

used to interpret the characters that follow. Any member

of the character set used at run time can be

represented using an escape sequence. (4) A character

that is preceded by a backslash character and is

interpreted to have a special meaning to the operating

system. (5) A sequence sent to a terminal to perform

actions such as moving the cursor, changing from

normal to reverse video, and clearing the screen.

Synonymous with multibyte control. IBM.

exception. (1) Any user, logic, or system error

detected by a function that does not itself deal with the

error but passes the error on to a handling routine (also

called throwing the exception). (2) In programming

languages, an abnormal situation that may arise during

execution, that may cause a deviation from the normal

execution sequence, and for which facilities exist in a

programming language to define, raise, recognize,

ignore, and handle it; for example, (ON-) condition in

PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which

has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided. The

internal format of an executable file is unspecified, but a

conforming application cannot assume an executable

file is a text file. X/Open.

exception handler. (1) Exception handlers are catch

blocks in C++ applications. Catch blocks catch

exceptions when they are thrown from a function

enclosed in a try block. Try blocks, catch blocks, and

throw expressions are the constructs used to implement

formal exception handling in C++ applications. (2) A set

of routines used to detect deadlock conditions or to

process abnormal condition processing. An exception

handler allows the normal running of processes to be

interrupted and resumed. IBM.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided. The

internal format of an executable file is unspecified, but a

conforming application cannot assume an executable

file is a text file. X/Open.

executable program. A program that has been

link-edited and therefore can be run in a processor.

IBM.

extended binary-coded data interchange code

(EBCDIC). A coded character set of 256 8-bit

characters. IBM.

extended-precision. Pertaining to the use of more

than two computer words to represent a floating point

number in accordance with the required precision. In

z/OS four computer words are used for an

extended-precision number.

extension. (1) An element or function not included in

the standard language. (2) File name extension.

external data definition. A description of a variable

appearing outside a function. It causes the system to

allocate storage for that variable and makes that

variable accessible to all functions that follow the

definition and are located in the same file as the

definition. IBM.

extern storage class specifier. A specifier that

enables the programmer to declare objects and

functions that several source files can use.

F

feature test macro (FTM). A macro (#define) used to

determine whether a particular set of features will be

included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that

data written to such a file is read on a first-in-first-out

basis. Other characteristics of FIFOs are described in

open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access

control mechanism uses the file permission bits. The

634 z/OS V1R7.0 XL C/C++ User’s Guide

bits are set at the time of file creation by functions such

as open(), creat(), mkdir(), and mkfifo() and can be

changed by chmod(). The bits are read by stat() or

fstat(). X/Open.

file descriptor. (1) A positive integer that the system

uses instead of the file name to identify an open file. (2)

A per-process unique, non-negative integer used to

identify an open file for the purpose of file access.

ISO.1.

 The value of a file descriptor is from zero to

{OPEN_MAX}—which is defined in <limits.h>. A process

can have no more than {OPEN_MAX} file descriptors

open simultaneously. File descriptors may also be used

to implement directory streams. X/Open.

file mode. An object containing the file mode bits and

file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,

set-user-ID-on-execution bit (S_ISUID) and

set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits. Information about a file that is

used, along with other information, to determine if a

process has read, write, or execute/search permission

to a file. The bits are divided into three parts: owner,

group, and other. Each part is used with the

corresponding file class of process. These bits are

contained in the file mode, as described in <sys/stat.h>.

The detailed usage of the file permission bits is

described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks,

classes, and function declarations has file scope and

can be used after the point of declaration in a source

file.

filter. A command whose operation consists of reading

data from standard input or a list of input files and

writing data to standard output. Typically, its function is

to perform some transformation on the data stream.

X/Open.

first element. The element visited first in an iteration

over a collection. Each collection has its own definition

for first element. For example, the first element of a

sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical

structure.

float constant. (1) A constant representing a

nonintegral number. (2) A number containing a decimal

point, an exponent, or both a decimal point and an

exponent. The exponent contains an e or E, an optional

sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the

word for followed by a for-initializing-statement, an

optional condition, a semicolon, and an optional

expression, all enclosed in parentheses.

foreground process. (1) A process that must run to

completion before another command is issued. The

foreground process is in the foreground process group,

which is the group that receives the signals generated

by a terminal. IBM. (2) A process that is a member of a

foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that

receives the signals generated by a terminal. IBM. (2) A

process group whose member processes have certain

privileges, denied to processes in background process

groups, when accessing their controlling terminal. Each

session that has established a connection with a

controlling terminal has exactly one process group of

the session as the foreground process group of that

controlling terminal. X/Open. ISO.1.

foreground process group ID. The process group ID

of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream

that indicates that printing should start on the next page

of an output device. The formfeed is the character

designated by '\f' in the C and C++ language. If the

formfeed is not the first character of an output line, the

result is unspecified. It is unspecified whether this

character is the exact sequence transmitted to an output

device by the system to accomplish the movement to

the next page. X/Open.

forward declaration. A declaration of a class or

function made earlier in a compilation unit, so that the

declared class or function can be used before it has

been defined.

freestanding application. (1) An application that is

created to run without the run-time environment or

library with which it was developed. (2) An z/OS XL

C/C++ application that does not use the services of the

dynamic z/OS XL C/C++ run-time library or of the

Language Environment. Under z/OS XL C support, this

ability is a feature of the System Programming C

support.

free store. Dynamically allocated memory. New and

delete are used to allocate and deallocate free store.

friend class. A class in which all the member

functions are granted access to the private and

protected members of another class. It is named in the

declaration of another class and uses the keyword

friend as a prefix to the class. For example, the

following source code makes all the functions and data

in class you friends of class me:

class me {

 friend class you;

 // ...

};

friend function. A function that is granted access to

the private and protected parts of a class. It is named in

the declaration of the other class with the prefix friend.

Glossary 635

function. A named group of statements that can be

called and evaluated and can return a value to the

calling statement. IBM.

function call. An expression that moves the path of

execution from the current function to a specified

function and evaluates to the return value provided by

the called function. A function call contains the name of

the function to which control moves and a

parenthesized list of values. IBM.

function declarator. The part of a function definition

that names the function, provides additional information

about the return value of the function, and lists the

function parameters. IBM.

function definition. The complete description of a

function. A function definition contains a sequence of

specifiers (storage class, optional type, inline, virtual,

optional friend), a function declarator, optional

constructor-initializers, parameter declarations, optional

const, and the block statement. Inline, virtual, friend,

and const are not available with C.

function prototype. A function declaration that

provides type information for each parameter. It is the

first line of the function (header) followed by a

semicolon (;). The declaration is required by the

compiler at the time that the function is declared, so that

the compiler can check the type.

function scope. Labels that are declared in a function

have function scope and can be used anywhere in that

function after their declaration.

function template. Provides a blueprint describing

how a set of related individual functions can be

constructed.

G

Generalization. Refers to a class, function, or static

data member which derives its definition from a

template. An instantiation of a template function would

be a generalization.

Generalized Object File Format (GOFF). It is the

strategic object module format for S/390. It extends the

capabilities of object modules to contain more

information than current object modules. It removes the

limitations of the previous object module format and

supports future enhancements. It is required for

XPLINK.

generic class. Synonym for class templates.

global. Pertaining to information available to more

than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program

module that is used in other independently compiled

program modules.

GMT (Greenwich Mean Time). The solar time at the

meridian of Greenwich, formerly used as the prime

basis of standard time throughout the world. GMT has

been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a

character, other than a control character, that is

normally produced by writing, printing, or displaying.

ISO Draft. (2) A character that can be displayed or

printed. IBM.

Graphical Data Display Manager (GDDM). Pertaining

to an IBM licensed program that provides a group of

routines that allows pictures to be defined and displayed

procedurally through function routines that correspond

to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to

identify a group of system users. Each system user is a

member of at least one group. When the identity of a

group is associated with a process, a group ID value is

referred to as a real group ID, an effective group ID,

one of the supplementary group IDs or a saved

set-group-ID. X/Open. (2) A non-negative integer, which

can be contained in an object of type gid_t, that is used

to identify a group of system users. ISO.1.

H

halfword. A contiguous sequence of bytes or

characters that constitutes half a computer word and

can be addressed as a unit. IBM.

hash function. A function that determines which

category, or bucket, to put an element in. A hash

function is needed when implementing a hash table.

hash table. (1) A data structure that divides all

elements into (preferably) equal-sized categories, or

buckets, to allow quick access to the elements. The

hash function determines which bucket an element

belongs in. (2) A table of information that is accessed by

way of a shortened search key (that hash value). Using

a hash table minimizes average search time.

header file. A text file that contains declarations used

by a group of functions, programs, or users.

heap storage. An area of storage used for allocation

of storage whose lifetime is not related to the execution

of the current routine. The heap consists of the initial

heap segment and zero or more increments.

hexadecimal constant. A constant, usually starting

with special characters, that contains only hexadecimal

636 z/OS V1R7.0 XL C/C++ User’s Guide

digits. Three examples for the hexadecimal constant

with value 0 would be '\x00', '0x0', or '0X00'.

High Level Assembler. An IBM licensed program.

Translates symbolic assembler language into binary

machine language.

Hiperspace memory file. An IBM file used under

z/OS to deal with memory files as large as 2 gigabytes.

IBM.

hooks. Instructions inserted into a program by a

compiler at compile-time. Using hooks, you can set

breakpoints to instruct Debug Tool to gain control of the

program at selected points during its execution.

hybrid code. Program statements that have not been

internationalized with respect to code page, especially

where data constants contain variant characters. Such

statements can be found in applications written in older

implementations of MVS, which required syntax

statements to be written using code page IBM-1047

exclusively. Such applications cannot be converted from

one code page to another using iconv().

I

I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify

or name a data element and possibly to indicate certain

properties of that data element. ANSI/ISO. (2) In

programming languages, a token that names a data

object such as a variable, an array, a record, a

subprogram, or a function. ANSI/ISO. (3) A sequence of

letters, digits, and underscores used to identify a data

object or function. IBM.

if statement. A conditional statement that contains the

keyword if, followed by an expression in parentheses

(the condition), a statement (the action), and an optional

else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one

language to a function coded in another language.

Interlanguage calls are used to communicate between

programs written in different languages.

ILC (interlanguage communication). The ability of

routines written in different programming languages to

communicate. ILC support enables the application writer

to readily build applications from component routines

written in a variety of languages.

implementation-defined behavior. Application

behavior that is not defined by the standards. The

implementing compiler and library defines this behavior

when a program contains correct program constructs or

uses correct data. Programs that rely on

implementation-defined behavior may behave differently

on different C or C++ implementations. Refer to the

z/OS XL C/C++ documents that are listed in “z/OS XL

C/C++ and related publications” on page xvii for

information about implementation-defined behavior in

the z/OS XL C/C++ environment. Contrast with

unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining

to an IBM database/data communication (DB/DC)

system that can manage complex databases and

networks. IBM.

include directive. A preprocessor directive that

causes the preprocessor to replace the statement with

the contents of a specified file.

include file. See header file.

incomplete class declaration. A class declaration

that does not define any members of a class. Until a

class is fully declared, or defined, you can only use the

class name where the size of the class is not required.

Typically an incomplete class declaration is used as a

forward declaration.

incomplete type. A type that has no value or meaning

when it is first declared. There are three incomplete

types: void, arrays of unknown size and structures and

unions of unspecified content. A void type can never be

completed. Arrays of unknown size and structures or

unions of unspecified content can be completed in

further declarations.

indirection. (1) A mechanism for connecting objects

by storing, in one object, a reference to another object.

(2) In the C and C++ languages, the application of the

unary operator * to a pointer to access the object to

which the pointer points.

indirection class. Synonym for reference class.

induction variable. It is a controlling variable of a

loop.

inheritance. A technique that allows the use of an

existing class as the base for creating other classes.

initial heap. The z/OS XL C/C++ heap controlled by

the HEAP run-time option and designated by a heap_id

of 0. The initial heap contains dynamically allocated

user data.

initializer. An expression used to initialize data

objects. The C++ language, supports the following types

of initializers:

v An expression followed by an assignment operator

that is used to initialize fundamental data type objects

or class objects that contain copy constructors.

v A parenthesized expression list that is used to

initialize base classes and members that use

constructors.

Both the C and C++ languages support an expression

enclosed in braces ({ }), that used to initialize

aggregates.

Glossary 637

inlined function. A function whose actual code

replaces a function call. A function that is both declared

and defined in a class definition is an example of an

inline function. Another example is one which you

explicitly declared inline by using the keyword inline.

Both member and non-member functions can be inlined.

input stream. A sequence of control statements and

data submitted to a system from an input unit.

Synonymous with input job stream, job input stream.

IBM.

instance. An object-oriented programming term

synonymous with object. An instance is a particular

instantiation of a data type. It is simply a region of

storage that contains a value or group of values. For

example, if a class box is previously defined, two

instances of a class box could be instantiated with the

declaration: box box1, box2;

instantiate. To create or generate a particular instance

or object of a data type. For example, an instance box1

of class box could be instantiated with the declaration:

box box1;

instruction. A program statement that specifies an

operation to be performed by the computer, along with

the values or locations of operands. This statement

represents the programmer's request to the processor

to perform a specific operation.

instruction scheduling. An optimization technique

that reorders instructions in code to minimize execution

time.

integer constant. A decimal, octal, or hexadecimal

constant.

integral object. A character object, an object having

an enumeration type, an object having variations of the

type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC

(interlanguage communication).

internationalization. The capability of a computer

program to adapt to the requirements of different native

languages, local customs, and coded character sets.

X/Open.

 Synonymous with I18N.

interoperability. The capability to communicate,

execute programs, or transfer data among various

functional units in a way that requires the user to have

little or no knowledge of the unique characteristics of

those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of

information between processes or threads through

semaphores, queues, and shared memory. (2) The

process by which programs communicate data to each

other to synchronize their activities. Semaphores,

signals, and internal message queues are common

methods of inter-process communication.

I/O stream library. A class library that provides the

facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for

performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An

IBM licensed program that serves as a full-screen editor

and dialogue manager. Used for writing application

programs, it provides a means of generating standard

screen panels and interactive dialogues between the

application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a

function to a series of elements in a collection until

some condition is satisfied.

J

JCL (job control language). A control language used

to identify a job to an operating system and to describe

the job's requirement. IBM.

K

keyword. (1) A predefined word reserved for the C

and C++ languages, that may not be used as an

identifier. (2) A symbol that identifies a parameter in

JCL.

kind attribute. An attribute for a mutex attribute

object. This attribute's value determines whether the

mutex can be locked once or more than once for a

thread and whether state changes to the mutex will be

reported to the debug interface.

L

label. An identifier within or attached to a set of data

elements. ISO Draft.

Language Environment. Abbreviated form of z/OS

Language Environment. Pertaining to an IBM software

product that provides a common run-time environment

and run-time services to applications compiled by

Language Environment-conforming compilers.

last element. The element visited last in an iteration

over a collection. Each collection has its own definition

for last element. For example, the last element of a

sorted set is the element with the largest value.

638 z/OS V1R7.0 XL C/C++ User’s Guide

late binding. Allowing the system to determine the

specific class of the object and invoke the appropriate

function implementations at run time. Late binding or

dynamic binding hides the differences between a group

of related classes from the application program.

leaves. Nodes without children. Synonymous with

terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,

or other data. IBM. (2) A set of object modules that can

be specified in a link command.

linkage editor. Synonym for linker. The linkage editor

has been replaced by the binder for the MVS/ESA,

OS/390, or z/OS operating systems. See binder.

Linkage. Refers to the binding between a reference

and a definition. A function has internal linkage if the

function is defined inline as part of the class, is declared

with the inline keyword, or is a non-member function

declared with the static keyword. All other functions

have external linkage.

linker. A computer program for creating load modules

from one or more object modules by resolving cross

references among the modules and, if necessary,

adjusting addresses. IBM.

link pack area (LPA). In z/OS, an area of storage

containing re-enterable routines from system libraries.

Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit

that directly represents a value; for example, 14

represents the integer fourteen, “APRIL” represents the

string of characters APRIL, 3.0005E2 represents the

number 300.05. ISO-JTC1. (2) A symbol or a quantity in

a source program that is itself data, rather than a

reference to data. IBM. (3) A character string whose

value is given by the characters themselves; for

example, the numeric literal 7 has the value 7, and the

character literal CHARACTERS has the value

CHARACTERS. IBM.

loader. A routine, commonly a computer program, that

reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a

form suitable for loading into main storage for execution.

A load module is usually the output of a linkage editor.

ISO Draft.

local. (1) In programming languages, pertaining to the

relationship between a language object and a block

such that the language object has a scope contained in

that block. ISO-JTC1. (2) Pertaining to that which is

defined and used only in one subdivision of a computer

program. ANSI/ISO.

local customs. The conventions of a geographical

area or territory for such things as date, time, and

currency formats. X/Open.

locale. The definition of the subset of a user's

environment that depends on language and cultural

conventions. X/Open.

localization. The process of establishing information

within a computer system specific to the operation of

particular native languages, local customs, and coded

character sets. X/Open.

local scope. A name declared in a block has scope

within the block, and can therefore only be used in that

block.

Long name. An external name C++ name in an object

module, or and external name in an object module

created by the C compiler when the LONGNAME option is

used. Long names are up to 1024 characters long and

may contain both upper-case and lower-case

characters.

lvalue. An expression that represents a data object

that can be both examined and altered.

M

macro. An identifier followed by arguments (may be a

parenthesized list of arguments) that the preprocessor

replaces with the replacement code located in a

preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier

main that is the first user function—aside from exit

routines and C++ static object constructors—to get

control when program execution begins. Each C and

C++ program must have exactly one function named

main.

makefile. A text file containing a list of your

application's parts. The make utility uses makefiles to

maintain application parts and dependencies.

make utility. Maintains all of the parts and

dependencies for your application. The make utility uses

a makefile to keep the parts of your program

synchronized. If one part of your application changes,

the make utility updates all other files that depend on

the changed part. This utility is available under the z/OS

shell and by default, uses the c89 utility to recompile

and bind your application.

mangling. The encoding during compilation of

identifiers such as function and variable names to

include type and scope information. These mangled

names ensure type-safe linkage. See also demangling.

Glossary 639

manipulator. A value that can be inserted into streams

or extracted from streams to affect or query the

behavior of the stream.

member. A data object or function in a structure,

union, or class. Members can also be classes,

enumerations, bit fields, and type names.

member function. (1) An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and member functions of objects of its class. Member

functions are also called methods. (2) A function that

performs operations on a class.

method. In the C++ language, a synonym for member

function.

method file. (1) A file that allows users to indicate to

the localedef utility where to look for user-provided

methods for processing user-designed codepages. (2)

For ASCII locales, a file that defines the method

functions to be used by C runtime locale-sensitive

interfaces. A method file also identifies where the

method functions can be found. IBM supplies several

method files used to create its standard set of ASCII

locales. Other method files can be created to support

customized or user-created codepages. Such

customized method files replace IBM-supplied charmap

method functions with user-written functions.

migrate. To move to a changed operating

environment, usually to a new release or version of a

system. IBM.

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

multibyte character. A mixture of single-byte

characters from a single-byte character set and

double-byte characters from a double-byte character

set.

multicharacter collating element. A sequence of two

or more characters that collate as an entity. For

example, in some coded character sets, an accented

character is represented by a non-spacing accent,

followed by the letter. Other examples are the Spanish

elements ch and ll. X/Open.

multiple inheritance. An object-oriented programming

technique implemented in the C++ language through

derivation, in which the derived class inherits members

from more than one base class.

multitasking. A mode of operation that allows

concurrent performance, or interleaved execution of two

or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared

resources. The mutex is locked and unlocked by

threads in a program. A mutex can only be locked by

one thread at a time and can only be unlocked by the

same thread that locked it. The current owner of a

mutex is the thread that it is currently locked by. An

unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage

the characteristics of mutexes in their application by

defining a set of values to be used for the mutex during

its creation. A mutex attribute object allows the user to

create many mutexes with the same set of

characteristics without redefining the same set of

characteristics for each mutex created.

mutex object. Used to identify a mutex.

N

namespace. A category used to group similar types of

identifiers.

named pipe. A FIFO file. Named pipes allow transfer

of data between processes in a FIFO manner and

synchronization of process execution. Allows processes

to communicate even though they do not know what

processes are on the other end of the pipe.

natural reentrancy. A program that contains no

writable static and requires no additional processing to

make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of

another class.

nested enclave. A new enclave created by an existing

enclave. The nested enclave that is created must be a

new main routine within the process. See also child

enclave and parent enclave.

newline character. A character that in the output

stream indicates that printing should start at the

beginning of the next line. The newline character is

designated by '\n' in the C and C++ language. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

non-printing character. See control character.

null character (NUL). The ASCII or EBCDIC character

'\0' with the hex value 00, all bits turned off. It is used to

represent the absence of a printed or displayed

character. This character is named <NUL> in the

portable character set.

null pointer. The value that is obtained by converting

the number 0 into a pointer; for example, (void *) 0.

The C and C++ languages guarantee that this value will

not match that of any legitimate pointer, so it is used by

many functions that return pointers to indicate an error.

X/Open.

640 z/OS V1R7.0 XL C/C++ User’s Guide

null statement. A C or C++ statement that consists

solely of a semicolon.

null string. (1) A string whose first byte is a null byte.

Synonymous with empty string. X/Open. (2) A character

array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is

specified. IBM.

null wide-character code. A wide-character code with

all bits set to zero. X/Open.

number sign. The character #, also known as pound

sign and hash sign. This character is named

<number-sign> in the portable character set.

O

object. (1) A region of storage. An object is created

when a variable is defined. An object is destroyed when

it goes out of scope. (See also instance.) (2) In

object-oriented design or programming, an abstraction

consisting of data and the operations associated with

that data. See also class. IBM. (3) An instance of a

class.

object code. Machine-executable instructions, usually

generated by a compiler from source code written in a

higher level language (such as the C++ language). For

programs that must be linked, object code consists of

relocatable machine code.

object module. (1) All or part of an object program

sufficiently complete for linking. Assemblers and

compilers usually produce object modules. ISO Draft.

(2) A set of instructions in machine language produced

by a compiler from a source program. IBM.

object-oriented programming. A programming

approach based on the concepts of data abstraction

and inheritance. Unlike procedural programming

techniques, object-oriented programming concentrates

not on how something is accomplished, but on what

data objects comprise the problem and how they are

manipulated.

octal constant. The digit 0 (zero) followed by any

digits 0 through 7.

open file. A file that is currently associated with a file

descriptor. X/Open. ISO.1.

operand. An entity on which an operation is

performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operator function. An overloaded operator that is

either a member of a class or that takes at least one

argument that is a class type or a reference to a class

type.

operator precedence. In programming languages, an

order relation defining the sequence of the application

of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input

or output function to a stream, it becomes either

byte-oriented or wide-oriented. A byte-oriented stream is

a stream that had a byte input or output function applied

to it when it had no orientation. A wide-oriented stream

is a stream that had a wide character input or output

function applied to it when it had no orientation. A

stream has no orientation when it has been associated

with an external file but has not had any operations

performed on it.

overflow. (1) A condition that occurs when a portion of

the result of an operation exceeds the capacity of the

intended unit of storage. (2) That portion of an operation

that exceeds the capacity of the intended unit of

storage. IBM.

overlay. The technique of repeatedly using the same

areas of internal storage during different stages of a

program. ANSI/ISO. Unions are used to accomplish this

in C and C++.

overloading. An object-oriented programming

technique that allows you to redefine functions and most

standard C++ operators when the functions and

operators are used with class types.

P

parameter. (1) In the C and C++ languages, an object

declared as part of a function declaration or definition

that acquires a value on entry to the function, or an

identifier following the macro name in a function-like

macro definition. X/Open. (2) Data passed between

programs or procedures. IBM.

parameter declaration. A description of a value that a

function receives. A parameter declaration determines

the storage class and the data type of the value.

parent enclave. The enclave that issues a call to

system services or language constructs to create a

nested or child enclave. See also child enclave and

nested enclave.

parent process. (1) The program that originates the

creation of other processes by means of spawn or exec

function calls. See also child process. (2) A process that

creates other processes.

parent process ID. (1) An attribute of a new process

identifying the parent of the process. The parent

process ID of a process is the process ID of its creator,

Glossary 641

for the lifetime of the creator. After the creator's lifetime

has ended, the parent process ID is the process ID of

an implementation-dependent system process. X/Open.

(2) An attribute of a new process after it is created by a

currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs

or PDSEs under one ddname. The concatenated data

sets act as one big PDS or PDSE and access can be

made to any member with a unique name. An attempted

access to a member whose name occurs more than

once in the concatenated data sets, returns the first

member with that name found in the entire

concatenation.

partitioned data set (PDS). A data set in direct

access storage that is divided into partitions, called

members, each of which can contain a program, part of

a program, or data. IBM.

partitioned data set extended (PDSE). Similar to

partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file. A

path name consists of, at most, {PATH_MAX} bytes,

including the terminating null character. It has an

optional beginning slash, followed by zero or more file

names separated by slashes. If the path name refers to

a directory, it may also have one or more trailing

slashes. Multiple successive slashes are treated as one

slash. A path name that begins with two successive

slashes may be interpreted in an implementation-
dependent manner, although more than two leading

slashes are treated as a single slash. The interpretation

of the path name is described in path name resolution.

ISO.1. (2) A file name specifying all directories leading

to the file.

path name resolution. Path name resolution is

performed for a process to resolve a path name to a

particular file in a file hierarchy. There may be multiple

path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with

regular expression notation or for path name expansion,

as a means of selecting various characters strings or

path names, respectively. The syntaxes of the two

patterns are similar, but not identical. X/Open.

period. The character (.). The term period is

contrasted against dot, which is used to describe a

specific directory entry. This character is named

<period> in the portable character set.

permissions. Codes that determine how a file can be

used by any users who work on the system. See also

file access permissions. IBM.

persistent environment. A program can explicitly

establish a persistent environment, direct functions to it,

and explicitly terminate it.

pointer. In the C and C++ languages, a variable that

holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the

address of non-static members of a class.

polymorphism. The technique of taking an abstract

view of an object or function and using any concrete

objects or arguments that are derived from this abstract

view.

portable character set. The set of characters

specified in POSIX 1003.2, section 2.4:

<NUL>

<alert>

<backspace>

<tab>

<newline>

<vertical-tab>

<form-feed>

<carriage-return>

<space>

<exclamation-mark> !

<quotation-mark> "

<number-sign> #

<dollar-sign> $

<percent-sign> %

<ampersand> &

<apostrophe> '

<left-parenthesis> (

<right-parenthesis>)

<asterisk> *

<plus-sign> +

<comma> ,

<hyphen> –

<hyphen-minus> –

<period> .

<slash> ⁄

<zero> 0

<one> 1

<two> 2

<three> 3

<four> 4

<five> 5

<six> 6

<seven> 7

<eight> 8

<nine> 9

<colon> :

<semicolon> ;

<less-than-sign> <

<equals-sign> =

<greater-than-sign> >

<question-mark> ?

<commercial-at> @

<A> A

 B

<C> C

<D> D

<E> E

<F> F

<G> G

<H> H

<I> I

642 z/OS V1R7.0 XL C/C++ User’s Guide

<J> J

<K> K

<L> L

<M> M

<N> N

<O> O

<P> P

<Q> Q

<R> R

<S> S

<T> T

<U> U

<V> V

<W> W

<X> X

<Y> Y

<Z> Z

<left-square-bracket> [

<backslash> \

<reverse-solidus> \

<right-square-bracket>]

<circumflex> ^

<circumflex-accent> ^

<underscore> _

<low-line> _

<grave-accent> `

<a> a

 b

<c> c

<d> d

<e> e

<f> f

<g> g

<h> h

<i> i

<j> j

<k> k

<l> l

<m> m

<n> n

<o> o

<p> p

<q> q

<r> r

<s> s

<t> t

<u> u

<v> v

<w> w

<x> x

<y> y

<z> z

<left-brace> {

<left-curly-bracket> {

<vertical-line> |

<right-brace> }

<right-curly-bracket> }

<tilde> ~

portable file name character set. The set of

characters from which portable file names are

constructed. For a file name to be portable across

implementations conforming to the ISO POSIX-1

standard and to ISO/IEC 9945, it must consists only of

the following characters:

 The last three characters are the period, underscore,

and hyphen characters, respectively. The hyphen must

not be used as the first character of a portable file

name. Upper- and lower-case letters retain their unique

identities between conforming implementations. In the

case of a portable path name, the slash character may

also be used. X/Open. ISO.1.

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

positional parameter. A parameter that must appear

in a specified location relative to other positional

parameters. IBM.

precedence. The priority system for grouping different

types of operators with their operands.

predefined macros. Frequently used routines

provided by an application or language for the

programmer.

preinitialization. A process by which an environment

or library is initialized once and can then be used

repeatedly to avoid the inefficiency of initializing the

environment or library each time it is needed.

prelinker. A utility provided with z/OS Language

Environment that you can use to process application

programs that require DLL support, or contain either

constructed reentrancy or external symbol names that

are longer than 8 characters. You require the prelinker,

or its equivalent function which is provided by the

binder, to process all C++ applications, or C applications

that are compiled with the RENT, DLL, LONGNAME or

IPA options. As of Version 2 Release 4, the prelinker

was superseded by the binder. See also binder.

preprocessor. A phase of the compiler that examines

the source program for preprocessor statements that

are then executed, resulting in the alteration of the

source program.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 . _ -

Figure 69.

Glossary 643

preprocessor statement. In the C and C++

languages, a statement that begins with the symbol #

and is interpreted by the preprocessor during

compilation. IBM.

primary expression. (1) An identifier, parenthesized

expression, function call, array element specification,

structure member specification, or union member

specification. IBM. (2) Literals, names, and names

qualified by the :: (scope resolution) operator.

printable character. One of the characters included in

the print character classification of the LC_CTYPE

category in the current locale. X/Open.

private. Pertaining to a class member that is only

accessible to member functions and friends of that

class.

process. (1) An instance of an executing application

and the resources it uses. (2) An address space and

single thread of control that executes within that

address space, and its required system resources. A

process is created by another process issuing the

fork() function. The process that issues the fork()

function is known as the parent process, and the new

process created by the fork() function is known as the

child process. X/Open. ISO.1.

process group. A collection of processes that permits

the signaling of related processes. Each process in the

system is a member of a process group that is identified

by the process group ID. A newly created process joins

the process group of its creator. IBM. X/Open. ISO.1.

process group ID. The unique identifier representing

a process group during its lifetime. A process group ID

is a positive integer. (Under ISO only, it is a positive

integer that can be contained in a pid_t.) A process

group ID will not be reused by the system until the

process group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins

when a process group is created and ends when the

last remaining process in the group leaves the group,

because either it is the end of the last process' lifetime

or the last remaining process is calling the setsid() or

setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a

process. A process ID is a positive integer. (Under ISO

only, it is a positive integer that can be contained in a

pid_t.) A process ID will not be reused by the system

until the process lifetime ends. In addition, if there exists

a process group whose process group ID is equal to

that process ID, the process ID will not be reused by

the system until the process group lifetime ends. A

process that is not a system process will not have a

process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when

a process is created and ends when the process ID is

returned to the system. After a process is created with a

fork() function, it is considered active. Its thread of

control and address space exist until it terminates. It

then enters an inactive state where certain resources

may be returned to the system, although some

resources, such as the process ID, are still in use.

When another process executes a wait() or waitpid()

function for an inactive process, the remaining

resources are returned to the system. The last resource

to be returned to the system is the process ID. At this

time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in

a from suitable for loading into main storage for

execution. A program object is the output of the z/OS

binder and is a newer more flexible format (e.g. longer

external names) than a load module.

protected. Pertaining to a class member that is only

accessible to member functions and friends of that

class, or to member functions and friends of classes

derived from that class.

prototype. A function declaration or definition that

includes both the return type of the function and the

types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible

to all functions.

pure virtual function. A virtual function that has a

function definition of = 0;. See also abstract classes.

Q

qualified class name. Any class name or class name

qualified with one or more :: (scope resolution)

operators.

qualified name. Used to qualify a non-class type

name such as a member by its class name.

qualified type name. Used to reduce complex class

name syntax by using typedefs to represent qualified

class names.

Query Management Facility (QMF). Pertaining to an

IBM query and report writing facility that enables a

variety of tasks such as data entry, query building,

administration, and report analysis. IBM.

queue. A sequence with restricted access in which

elements can only be added at the back end (or bottom)

and removed from the front end (or top). A queue is

characterized by first-in, first-out behavior and

chronological order.

quotation marks. The characters " and ‘, also known

as double-quote and single-quote respectively. X/Open.

644 z/OS V1R7.0 XL C/C++ User’s Guide

R

radix character. The character that separates the

integer part of a number from the fractional part.

X/Open.

real group ID. The attribute of a process that, at the

time of process creating, identifies the group of the user

who created the process. This value is subject to

change during the process lifetime, as describe in

setgid(). X/Open. ISO.1.

real user ID. The attribute of a process that, at the

time of process creation, identifies the user who created

the process. This value is subject to change during the

process lifetime, as described in setuid(). X/Open.

ISO.1.

reason code. A code that identifies the reason for a

detected error. IBM.

reassociation. An optimization technique that

rearranges the sequence of calculations in a subscript

expression producing more candidates for common

expression elimination.

redirection. In the shell, a method of associating files

with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that

allows the same copy of a program or routine to be

used concurrently by two or more tasks.

reference class. A class that links a concrete class to

an abstract class. Reference classes make

polymorphism possible with the Collection Classes.

Synonymous with indirection class.

refresh. To ensure that the information on the user's

terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that

indicates to the compiler within a block scope data

definition, or a parameter declaration, that the object

being described will be heavily used.

register variable. A variable defined with the register

storage class specifier. Register variables have

automatic storage.

regular expression. (1) A mechanism to select

specific strings from a set of character strings. (2) A set

of characters, meta-characters, and operators that

define a string or group of strings in a search pattern.

(3) A string containing wildcard characters and

operations that define a set of one or more possible

strings.

regular file. A file that is a randomly accessible

sequence of bytes, with no further structure imposed by

the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses

keys, allows for duplicate elements, and has element

equality.

relative path name. The name of a directory or file

expressed as a sequence of directories followed by a

file name, beginning from the current directory. See path

name resolution. IBM.

reserved word. (1) In programming languages, a

keyword that may not be used as an identifier.

ISO-JTC1. (2) A word used in a source program to

describe an action to be taken by the program or

compiler. It must not appear in the program as a

user-defined name or a system name. IBM.

RMODE (residency mode). In z/OS, a program

attribute that refers to where a module is prepared to

run. RMODE can be 24 or ANY. ANY refers to the fact

that the module can be loaded either above or below

the 16M line. RMODE 24 means the module expects to

be loaded below the 16M line.

RTTI. Use the RTTI option to generate run-time type

identification (RTTI) information for the typeid operator

and the dynamic_cast operator.

run-time library. A compiled collection of functions

whose members can be referred to by an application

program during run-time execution. Typically used to

refer to a dynamic library that is provided in object code,

such that references to the library are resolved during

the linking step. The run-time library itself is not

statically bound into the application modules.

S

saved set-group-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

group ID attribute, as described in the exec() family of

functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

user ID attribute, as described in exec() and setuid().

X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object

of any type.

scope. (1) That part of a source program in which a

variable is visible. (2) That part of a source program in

which an object is defined and recognized.

scope operator (::). An operator that defines the

scope for the argument on the right. If the left argument

is blank, the scope is global; if the left argument is a

class name, the scope is within that class. Synonymous

with scope resolution operator.

scope resolution operator (::). Synonym for scope

operator.

Glossary 645

semaphore. An object used by multi-threaded

applications for signalling purposes and for controlling

access to serially reusable resources. Processes can be

locked to a resource with semaphores if the processes

follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data

sets or partitioned data-set members are treated as one

long sequential data set. In the case of sequential data

sets, you can access or update the data sets in order.

In the case of partitioned data-set members, you can

access or update the members in order. Repositioning

is possible if all of the data sets in the concatenation

support repositioning.

sequential data set. A data set whose records are

organized on the basis of their successive physical

positions, such as on magnetic tape. IBM.

session. A collection of process groups established for

job control purposes. Each process group is a member

of a session. A process is a member of the session of

which its process group is a member. A newly created

process joins the session of its creator. A process can

alter its session membership; see setsid(). There can

be multiple process groups in the same session.

X/Open. ISO.1.

shell. A program that interprets sequences of text

input as commands. It may operate on an input stream

or it may interactively prompt and read commands from

a terminal. X/Open.

 This feature is provided as part of the z/OS Shell and

Utilities feature licensed program.

Short name. An external non-C++ name in an object

module produced by compiling with the NOLONGNAME

option. Such a name is up to 8 characters long and

single case.

signal. (1) A condition that may or may not be

reported during program execution. For example, SIGFPE

is the signal used to represent erroneous arithmetic

operations such as a division by zero. (2) A mechanism

by which a process may be notified of, or affected by,

an event occurring in the system. Examples of such

events include hardware exceptions and specific actions

by processes. The term signal is also used to refer to

the event itself. X/Open. ISO.1. (3) A method of

interprocess communication that simulates software

interrupts. IBM.

signal handler. A function to be called when the signal

is reported.

single-byte character set (SBCS). A set of characters

in which each character is represented by a one-byte

code. IBM.

single-precision. Pertaining to the use of one

computer word to represent a number in accordance

with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as

apostrophe. This character is named <quotation-mark>

in the portable character set.

slash. The character /, also known as solidus. This

character is named <slash> in the portable character

set.

socket. (1) A unique host identifier created by the

concatenation of a port identifier with a transmission

control protocol/Internet protocol (TCP/IP) address. (2) A

port identifier. (3) A 16-bit port-identifier. (4) A port on a

specific host; a communications end point that is

accessible though a protocol family's addressing

mechanism. A socket is identified by a socket address.

IBM.

sorted map. A sorted flat collection with key and

element equality.

sorted relation. A sorted flat collection that uses keys,

has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element

equality.

source module. A file that contains source statements

for such items as high-level language programs and

data description specifications. IBM.

source program. A set of instructions written in a

programming language that must be translated to

machine language before the program can be run. IBM.

space character. The character defined in the

portable character set as <space>. The space character

is a member of the space character class of the current

locale, but represents the single character, and not all of

the possible members of the class. X/Open.

spanned record. A logical record contained in more

than one block. IBM.

specialization. A user-supplied definition which

replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage

class, fundamental data type and other properties of the

object or function being declared.

spill area. A storage area used to save the contents of

registers. IBM.

SQL (Structured Query Language). A language

designed to create, access, update and free data

tables.

square brackets. The characters [(left bracket) and]

(right bracket). Also see brackets.

646 z/OS V1R7.0 XL C/C++ User’s Guide

stack frame. The physical representation of the

activation of a routine. The stack frame is allocated and

freed on a LIFO (last in, first out) basis. A stack is a

collection of one or more stack segments consisting of

an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to

be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended

to be used for primary data input. X/Open. (2) The

primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command. IBM.

standard output. (1) An output stream usually

intended to be used for primary data output. X/Open. (2)

The primary destination of data coming from a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command. IBM.

statement. An instruction that ends with the character

; (semicolon) or several instructions that are surrounded

by the characters { and }.

static. A keyword used for defining the scope and

linkage of variables and functions. For internal variables,

the variable has block scope and retains its value

between function calls. For external values, the variable

has file scope and retains its value within the source

file. For class variables, the variable is shared by all

objects of the class and retains its value within the

entire program.

static binding. The act of resolving references to

external variables and functions before run time.

storage class specifier. One of the terms used to

specify a storage class, such as auto, register, static, or

extern.

stream. (1) A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

(2) A file access object that allows access to an ordered

sequence of characters, as described by the ISO C

standard. Such objects can be created by the fdopen()

or fopen() functions, and are associated with a file

descriptor. A stream provides the additional services of

user-selectable buffering and formatted input and

output. X/Open.

string. A contiguous sequence of bytes terminated by

and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in

double quotation marks.

string literal. Zero or more characters enclosed in

double quotation marks.

striped data set. A special data set organization that

spreads a data set over a specified number of volumes

so that I/O parallelism can be exploited. Record n in a

striped data set is found on a volume separate from the

volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary

types.

structure. A construct (a class data type) that contains

an ordered group of data objects. Unlike an array, the

data objects within a structure can have varied data

types. A structure can be used in all places a class is

used. The initial projection is public.

structure tag. The identifier that names a structure

data type.

Structured Query Language. See SQL.

stub routine. A routine, within a run-time library, that

contains the minimum lines of code required to locate a

given routine at run time.

subprogram. In the IPA Link version of the Inline

Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers

to an element in an array.

subsystem. A secondary or subordinate system,

usually capable of operating independently of or

asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily denoting

a node to be the root node in a tree. A subtree is

always part of a whole tree.

superset. Given two sets A and B, A is a superset of B

if and only if all elements of B are also elements of A.

That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the

necessary resources for the correct operation of a

functional unit. IBM.

switch expression. The controlling expression of a

switch statement.

switch statement. A C or C++ language statement

that causes control to be transferred to one of several

statements depending on the value of an expression.

system default. A default value defined in the system

profile. IBM.

system process. (1) An implementation-dependent

object, other than a process executing an application,

that has a process ID. X/Open. (2) An object, other than

Glossary 647

a process executing an application, that is defined by

the system, and has a process ID. ISO.1.

T

tab character. A character that in the output stream

indicates that printing or displaying should start at the

next horizontal tabulation position on the current line.

The tab is the character designated by '\t' in the C

language. If the current position is at or past the last

defined horizontal tabulation position, the behavior is

unspecified. It is unspecified whether the character is

the exact sequence transmitted to an output device by

the system to accomplish the tabulation. X/Open.

 This character is named <tab> in the portable character

set.

task library. A class library that provides the facilities

to write programs that are made up of tasks.

template. A family of classes or functions with variable

types.

template class. A class instance generated by a class

template.

template function. A function generated by a function

template.

template instantiation. The act of creating a new

definition of a function, class, or member of a class from

a template declaration and one or more template

arguments.

terminals. Synonym for leaves.

text file. A file that contains characters organized into

one or more lines. The lines must not contain NUL

characters and none can exceed {LINE_MAX}—which is

defined in limits.h—bytes in length, including the

new-line character. The term text file does not prevent

the inclusion of control or other unprintable characters

(other than NUL). X/Open.

thread. The smallest unit of operation to be performed

within a process. IBM.

throw expression. An argument to the C++ exception

being thrown.

tilde. The character ~. This character is named <tilde>

in the portable character set.

token. The smallest independent unit of meaning of a

program as defined either by a parser or a lexical

analyzer. A token can contain data, a language

keyword, an identifier, or other parts of language syntax.

IBM.

traceback. A section of a dump that provides

information about the stack frame, the program unit

address, the entry point of the routine, the statement

number, and the status of the routines on the call-chain

at the time the traceback was produced.

trigraph sequence. An alternative spelling of some

characters to allow the implementation of C in character

sets that do not provide a sufficient number of

non-alphabetic graphics. ANSI/ISO.

 Before preprocessing, each trigraph sequence in a

string or literal is replaced by the single character that it

represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is

passed to a handler.

type definition. A definition of a name for a data type.

IBM.

type specifier. Used to indicate the data type of an

object or function being declared.

U

ultimate consumer. The target of data in an I/O

operation. An ultimate consumer can be a file, a device,

or an array of bytes in memory.

ultimate producer. The source of data in an I/O

operation. An ultimate producer can be a file, a device,

or an array of byes in memory.

unary expression. An expression that contains one

operand. IBM.

undefined behavior. Action by the compiler and

library when the program uses erroneous constructs or

contains erroneous data. Permissible undefined

behavior includes ignoring the situation completely with

unpredictable results. It also includes behaving in a

documented manner that is characteristic of the

environment, during translation or program execution,

with or without issuing a diagnostic message. It can also

include terminating a translation or execution, while

issuing a diagnostic message. Contrast with unspecified

behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result

of an operation is less than the smallest possible

nonzero number. (2) Synonym for arithmetic underflow,

monadic operation. IBM.

union. (1) In the C or C++ language, a variable that

can hold any one of several data types, but only one

data type at a time. IBM. (2) For bags, there is an

additional rule for duplicates: If bag P contains an

element m times and bag Q contains the same element

n times, then the union of P and Q contains that

element m+n times.

union tag. The identifier that names a union data type.

648 z/OS V1R7.0 XL C/C++ User’s Guide

unnamed pipe. A pipe that is accessible only by the

process that created the pipe and its child processes.

An unnamed pipe does not have to be opened before it

can be used. It is a temporary file that lasts only until

the last file descriptor that uses it is closed.

unique collection. A collection in which the value of

an element only occurs once; that is, there are no

duplicate elements.

unrecoverable error. An error for which recovery is

impossible without use of recovery techniques external

to the computer program or run.

unspecified behavior. Action by the compiler and

library when the program uses correct constructs or

data, for which the standards impose no specific

requirements. Such action should not cause compiler or

application failure. You should not, however, write any

programs to rely on such behavior as they may not be

portable to other systems. Contrast with

implementation-defined behavior and undefined

behavior.

user-defined data type. (1) A mathematical model

that includes a structure for storing data and operations

that can be performed on that data. Common abstract

data types include sets, trees, and heaps. (2) See also

abstract data type.

user ID. A nonnegative integer that is used to identify

a system user. (Under ISO only, a nonnegative integer,

which can be contained in an object of type uid_t.)

When the identity of a user is associated with a

process, a user ID value is referred to as a real user ID,

an effective user ID, or (under ISO only, and there

optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.

ISO.1.

user prefix. In the z/OS environment, the user prefix

is typically the user's logon user identification.

V

value numbering. An optimization technique that

involves local constant propagation, local expression

elimination, and folding several instructions into a single

instruction.

variable. In programming languages, a language

object that may take different values, one at a time. The

values of a variable are usually restricted to a certain

data type. ISO-JTC1.

variant character. A character whose hexadecimal

value differs between different character sets. On

EBCDIC systems, such as S/390, these 13 characters

are an exception to the portability of the portable

character set.

<left-square-bracket> [

<right-square-bracket>]

<left-brace> {

<right-brace> }

<backslash> \

<circumflex> ^

<tilde> ~

<exclamation-mark> !

<number-sign> #

<vertical-line> |

<grave-accent> `

<dollar-sign> $

<commercial-at> @

vertical-tab character. A character that in the output

stream indicates that printing should start at the next

vertical tabulation position. The vertical-tab is the

character designated by '\v' in the C or C++ languages.

If the current position is at or past the last defined

vertical tabulation position, the behavior is unspecified.

It is unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the tabulation. X/Open. This character is

named <vertical-tab> in the portable character set.

virtual address space. In virtual storage systems, the

virtual storage assigned to a batched or terminal job, a

system task, or a task initiated by a command.

virtual function. A function of a class that is declared

with the keyword virtual. The implementation that is

executed when you make a call to a virtual function

depends on the type of the object for which it is called,

which is determined at run time.

Virtual Storage Access Method (VSAM). An access

method for direct or sequential processing of fixed and

variable length records on direct access devices. The

records in a VSAM data set or file can be organized in

logical sequence by a key field (key sequence), in the

physical sequence in which they are written on the data

set or file (entry-sequence), or by relative-record

number.

visible. Visibility of identifiers is based on scoping

rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the

keyword volatile, used in a definition, declaration, or

cast. It causes the compiler to place the value of the

data object in storage and to reload this value at each

reference to the data object. IBM. (2) An attribute of a

data object that indicates the object is changeable. Any

expression referring to a volatile object is evaluated

immediately (for example, assignments).

W

while statement. A looping statement that contains

the keyword while followed by an expression in

parentheses (the condition) and a statement (the

action). IBM.

Glossary 649

white space. (1) Space characters, tab characters,

form-feed characters, and new-line characters. (2) A

sequence of one or more characters that belong to the

space character class as defined via the LC_CTYPE

category in the current locale. In the POSIX locale,

white space consists of one or more blank characters

(space and tab characters), new-line characters,

carriage-return characters, form-feed characters, and

vertical-tab characters. X/Open.

wide-character. A character whose range of values

can represent distinct codes for all members of the

largest extended character set specified among the

supporting locales.

wide-character code. An integral value corresponding

to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of

wide-character codes terminated by and including the

first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

word. A character string considered as a unit for a

given purpose. In z/OS, a word is 32 bits or 4 bytes.

working directory. Synonym for current working

directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as

standard output or standard error. Unless otherwise

stated, standard output is the default output destination

for all uses of the term write. X/Open. (2) To make a

permanent or transient recording of data in a storage

device or on a data medium. ISO-JTC1. ANSI/ISO.

WSA (writable static area). An area of memory in the

program that is modifyable during program execution.

Typically, this area contains global variables and

function and variable descriptors for DLLs.

X

xlc. A utility that uses an external configuration file to

control the invocation of the compiler. xlc and related

commands compile C and C++ source files. They also

process assembler source files and object files.

XPLINK (Extra Performance Linkage). A new call

linkage between functions that has the potential for a

significant performance increase when used in an

environment of frequent calls between small functions.

XPLINK makes subroutine calls more efficient by

removing nonessential instructions from the main path.

When all functions are compiled with the XPLINK

option, pointers can be used without restriction, which

makes it easier to port new applications to z/OS.

Z

z/OS UNIX System Services. An element of the z/OS

operating system that includes a POSIX system

Application Programming Interface for the C language, a

shell and utilities component, and a dbx debugger. All

the components conform to IEEE POSIX standards

(ISO 9945-1: 1990/IEEE POSIX 1003.1-1990, IEEE

POSIX 1003.1a, IEEE POSIX 1003.2, and IEEE POSIX

1003.4a).

650 z/OS V1R7.0 XL C/C++ User’s Guide

Bibliography

This bibliography lists the publications for IBM products that are related to the z/OS

XL C/C++ product. It includes publications covering the application programming

task. The bibliography is not a comprehensive list of the publications for these

products, however, it should be adequate for most z/OS XL C/C++ users. Refer to

z/OS Information Roadmap, SA22-7500, for a complete list of publications

belonging to the z/OS product.

Related publications not listed in this section can be found on the IBM Online

Library Omnibus Edition MVS Collection, SK2T-0710, the z/OS Collection,

SK3T-4269, or on a tape available with z/OS.

z/OS

v z/OS Introduction and Release Guide, GA22-7502

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Summary of Message and Interface Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

v z/OS Licensed Program Specifications, GA22-7503

v z/OS Migration, GA22-7499

v z/OS Program Directory, GI10-0670

z/OS XL C/C++

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the Application

Programmer, GC09-4913

v IBM Open Class Library Transition Guide, SC09-4948

v Standard C++ Library Reference, SC09-4949

z/OS Run-Time Library Extensions

v C/C++ Legacy Class Libraries Reference, SC09-7652

v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Debug Tool

v Debug Tool documentation, which is available at:

www.ibm.com/software/awdtools/debugtool/library/

© Copyright IBM Corp. 1996, 2005 651

http://www.ibm.com/software/awdtools/debugtool/library/

z/OS Language Environment

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Application Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563

v z/OS Language Environment Run-Time Messages, SA22-7566

Assembler

v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

COBOL

v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v COBOL for OS/390 & VM Programming Guide, SC26-9049

v COBOL for OS/390 & VM Language Reference, SC26-9046

v COBOL for OS/390 & VM Diagnosis Guide, GC26-9047

v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044

v COBOL for OS/390 & VM Customization under OS/390, GC26-9045

v COBOL Millenium Language Extensions Guide, GC26-9266

PL/I

v VisualAge PL/I Language Reference, SC26-9476

v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN

v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS Transaction Server for z/OS

v CICS Application Programming Guide, SC34-6231

v CICS Application Programming Reference, SC34-6232

v CICS Distributed Transaction Programming Guide, SC34-6236

v CICS Front End Programming Interface User’s Guide, SC34-6234

v CICS Messages and Codes, GC34-6241

v CICS Resource Definition Guide, SC34-6228

v CICS System Definition Guide, SC34-6226

v CICS System Programming Reference, SC34-6233

v CICS User’s Handbook, SC34-6240

652 z/OS V1R7.0 XL C/C++ User’s Guide

|

v CICS Family: Client/Server Programming, SC33-1435

v CICS Transaction Server for z/OS Migration from CICS/ESA Version 4.1,

GC34-6219

v CICS Transaction Server for z/OS Release Guide, GC34-6218

v CICS Transaction Server for z/OS Installation Guide, GC34-6224

DB2

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide, SC18-7415

v DB2 ODBC Guide and Reference, SC18-7423

v DB2 Command Reference, SC18-7416

v DB2 Data Sharing: Planning and Administration, SC18-7417

v DB2 Installation Guide, GC18-7418

v DB2 Messages and Codes, GC18-7422

v DB2 Reference for Remote DRDA Requesters and Servers, SC18-7424

v DB2 SQL Reference, SC18-7426

v DB2 Utility Guide and Reference, SC18-7427

IMS/ESA®

v IMS Version 8: Application Programming: Design Guide, SC27-1287

v IMS Version 8: Application Programming: Transaction Manager, SC27-1289

v IMS Version 8: Application Programming: Database Manager, SC27-1286

v IMS Version 8: Application Programming: EXEC DLI Commands for CICS and

IMS Version 8:, SC27-1288

MVS

v z/OS MVS Program Management: User’s Guide and Reference, SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

QMF

v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS

v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS Managing Catalogs, SC26-7409

v z/OS DFSMS Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services for Catalogs, SC26-7394

Bibliography 653

654 z/OS V1R7.0 XL C/C++ User’s Guide

INDEX

Special characters
–q options syntax 516

#pragma
See runtime options

A
abbreviated compiler options 50, 54

Abstract Code Unit (ACU) 114

accessibility 617

ACU (Abstract Code Unit) 114

AGGRCOPY compiler option 64

AGGREGATE compiler option 65, 579

aggregate layout 579

allocation, standard files with BPXBATCH 461

AMODE restriction 411

ANSIALIAS compiler option 66

ar utility
creating archive libraries 459

maintaining program objects 459

ARCHITECTURE compiler option 69

archive libraries
ar utility 459

creating 459

displaying the object files in 459

file naming convention for c89 use 459

ARGPARSE compiler option 72

argv, under TSO 409

ASCII compiler option 73

assemble
z/OS C and z/OS C++ source files 466

assembler
generation of C structures 442

macros 599

ATTACH assembler macro 599

ATTRIBUTE compiler option 73, 579

attributes, for DD statements 589

AUTO prelinker option 569

automatic library call
input to linkage editor 534

library search processing 382

prelinking and 547

processing 380

SYSLIB data set 533

B
BITF0XL DSECT utility option 434

BITFIELD compiler option 74

BLKSIZE DSECT utility option 442

BookManager documents xxii

BPARM JCL parameter 587

BPXBATCH program
invoking from TSO/E 412

invoking from z/OS batch 412

running an executable HFS file 411

syntax 461

C
C370LIB

EXEC 416

c89 utility
compiling and binding application programs 303

compiling source and object files 300

invoked through the make utility 305

linkage editor options 558

run by the make utility 300

c89/cc/c++ environment variable
_ACCEPTABLE_RC 480

_ASUFFIX 481

_ASUFFIX_HOST 481

_CCMODE 481

_CLASSLIB_PREFIX 481

_CLASSVERSION 481

_CLIB_PREFIX 482

_CMEMORY 482

_CMSGS 482

_CNAME 482

_CSUFFIX 483

_CSUFFIX_HOST 483

_CSYSLIB 483

_CVERSION 483

_CXXSUFFIX 483

_CXXSUFFIX_HOST 484

_DAMPLEVEL 484

_DAMPNAME 484

_DCB121M 484

_DCB133M 484

_DCB137 485

_DCB137A 485

_DCB3200 485

_DCB80 485

_DCBF2008 484

_DCBU 484

_DEBUG_FORMAT 485

_ELINES 485

_EXTRA_ARGS 485

_IL6SYSIX 486

_ILCTL 486

_ILMSGS 486

_ILNAME 486

_ILSUFFIX 486

_ILSUFFIX_HOST 486

_ILSYSIX 487

_ILSYSLIB 486

_ILXSYSIX 487

_ILXSYSLIB 487

_INCDIRS 487

_INCLIBS 487

_ISUFFIX 487

_ISUFFIX_HOST 487

_IXXSUFFIX 487

_IXXSUFFIX_HOST 487

_L6SYSIX 488

_L6SYSLIB 488

© Copyright IBM Corp. 1996, 2005 655

c89/cc/c++ environment variable (continued)
_LIBDIRS 488

_LSYSLIB 488

_LXSYSIX 488

_LXSYSLIB 488

_MEMORY 489

_NEW_DATACLAS 489

_NEW_DSNTYPE 489

_NEW_MGMTCLAS 489

_NEW_SPACE 489

_NEW_STORCLAS 489

_NEW_UNIT 489

_NOCMDOPTS 489

_OPERANDS 490

_OPTIONS 490

_OSUFFIX 490

_OSUFFIX_HOST 490

_OSUFFIX_HOSTQUAL 490

_OSUFFIX_HOSTRULE 490

_PMEMORY 491

_PMSGS 492

_PNAME 492

_PSUFFIX 492

_PSUFFIX_HOST 492

_PSYSIX 492

_PSYSLIB 492

_PVERSION 492

_SLIB_PREFIX 493

_SNAME 493

_SSUFFIX 493

_SSUFFIX_HOST 493

_SSYSLIB 493

_STEPS 493

_SUSRLIB 494

_TMPS 494

_WORK_DATACLAS 494

_WORK_DSNTYPE 495

_WORK_MGMTCLAS 495

_WORK_SPACE 495

_WORK_STORCLAS 495

_WORK_UNIT 495

_XSUFFIX 495

_XSUFFIX_HOST 495

IL6SYSLIB 486

c89/cc/c++ shell command
–W option

compiler, prelinker, IPA linker and link editor

options 473

DLL and IPA extensions 473

environment variables 480

options 467

specifying
system and operational information to

c89/cc/c++/cxx 480

CALL
assembler macro 599

command 408

command, under TSO 408

CALLBACKANY 92

cataloged procedures
descriptions

CBCB 362

CBCCB 362

CBCCBG 362

CBCCL 548

CBCCLG 548

CBCI 583

CBCL 548

CBCLG 548

CBCQB 362, 583

CBCQBG 362, 583

CBCQCB 362, 583

CBCQCBG 362, 583

CBCXB 362

CBCXBG 362

CBCXCB 362

CBCXCBG 362

CBCXG 362

CBCXI 583

CCNPD1B 362, 583

CCNQPD1B 362

CCNXPD1B 362, 583

data sets used by 589

EDCB 362

EDCC 583

EDCCB 362, 583

EDCCBG 362, 583

EDCCL 583

EDCCLGB 583

EDCCLIB 415, 583

EDCCPLG 583

EDCCSECT 583

EDCGNXLT 450

EDCI 583

EDCICONV 447

EDCLDEF 452

EDCLIB 415, 583

EDCPL 583

EDCQB 362, 583

EDCQBG 362, 583

EDCQCB 362, 583

EDCQCBG 362, 583

EDCXB 583

EDCXCB 362

EDCXCBG 362

EDCXI 583

EDCXLDEF 362

for binding 362

for compiling, prelinking and linking 547

for compiling, prelinking, linking and running 547

for prelinking and linking 547

for prelinking, linking and running 547

for specifying prelinker and linkage editor

options 548

specifying run-time options 408

CBCB cataloged procedure 362

CBCCB cataloged procedure 362

CBCCBG cataloged procedure 362

CBCCL cataloged procedure 548

CBCCLG cataloged procedure 548

656 z/OS V1R7.0 XL C/C++ User’s Guide

CBCL cataloged procedure 548

CBCLG cataloged procedure 548

CBCXB cataloged procedure 362

CBCXBG cataloged procedure 362

CBCXCB cataloged procedure 362

CBCXCBG cataloged procedure 362

CC REXX EXEC
C370LIB parameter 417

new syntax 296

old syntax 595

using under TSO 299

using with HFS 298

CCN message prefix 573

CCNPD1B cataloged procedure 362

CCNQPD1B cataloged procedure 362

CCNXPD1B cataloged procedure 362

CDSECT EXEC 446

CEE message prefix 573

CEESTART
CSECT 535

START compiler option 184

STATICINLINE compiler option 185

character
trigraph representation 576

unprintable 576

characters
converting from one code set to another 449

CHARS compiler option 74

CHECKOUT compiler option 75, 576, 579

class libraries
compiling with 321

input to the prelinker 547

class names used with CXXFILT 427

CLASSNAME option of CXXFILT utility 429

CMOD REXX EXEC, syntax 596

code set conversion utilities
genxlt

TS0 450

usage 447

z/OS Batch 450

iconv
TSO 448

usage 447

z/OS Batch 447

command
syntax diagrams xv

COMMENT DSECT utility option 435

COMPACT compiler option 77

compile
link-edit object file 466

z/OS C and z/OS C++ source file 466

compile-time error 576

compiler
See also compiler options

See also compiling

c89 utility interface to 301

error messages 100

input 285, 294

valid input/output file types 289

listing
include file option (SHOWINC) 179

compiler (continued)
listing (continued)

list inlined subprograms (INLRPT) 116

object module option (LIST) 138

source program option (SOURCE) 180

z/OS XL C cross reference listing 242

z/OS XL C error messages 242

z/OS XL C external symbol cross reference 244

z/OS XL C external symbol dictionary 244

z/OS XL C heading information 241

z/OS XL C includes section 242

z/OS XL C inline report 243

z/OS XL C object code 244

z/OS XL C prolog 242

z/OS XL C pseudo assembly listing 244

z/OS XL C source program 242

z/OS XL C static map 244

z/OS XL C storage offset listing 244, 264

z/OS XL C structure and union maps 242

z/OS XL C++ cross reference listing 262

z/OS XL C++ error messages 262

z/OS XL C++ external symbol cross

reference 264

z/OS XL C++ external symbol dictionary 264

z/OS XL C++ heading information 261

z/OS XL C++ includes section 262

z/OS XL C++ inline report 263

z/OS XL C++ object code 264

z/OS XL C++ prolog 261

z/OS XL C++ pseudo assembly listing 264

z/OS XL C++ source program 262

z/OS XL C++ static map 264, 275

object module optimization 162

options to produce debug information
AGGREGATE 579

ATTRIBUTE 579

CHECKOUT 576, 579

DEBUG 579

EXPMAC 579

FLAG 579

GONUMBER 579

INFO 579

INLINE 580

INLRPT 580

LIST 580

MARGINS 576

NOMARGINS 576

NOOPTIMIZE 576

NOSEQUENCE 576

OFFSET 580

OPTIMIZE 576

PPONLY 576, 580

SEQUENCE 576

SHOWINC 580

SOURCE 580

TEST 580

XREF 580

output
create listing file 288

create object module 288

create preprocessor output 288

INDEX 657

compiler (continued)
output (continued)

create template instantiation output 288

using compiler options to specify 286

using DD statements to specify 296

valid input/output file types 289

compiler options
#pragma options 46

abbreviations 50, 54

AGGRCOPY 64

AGGREGATE | NOAGGREGATE 65

ALIAS | NOALIAS 65

ANSIALIAS | NOANSIALIAS 66

ARCHITECTURE 69

ARGPARSE | NOARGPARSE 72

ASCII| NOASCII 73

ATTRIBUTE | NOATTRIBUTE 73

BITFIELD 74

CHARS 74

CHECKOUT | NOCHECKOUT 75

COMPACT | NOCOMPACT 77

COMPRESS | NOCOMPRESS 78

CONVLIT | NOCONVLIT 79

CSECT | NOCSECT 81

CVFT | NOCVFT 84

DBRMLIB 85

DEBUG | NODEBUG 86

defaults 50, 54

DEFINE 89

DIGRAPH |NODIGRAPH 90

DLL | NODLL 92

ENUMSIZE 94

EVENTS | NOEVENTS 96

EXECOPS | NOEXECOPS 97

EXH|NOEXH 97

EXPMAC | NOEXPMAC 98

EXPORTALL |NOEXPORTALL 99

FASTT | NOFASTT 99

FLAG | NOFLAG 100

FLOAT 101

GOFF | NOGOFF 105

GONUMBER | NOGONUMBER 106

HALT 108

HALTONMSG | NOHALTONMSG 108

IGNERRNO | NOIGNERRNO 108

INFO | NOINFO 110

INITAUTO 111

INLINE | NOINLINE 112

INLRPT | NOINLRPT 116

IPA | NOIPA 117

IPA considerations 44

KEYWORD | NOKEYWORD 125

LANGLVL 125

LIBANSI | NOLIBANSI 137

LIST | NOLIST 138

LOCALE | NOLOCALE 140

LONGNAME | NOLONGNAME 141

LP64 | ILP32 143

LSEARCH | NOLSEARCH 145

MARGINS | NOMARGINS 150

MAXMEM | NOMAXMEM 151

compiler options (continued)
MEMORY | NOMEMORY 153

Namemangling 153

NESTINC | NONESTINC 155

OBJECT | NOBJECT 156

OBJECTMODEL 157

OE | NOOE 158

OFFSET | NOOFFSET 159

OPTFILE | NOOPTFILE 160

OPTIMIZE | NOOPTIMIZE 162

overriding defaults 43

PHASEID 165

PLIST 166

PORT | NOPORT 167

PPONLY | NOPPONLY 168

pragma options 46

REDIR | NOREDIR 170

RENT | NORENT 171

ROCONST | NOROCONST 172

ROSTRING | NOROSTRING 173

ROUND 174

RTTI | NORTTI 175

SEARCH | NOSEARCH 176

SEQUENCE | NOSEQUENCE 177

SERVICE | NOSERVICE 178

SHOWINC | NOSHOWINC 179

SOURCE | NOSOURCE 180

specifying under TSO 299

SPILL | SPILL 181

SQL | NOSQL 182

SSCOMM | NOSSCOMM 183

START | NOSTART 184

STATICINLINE | NOSTATICINLINE 185

STRICT | NOSTRICT 185

STRICT_INDUCTION |

NOSTRICT_INDUCTION 186

SUPPRESS| NOSUPPRESS 187

TARGET 187

TEMPINC | NOTEMPINC 192

TEMPLATERECOMPILE |

NOTEMPLATERECOMPILE 193

TEMPLATEREGISTRY |

NOTEMPLATEREGISTRY 194

TERMINAL | NOTERMINAL 195

TEST | NOTEST 195

TMPLPARSE 199

TUNE | NOTUNE 200

UNDEFINE 202

UNROLL 202

UPCONV | NOUPCONV 203

WARN64 |NOWARN64 204

WSIZEOF | NOWSIZEOF 204

XPLINK | NOXPLINK 205

XREF | NOXREF 209

compiling
See also compiler

See also compiler options

dynamically with z/OS macro instructions 599

TSO, under 296

using cataloged procedures supplied by IBM 290,

325

658 z/OS V1R7.0 XL C/C++ User’s Guide

compiling (continued)
using compiler invocation command names

supported by c89 and xlc to compile and bind 303

using make to compile and bind 305

compiling and binding in one step using compiler

invocation command names supported by c89 and

xlc 303

COMPRESS compiler option 78

concatenation
multiple libraries 295

concatenation, multiple libraries 295

configuration file for xlc 509

continuation character
prelinker control statements 560

control section (CSECT)
See CSECT (control section)

control statements
IMPORT, prelinker 561

INCLUDE 551

INCLUDE, prelinker 561

LIBRARY 551

LIBRARY, prelinker 562

linkage editor 550

processing 560

RENAME, prelinker 563

convert
characters from one code set to another 449

source definitions for locale categories 453

Convlit 77, 78, 79

CONVLIT compiler option 79

CPARM JCL parameter 587

CPLINK REXX EXEC
example 556

syntax 554

create executable files 466

cross reference listing 580

cross reference table
creating with XPLINK compiler option 205

creating with XREF compiler option 209

z/OS XL C listing 242

z/OS XL C++ listing 262

CSECT (control section)
CEESTART 535

compiler option 81

pragma 531

customizing locales 451

CVFT compiler option 84

CXX REXX EXEC
syntax 296

using under TSO 299

using with HFS 298

CXXBIND REXX EXEC 374

CXXFILT utility
class names 427

input under TSO 430

input under z/OS batch 429

options 428

overview 427

PROC for z/OS 429

regular names 427

special names 427

CXXFILT utility (continued)
termination 431

termination under z/OS batch 430

TSO 430

unknown names 429

z/OS batch 429

CXXMOD REXX EXEC
keyword parameters

LIB 553

LIST 554

LOAD 554

LOPT 553

OBJ 553

PLIB 553

PMAP 554

PMOD 553

POPT 553

syntax 552

D
data sets

concatenating 295

for linking 532

for prelinking 528

supported attributes 589

usage 588

user prefixes 25, 34

data types, preserving unsignedness 203

DBRMLIB compiler option 85

DD statement
for linkage editor data sets 532

for prelinker data sets 528

ddname
alternative 599

defaults 588

DEBUG compiler option 86, 579

Debug Tool 16

debugging
Debug Tool 16

error traceback (GONUMBER compiler option) 106

errors 75, 96

SERVICE compiler option 178

TEST compiler option 195

DECIMAL DSECT utility option 435

default
compiler options 50, 54

output file names 139

overriding compiler option 43

DEFINE compiler option 89

define local environments 453

definition side-deck 536

DEFSUB DSECT utility option 436

digraphs, DIGRAPH compiler option 90

disability 617

disk search sequence
LSEARCH compiler option 145

SEARCH compiler option 176

DLL (dynamic link library)
building 537

definition side-deck 541

INDEX 659

DLL (dynamic link library) (continued)
description of 474

DLL compiler option 92

DLLNAME() prelinker option 537

EXPORTALL compiler option 99

IMPORT control statement 537

link-editing 474

NAME control statement 537

prelinking 528

prelinking a DLL 536

prelinking a DLL application 536

doublebyte characters, converting 449

DSECT utility
BITF0XL option 434

BLKSIZE option 442

COMMENT option 435

DECIMAL option 435

DEFSUB option 436

EQUATE option 437

HDRSKIP option 439

INDENT option 439

LOCALE option 439

LOWERCASE option 440

LP64 option 440

LRECL option 442

OUTPUT option 442

PPCOND option 440

RECFM option 442

SECT option 433

SEQUENCE option 441

structure produced 442

TSO 446

UNIQUE option 441

UNNAMED option 442

z/OS batch 445

DUP prelinker option 569

Dynamic Link Libraries (DLLs)
See DLLs

dynamic link library (DLL)
description of 474

link-editing 474

E
EDC message prefix 573

EDCB cataloged procedure 362

EDCCB 364

EDCCB cataloged procedure 362

EDCCBG cataloged procedure 362

EDCCLIB cataloged procedure 415

EDCDSECT cataloged procedure 445

EDCGNXLT cataloged procedure 450

EDCICONV cataloged procedure 447

EDCLDEF cataloged procedure 452

EDCLDEF CLIST 452

EDCLIB cataloged procedure 415

EDCXCB cataloged procedure 362

EDCXCBG cataloged procedure 362

efficiency, object module optimization 162

ENTRY linkage editor control statement 536

ENUMSIZE compiler option 94

environment variable
_ACCEPTABLE_RC

used by c89/cc/c++ 480

_ASUFFIX
used by c89/cc/c++ 481

_ASUFFIX_HOST
used by c89/cc/c++ 481

_CCMODE
used by c89/cc/c++ 481

_CLASSLIB_PREFIX
used by c89/cc/c++ 481

_CLASSVERSION
used by c89/cc/c++ 481

_CLIB_PREFIX
used by c89/cc/c++ 482

_CMEMORY
used by c89/cc/c++ 482

_CMSGS
used by c89/cc/c++ 482

_CNAME
used by c89/cc/c++ 482

_CSUFFIX
used by c89/cc/c++ 483

_CSYSLIB
used by c89/cc/c++ 483

_CVERSION
used by c89/cc/c++ 483

_CXXSUFFIX
used by c89/cc/c++ 483

_CXXSUFFIX_HOST
used by c89/cc/c++ 484

_DAMPLEVEL
used by c89/cc/c++ 484

_DAMPNAME
used by c89/cc/c++ 484

_DCB121M
used by c89/cc/c++ 484

_DCB133M
used by c89/cc/c++ 484

_DCB137
used by c89/cc/c++ 485

_DCB137A
used by c89/cc/c++ 485

_DCB3200
used by c89/cc/c++ 485

_DCB80
used by c89/cc/c++ 485

_DCBF2008
used by c89/cc/c++ 484

_DCBU
used by c89/cc/c++ 484

_DEBUG_FORMAT
used by c89/cc/c++ 485

_ELINES
used by c89/cc/c++ 485

_EXTRA_ARGS
used by c89/cc/c++ 485

_IL6SYSIX
used by c89/cc 486

_IL6SYSLIB
used by c89/cc 486

660 z/OS V1R7.0 XL C/C++ User’s Guide

environment variable (continued)
_ILCTL

used by c89/cc 486

_ILMSGS
used by c89/cc 486

_ILNAME
used by c89/cc/c++ 486

_ILSUFFIX
used by c89/cc 486

_ILSUFFIX_HOST
used by c89/cc 486

_ILSYSIX
used by c89/cc/c++ 487

_ILSYSLIB
used by c89/cc/c++ 486

_ILXSYSIX
used by c89/cc/c++ 487

_ILXSYSLIB
used by c89/cc/c++ 487

_INCDIRS
used by c89/cc/c++ 487

_INCLIBS
used by c89/cc/c++ 487

_ISUFFIX
used by c89/cc/c++ 487

_ISUFFIX_HOST
used by c89/cc/c++ 487

_IXXSUFFIX
used by c89/cc/c++ 487

_L6SYSIX
used by c89/cc/c++ 488

_L6SYSLIB
used by c89/cc/c++ 488

_LIBDIRS
used by c89/cc/c++ 488

_LSYSLIB
used by c89/cc/c++ 488

_LXSYSIX
used by c89/cc/c++ 488

_LXSYSLIB
used by c89/cc/c++ 488

_MEMORY
used by c89/cc/c++ 489

_NEW_DATACLAS
used by c89/cc/c++ 489

_NEW_DSNTYPE
used by c89/cc/c++ 489

_NEW_MGMTCLAS
used by c89/cc/c++ 489

_NEW_SPACE
used by c89/cc/c++ 489

_NEW_STORCLAS
used by c89/cc/c++ 489

_NEW_UNIT
used by c89/cc/c++ 489

_NOCMDOPTS
used by c89/cc/c++ 489

_OPERANDS
used by c89/cc/c++ 490

_OPTIONS
used by c89/cc/c++ 490

environment variable (continued)
_OSUFFIX

used by c89/cc/c++ 490

_OSUFFIX_HOST
used by c89/cc/c++ 490

_OSUFFIX_HOSTQUAL
used by c89/cc/c++ 490

_OSUFFIX_HOSTRULE
used by c89/cc/c++ 490

_PLIB_PREFIX
used by c89/cc/c++ 491

_PMEMORY
used by c89/cc/c++ 491

_PMSGS
used by c89/cc/c++ 492

_PNAME
used by c89/cc/c++ 492

_PSUFFIX
used by c89/cc/c++ 492

_PSUFFIX_HOST
used by c89/cc/c++ 492

_PSYSIX
used by c89/cc/c++ 492

_PSYSLIB
used by c89/cc/c++ 492

_PVERSION
used by c89/cc/c++ 492

_SLIB_PREFIX
used by c89/cc/c++ 493

_SNAME
used by c89/cc/c++ 493

_SSUFFIX
used by c89/cc/c++ 493

_SSUFFIX_HOST
used by c89/cc/c++ 493

_SSYSLIB
used by c89/cc/c++ 493

_STEPS
used by c89/cc/c++ 493

_SUSRLIB
used by c89/cc/c++ 494

_TMPS
used by c89/cc/c++ 494

_WORK_DATACLAS
used by c89/cc/c++ 494

_WORK_DSNTYPE
used by c89/cc/c++ 495

_WORK_MGMTCLAS
used by c89/cc/c++ 495

_WORK_SPACE
used by c89/cc/c++ 495

_WORK_STORCLAS
used by c89/cc/c++ 495

_WORK_UNIT
used by c89/cc/c++ 495

_XSUFFIX
used by c89/cc/c++ 495

_XSUFFIX_HOST
used by c89/cc/c++ 495

LIBPATH
used by c89/cc/c++ 475

INDEX 661

environment variable (continued)
used to specify system and operational information to

c89/cc/c++/cxx 480

used to specify system and operational information to

xlc/xlC 507

environment, defining local 453

EQA message prefix 573

EQUATE DSECT utility option
BIT suboption 437

BITL suboption 438

DEF suboption 438

ER prelinker option 569

error
compile-time 576

determining source of 573

link time 579

messages
directing to your terminal 195

re-creating 575, 576

run-time 579

escape sequence 576

escaping special characters 46, 292, 298

EVENTS compiler option 96

example
ccnghi1.c 326

ccnghi2.c 326

ccnghi3.c 327

ccnuaam 23

ccnuaan 24

ccnuaap 601

ccnuaaq 603

ccnuaar 604

ccnuaas 606

ccnuaat 607

ccnuaau 609

ccnubrc 32

ccnubrh.h 30

ccnuncl 40

clb3atmp.cxx 38

examples
assembler macro 601

compile, link and run 34, 39

machine-readable xxii

naming of xxii

sample program 29

sample template program 37

softcopy xxii

z/OS XL C source 23

z/OS XL C++ source 29

exception handling
compiler error message severity levels 100

linkage editor 535

EXEC
JCL statement

GPARM parameter 408

specifying run-time options 407

statement
invoking linkage editor 549

invoking prelinker 549

supplied by IBM
CDSECT 446

EXEC (continued)
supplied by IBM (continued)

DLLRNAME 583

GENXLT 450

ICONV 447

executable
files

invoking z/OS load modules from the shell 411

placing z/OS load modules in the HFS 411

running 411

running, under z/OS batch 406

reentrant 501

executable file
creating 466

EXH compiler option 97

EXPMAC compiler option 98, 579

EXPORTALL compiler option 99

external
entry points 65

names
long name support 142

prelinker 528

references
resolving 557

unresolved 569

variables
exporting 99

importing 99

F
FASTTEMPINC compiler option 99

feature test macro 310

files
names

generated default 139

include files 311

user prefixes 25, 34

searching paths 145, 176

FLAG compiler option 100, 579

flag options syntax 518

FLOAT
C/C++ programs 468

floating-point numbers 468

select format of floating-point numbers 468

FLOAT compiler option 101

functions
exporting 99

importing 99

linking 535

G
genxlt utility

CLIST 450

TSO 450

usage 447

z/OS Batch 450

GOFF compiler option 105

GONUMBER
C/C++ programs 470

662 z/OS V1R7.0 XL C/C++ User’s Guide

GONUMBER (continued)
debugging 470

improved performance 470

GONUMBER compiler option 106, 579

GPARM
JCL parameter 588

parameter of EXEC statement 408

H
HALT compiler option 108

HALTONMSG compiler option 108

HDRSKIP DSECT utility option 439

header files
See also include files

system 295

heading information
for IPA Link listings 271

for z/OS XL C listings 241

for z/OS XL C++ listings 261

HFS (Hierarchical File System)
placing z/OS load modules 411

I
IBM message prefix 573

iconv shell command 449

iconv utility
CLIST 448

TSO 448

usage 447

z/OS Batch 447

IGNERRNO compiler option 108

IGZ message prefix 573

ILP32 compiler option 143

IMPORT statement
syntax description 561

improved debugging
GONUMBER 470

improved performance
XPLINK 476

IMS
PLIST compiler option 166

INCLUDE control statement
for prelinking and linking 551

linkage editor and 534

syntax description 561

z/OS XL C/C++ prelinker and 561

include files
naming 311

nested 155

preprocessor directive
syntax 310

record format 310

SHOWINC compiler option 179

system files and libraries
OPTFILE compiler option 160

SEARCH compiler option 176

using 310

user files and libraries
using 310

INDENT DSECT utility option 439

INFILE parameter 587

INFO compiler option 110, 579

INITAUTO compiler option 111

inline
report for IPA inliner 273

z/OS XL C report 243

z/OS XL C++ report 263

INLINE compiler option 580

description 112

INLRPT compiler option 116, 580

input
compiler 285, 294

linkage editor 533

prelinker 529, 530

record sequence numbers 177

installation
problems 581

PTF (Program Temporary Fix) 574

Interprocedural Analysis
See IPA

Interprocedural Analysis (IPA) optimization
explanation of 475

IPA
enabling 473

explanation of 473

invoking from the c89 utility 304

IPA Compile step
flow of processing 306

IPA compiler option 117

IPA Link step
compiler options map listing section 272

creating a DLL with IPA 337

creating a module with IPA 325

error source 577

external symbol cross reference listing

section 275

external symbol dictionary listing section 275

flow of processing 307

global symbols map listing section 273

invoking IPA from the c89 utility 323

IPA inliner listing section 273

IPA Link step control file 344

listing heading information 271

listing message summary 276

listing messages section 275

listing overview 210, 245, 264

listing prolog 272

object file directives 348

object file map listing section 272

overview 323

partition map listing section 274

pseudo assembly listing section 275

source file map listing section 272

storage offset listing section 275

troubleshooting 348

using profile-directed feedback 342

object modules under IPA 288

overview 306

using cataloged procedures 291, 292

INDEX 663

IPA (Interprocedural Analysis) optimization
explanation of 475

IPA(OBJONLY) and c89 305

IPA(OBJONLY) compiler option 308

IPACNTL data set 588, 590

IPARM JCL parameter 587

IRUN JCL parameter 587

J
JCL (Job Control Language)

C comments 184

control statement
See control statements

ENTRY control statement 536

specifying prelinker and linkage editor options 549,

550

K
keyboard 617

KEYWORD compiler option 125

L
LANGLVL compiler option 125

LIB parameter CXXMOD EXEC 553

LIBANSI compiler option 137

LIBPATH environment variable
used by c89/cc/c++ 475

library
archive

creating 459

displaying the object files in 459

file naming convention for c89 use 459

use by application programs 459

search sequence
with LSEARCH compiler option 145

with SEARCH compiler option 176

z/OS Language Environment
components 535

required to run the compiler 285

runtime 285

LIBRARY control statement
linkage editor and 534

prelinker and 551, 562

using with linkage editor 551

LIBRARY JCL parameter 588

LINK
assembler macro 599

command
input 556

LOAD operand 557

syntax 556

link time error 579

link-edit
z/OS C and z/OS C++ object files 466

linkage editor
creating a load module under z/OS batch 548

errors 535

function of 541

linkage editor (continued)
INCLUDE statement and 534

input to 533, 542

LIBRARY statement and 534

options
MAP|NOMAP 530

specifying 548

output 533, 534, 542

requesting options with c89 558

using c89 and xlc to compile and bindt 303

using make to compile and bind 305

using under TSO 552

linking 547

See also linkage editor

IBM-supplied class libraries 547

multiple object modules 535

LIST compiler option 138, 580

LIST parameter CXXMOD EXEC 554

listings
all included text 580

cross reference 580

from linkage editor 533

from prelinker 530, 542

include file option (SHOWINC) 179

IPA Compile step, using 210, 245

IPA Link step compiler options map 272

IPA Link step external symbol cross reference 275

IPA Link step external symbol dictionary 275

IPA Link step global symbols map 273

IPA Link step heading information 271

IPA Link step inliner 273

IPA Link step message summary 276

IPA Link step messages 275

IPA Link step object file map 272

IPA Link step partition map 274

IPA Link step prolog 272

IPA Link step pseudo assembly 275

IPA Link step source file map 272

IPA Link step storage offset 275

IPA Link step, using 264

message summary, z/OS XL C 242

message summary, z/OS XL C++ 263

object code 580

object library utility map 415

object module option (LIST) 138

source file 580

using z/OS XL C++ 244

z/OS XL C cross reference table 242

z/OS XL C external symbol cross reference 244

z/OS XL C external symbol dictionary 244

z/OS XL C includes section 242

z/OS XL C messages 242

z/OS XL C object code 244

z/OS XL C pseudo assembly listing 244

z/OS XL C source program 242

z/OS XL C static map 244

z/OS XL C structure and union maps 242

z/OS XL C, using 210

z/OS XL C++ cross reference table 262

z/OS XL C++ external symbol cross reference 264

z/OS XL C++ external symbol dictionary 264

664 z/OS V1R7.0 XL C/C++ User’s Guide

listings (continued)
z/OS XL C++ includes section 262

z/OS XL C++ IPA Link step static map 275

z/OS XL C++ messages 262

z/OS XL C++ object code 264

z/OS XL C++ pseudo assembly listing 264

z/OS XL C++ source program 262

z/OS XL C++ static map 264

load library
storing object modules 558

load module
creating 532

inputs for 542

LOAD parameter CXXMOD EXEC 554

local environment, defining 453

local variables 181

locale
converting source definitions for categories 453

customizing 451

definition file 451

DSECT utility option 439

object 451

LOCALE compiler option 140

localedef shell command 453

localedef utility
TSO 452

z/OS batch 452

long names
definition of 528

LIBRARY control statement and 562

mapping to short names 531

RENAME control statement and 563

resolving undefined 547

support 142

unresolved 547

UPCASE prelink option and 569

LONGNAME compiler option 141

LookAt message retrieval tool xxiii

LOPT parameter CXXMOD EXEC 553

LOWERCASE DSECT utility option 440

LP64 compiler option 143

LP64 DSECT utility option 440

LPARM parameter 548, 587

LRECL (logical record length) parameter
DSECT utility option 442

LRECL DSECT utility option 442

LSEARCH compiler option 145

M
macro

assembler
ATTACH 599

CALL 599

compiling z/OS XL C/C++ programs with 599

LINK 599

expanded in source listing 98

expansion 579

feature test 310

maintaining
objects in an archive library 459

maintaining (continued)
programs through makefiles 460

programs with make using c89 305

make utility
compiling and binding application programs 305

compiling source and object files 300

creating makefiles 460

maintaining z/OS XL C/C++ application

programs 460

Makedepend Utility 460

makefiles
creating 460

maintaining application programs 460

mangled name filter utility 427

map
load module 534

pragma 531

prelinker 530, 531, 542

MAP prelinker option 530, 542, 569

mapping
long names to short names

rules for 531

of load modules 549

MARGINS compiler option 150, 576

MAXMEM compiler option 151

MEMBER JCL parameter 588

memory
files, compiler work-files 153

MAXMEM compiler option 151

MEMORY compiler option 153

MEMORY prelinker option 569

message prefixes
CCN 573

CEE 573

EDC 573

EQA 573

IBM 573

IGZ 573

others 573

PLI 573

message retrieval tool, LookAt xxiii

messages
directing to your terminal 195

generate warning 110

on IPA Link step listings 275

on z/OS XL C compiler listings 242

on z/OS XL C++ compiler listings 262

specifying severity of 100

mismatches, type 576

MVS (Multiple Virtual System)
batch environment

running shell scripts and z/OS XL C/C++

applications 461

N
NAME control statement 529, 534

NAMEMANGLING compiler option
NAMEMANGLING compiler option 153

natural reentrancy
generating 171

INDEX 665

natural reentrancy (continued)
linking 579

NCAL prelinker option 569

NESTINC compiler option 155

NOAGGREGATE compiler option 65

NOANSIALIAS compiler option 66

NOARGPARSE compiler option 72

NOASCII compiler option 73

NOATTRIBUTE compiler option 73

NOAUTO prelinker option 569

NOCALLBAKANY 92

NOCHECKOUT compiler option 75

NOCLASSNAME option of CXXFILT utility 429

NOCSECT compiler option 81

NOCVFT compiler option 84

NODEBUG compiler option 86

NODIGRAPH compiler option 90

NODLL compiler option 92

NODUP prelinker option 569

NOER prelinker option 569

NOEVENTS compiler option 96

NOEXECOPS compiler option 97

NOEXPMAC compiler option 98

NOEXPORTALL compiler option 99

NOFASTTEMPINC compiler option 99

NOFLAG compiler option 100

NOGOFF compiler option 105

NOGONUMBER compiler option 106

NOINFO compiler option 110

NOINLINE compiler option 112

NOINLRPT compiler option 116

NOIPA compiler option 117

NOLIBANSI compiler option 137

NOLIST compiler option 138

NOLOCALE compiler option 140

NOLONGNAME compiler option 141

NOLSEARCH compiler option 145

NOMAP prelinker option 569

NOMARGINS compiler option 150, 576

NOMAXMEM compiler option 151

NOMEMORY compiler option 153

NOMEMORY prelinker option 569

Non-XPLINK version of the Standard C++ Library and

c89 361

Non-XPLINK version of the Standard C++ Library and

xlc 362

Non-XPLINK version of the Standard C++ Library and

z/OS batch 370

NONCAL prelinker option 569

NONESTINC compiler option 155

NOOBJECT compiler option 156

NOOE compiler option 158

NOOFFSET compiler option 159

NOOPTFILE compiler option 160

NOOPTIMIZE compiler option 162, 576

NOPPONLY compiler option 168

NOREDIR compiler option 170

NOREGULARNAME option of CXXFILT utility 428

NORENT compiler option 171

NOSEARCH compiler option 176

NOSEQUENCE compiler option 177, 576

NOSERVICE compiler option 178

NOSHOWINC compiler option 179

NOSIDEBYSIDE option of CXXFILT utility 428

NOSOURCE compiler option 180

NOSPECIALNAME option of CXXFILT utility 429

NOSPILL compiler option 181

NOSQL compiler option 182

NOSSCOMM compiler option 183

NOSTART compiler option 184

NOSTATICINLINE compiler option 185

NOSTRICT compiler option 185

NOSTRICT_INDUCTION compiler option 186

NOSUPPRESS compiler option 187

NOSYMMAP option of CXXFILT utility 428

NOTEMPINC compiler option 192

NOTEMPLATERECOMPILE compiler option 193

NOTEMPLATEREGISTRY compiler option 194

NOTERMINAL compiler option 195

NOTEST compiler option 195

Notices 619

NOUPCASE prelinker option 569

NOUPCONV compiler option 203

NOWARN64 compiler option 204

NOWIDTH option of CXXFILT utility 428

NOWSIZEOF compiler option 204

NOXPLINK compiler option 205

NOXREF compiler option 209

O
OBJ parameter for CXXMOD EXEC 553

object
code 285

library utility
adding object modules 415

deleting object modules 415

listing the contents 415

TSO 417

z/OS batch 415

module
additional object modules as input 534

creating 551

DLL compiler option 92

EXPORTALL compiler option 99

link-editing multiple modules 535

LIST compiler option 138

OBJECT compiler option 156

optimization 162

storing in a load library 558

TARGET compiler option 187

z/OS XL C object listing 244

z/OS XL C++ object listing 264

OBJECT
compiler option 156

JCL parameter 588

object code, listing 580

object files
object file browse 309

working with 309

object files variations
object file variation identification 310

666 z/OS V1R7.0 XL C/C++ User’s Guide

Object Library Utility
example under z/OS batch 415

long name support 415

map
heading 425

member heading 425

symbol definition map 426

symbol information 426

symbol source list 426

user comments 425

OBJECTMODEL compiler option 157

OE compiler option 158

OFFSET compiler option 159, 580

OGET utility 302, 411

OGETX utility 411

OMVS
OE compiler option 158

OPARM JCL parameter 588

OPTFILE compiler option 160

optimization
object module 162

OPTIMIZE compiler option 162

storage requirements 162

TMPLPARSE compiler option 199

TUNE compiler option 200

OPTIMIZE compiler option 162, 576

optional features 466

options
compiler

See compiler options

CXXFILT 427

linkage editor 534

prelinker
See prelinker, options

run-time 281

OPUTX utility 411

OUTFILE parameter 587

output
from the linkage editor 533, 534

from the prelinker 530

OUTPUT DSECT utility option 442

P
PARM parameter 549

passing arguments 281

PCH (precompiled header)
See precompiled headers

PDF documents xxii

performance
C/C++ programs

FLOAT 468

XPLINK 476

PHASEID compiler option 165

PLI message prefix 573

PLIB parameter CXXMOD EXEC 553

PLIST compiler option 166

PMAP parameter CXXMOD EXEC 554

PMOD parameter CXXMOD EXEC 553

POPT parameter CXXMOD EXEC 553

PORT compiler option 167

PPARM
JCL parameter 588

parameter 548

PPCOND DSECT utility option 440

PPONLY compiler option 168, 576, 580

pragmas
csect 531

map 531

options 46

runopts 281

See runtime options

prelinker
building and using DLLs 537

error source 578

function of 541

functions of 528

IBM-supplied class libraries 547

IMPORT statement and 561

INCLUDE statement and 561

input 529, 530, 541

LIBRARY statement and 562

load modules 578

map 530, 542

mapping long names to short names 531

messages from 530

options
MAP|NOMAP 542

specifying 548

output from 529, 530, 541, 555

overview 527

RENAME statement and 563

resolving undefined symbols 547

under z/OS batch 550

usage 527

preprocessor directives
effects of PPONLY compiler option 168

include 310

preprocessor, diagnostic information 580

preventive service planning (PSP) bucket 574, 581

primary data set
specifying input to the compiler 285

specifying input to the linkage editor 533

primary input
compiler 285

linkage editor 533

to the linkage editor 533

to the prelinker 529

processing a C program
z/OS XL C sample program, under TSO 26

z/OS XL C sample program, under z/OS Batch 25

Profile-Directed Feedback 122

programming errors 75

PSP (preventive service planning) bucket 574, 581

PTF (Program Temporary Fix) 574

R
RECFM DSECT utility option 442

record margins 150

REDIR compiler option 170

reentrancy 501

INDEX 667

reentrancy (continued)
linking 578

RENT compiler option 171

reentrant code
linking 578

RENT compiler option 171

region size 405

regular names used with CXXFILT 427

REGULARNAME option of CXXFILT utility 428

RENAME control statement
mapping long names to short names 531

syntax 563

RENT compiler option syntax 171

REXX EXECs
supplied by IBM

C370LIB 583

CC, new syntax 583

CC, old syntax 595

CDSECT 583

CMOD 595, 596

CPLINK 554

CXXBIND 583

CXXMOD 583

EDCLDEF 452

GENXLT 450, 583

ICONV 448, 583

LOCALEDEF 583

ROCONST compiler option 172

ROSTRING compiler option 173

ROUND compiler option 174

RTTI compiler option 175

run-time
errors 579

options
in the EXEC statement 407

recognize at run time 97

specifying 281

under z/OS batch 406

under z/OS UNIX System Services 410

specifying run-time environment 187

running programs
TSO

example 408

specifying run-time options 409

with CALL TSO command 408

z/OS batch
BPXBATCH 411

example 407

with EXEC JCL statement 406

z/OS UNIX System Services application 410

S
sample program

processing z/OS XL C under TSO 26

processing z/OS XL C under z/OS Batch 25

z/OS XL C source 23

z/OS XL C++ source 29

SCEECPP library 553

SCEELKED library 542, 553

SEARCH compiler option 176

SEARCH compiler option (continued)
using to compile z/OS XL C code 320

using to compile z/OS XL C++ code 321

search sequence
library files 406

system include files 176

user include files 145

secondary data set
libraries 295

secondary input to the linkage editor 534

secondary input
compiler 286, 295

linkage editor 534

to the linkage editor 533

to the prelinker 529

SECT DSECT utility option 433

select format of floating-point numbers
FLOAT 468

SEQUENCE compiler option 177, 576

SEQUENCE DSECT utility option 441

sequence numbers on input records 177

SERVICE compiler option 178

serviceability
C/C++ programs

GONUMBER 470

shell
compiling and linking using c89 301

invoking load modules 411

using BPXBATCH to run commands or scripts 461

short names
automatic library call processing 547

definition of 528

mapping 531

unresolved 547

shortcut keys 617

SHOWINC compiler option 179, 580

SIDEBYSIDE option of CXXFILT utility 428

singlebyte character conversions 449

source
file listing 580

program
comment (SSCOMM compiler option) 183

compiler listing options 179, 180

file names in include files 311

generating reentrant code 171

input data set 285

margins 150

SEQUENCE compiler option 177

source code
compiling using c89 299

z/OS XL C sample program 23

z/OS XL C++ example program 29

SOURCE compiler option 180, 580

source definitions
converting for locale categories 453

special characters, escaping 46, 292, 298

special names used with CXXFILT 427

SPECIALNAME option of CXXFILT utility 429

spill area
changing the size of 181

definition of 181

668 z/OS V1R7.0 XL C/C++ User’s Guide

spill area (continued)
pragma 181

SPILL compiler option 181

SQL compiler option 182

SSCOMM compiler option 183

standard files, allocation for BPXBATCH 461

standards
ANSI compiler option 125

LIBANSI compiler option 137

START compiler option 184

statement
failure in 580

switch 580

STATICINLINE compiler option 185

STEPLIB
data set 588, 589, 591

ddname 528

prelinker 529

storage optimization 162

STRICT compiler option 185

STRICT_INDUCTION compiler option 186

structure and union maps, z/OS XL C compiler

listing 242

stub routines
contents of 535

in z/OS Language Environment 535

SUPPRESS compiler option 187

switch statement 580

SYMMAP option of CXXFILT utility 428

syntax diagrams
how to read xv

SYSCPRT data set 288, 588, 589, 591

SYSDEFSD data set
description 591, 592

prelinker and 528, 529

SYSEVENT data set
description of 590

SYSIN data set for stdin
description of 589, 590

primary input to prelinker 528, 529, 541

primary input to the compiler 294

usage 588

SYSLIB data set
description of 589, 591

linkage editor and 532, 533, 542

prelinker and 528, 529, 541

secondary input to linkage editor 534

specifying 295

usage 588

SYSLIN data set
description of 589, 591

linkage editor and 532, 533, 541

primary input to linkage editor 533

usage 588

with OBJECT compiler option 288

SYSLMOD data set 532, 533, 542, 588

SYSMOD data set 528, 530, 542, 588

SYSMSGS data set 528, 529, 588

SYSOUT data set
description of 589, 591, 594

prelinker and 528, 530

SYSOUT data set (continued)
usage 588

SYSPRINT data set
linkage editor and 532, 533

prelinker and 528

usage 588

system
files and libraries 160, 176

programmer, establishing library access 296, 408

system header files 295

SYSUT1 data set 532, 533, 588, 589

SYSUT5-10 data sets 589

T
TARGET compiler option 187

tasks
avoiding installation problems

steps for 581

binding each compile unit under TSO
steps for 377

binding each compile unit under z/OS batch
steps for 364

binding each compile unit using c89
steps for 358

building a module in UNIX System Services using

PDF
steps for 344

building and using a DLL under TSO
steps for 377

building and using a DLL under z/OS batch
steps for 366

compiling, binding, and running the C example

program using TSO commands
steps for 26

compiling, binding, and running the C example

program using UNIX commands
steps for 27

compiling, binding, and running the C++ example

program using TSO commands
steps for 35

compiling, binding, and running the C++ example

program using UNIX commands
steps for 37

compiling, binding, and running the C++ template

example program under z/OS batch
steps for 39

compiling, binding, and running the C++ template

example program using UNIX commands
steps for 42

compiling, running, and binding the C++ template

example program using TSO commands
steps for 41

diagnosing errors that occur at compile time
steps for 576

diagnosing errors that occur at IPA Link time
steps for 577

diagnosing errors that occur at run time
steps for 579

generating a reentrant load module in C
steps for 565

INDEX 669

tasks (continued)
generating a reentrant load module in C++

steps for 566

problem diagnosis using optimization levels
steps for 575

rebinding a changed compile unit under TSO
steps for 378

rebinding a changed compile unit under z/OS batch
steps for 371

rebinding a changed compile unit using c89
steps for 360

single final bind under TSO
steps for 376

single final bind under z/OS batch
steps for 363

single final bind using c89
steps for 357

steps for building and using a DLL using c89
steps for 359

utilizing PDF optimization
steps for 342

TEMPINC compiler option 192

TEMPLATERECOMPILE compiler option 193

TEMPLATEREGISTRY compiler option 194

templates
create template instantiation output 288

program example 37

TERMINAL compiler option 195

test case, creating 575, 576

TEST compiler option 195, 580

TEXT deck 574

TMPLPARSE compiler option 199

trigraph 576

TSO (Time Sharing Option)
compiling under 296

creating an object library
See Object Library Utility

LINK command 557

TUNE compiler option 200

type conversion, preserving unsignedness 203

type conversions 203

type mismatches 576

U
UNDEFINE compiler option 202

UNIQUE DSECT utility option 441

unknown names input to CXXFILT utility 429

UNNAMED DSECT utility option 442

unprintable character 576

UNROLL compiler option 202

unsignedness preservation, type conversion 203

UPCASE prelinker option 569

UPCONV compiler option 203

user
comments, object library utility map 425

include files
LSEARCH compiler option 145

SEARCH compiler option 176

specifying with #include directive 310

prefix 25, 34

USL 7

utilities
CXXFILT 427

mangled name filter 427

z/OS UNIX System Services 459

z/OS XL C 583

z/OS XL C, old syntax 595

z/OS XL C++ 583

W
WARN64 compiler option 204

WIDTH option of CXXFILT utility 428

work data sets 588

writable static
object library 415

prelinker and 530

relative offsets 528

WSIZEOF compiler option 204

X
xlc/xlC shell command

environment variables 507

specifying
system and operational information to

xlc/xlC 507

XPLINK
C/C++ programs 476

compiler option 205

extra performance linkages 476

improved performance 476

XREF compiler option 209, 580

Z
z/OS batch

compiling under 290, 325

link-editing 551

running shell scripts and z/OS XL C/C++

applications 461

running your program 406

z/OS UNIX System Services
compiling and binding using c89 300

compiling and binding using compiler invocation

command names supported by c89 and xlc 303

compiling and binding using make 305

maintaining objects in an archive library 459

maintaining through makefiles 460

OE compiler option 158

placing z/OS load modules in the HFS 411

670 z/OS V1R7.0 XL C/C++ User’s Guide

����

Program Number: 5694-A01 and 5655-G52

Printed in the United States of America

SC09-4767-04

	Contents
	About this document
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	z/OS XL C/C++ and related publications
	Softcopy documents
	Softcopy examples
	z/OS XL C/C++ on the World Wide Web
	Where to find more information
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	Information updates on the web

	Part 1. Introduction
	Chapter 1. About IBM z/OS XL C/C++
	Changes for z/OS V1R7
	The XL C/C++ compilers
	The C language
	The C++ language
	Common features of the z/OS XL C and XL C++ compilers
	z/OS XL C compiler specific features
	z/OS XL C++ compiler specific features

	Class libraries
	Utilities
	dbx
	z/OS Language Environment
	z/OS Language Environment downward compatibility

	About prelinking, linking, and binding
	Notes on the prelinking process
	File format considerations
	The program management binder

	z/OS UNIX System Services
	z/OS XL C/C++ applications with z/OS UNIX System Services C functions
	Input and output
	I/O interfaces
	File types
	Additional I/O features

	The System Programming C facility
	Interaction with other IBM products
	Additional features of z/OS XL C/C++

	Part 2. User's reference
	Chapter 2. z/OS XL C example
	Example of a C program
	CCNUAAM
	CCNUAAN

	Compiling, binding, and running the z/OS XL C example
	Under z/OS batch
	XPLINK under z/OS batch

	Non-XPLINK and XPLINK under TSO
	Steps for compiling, binding, and running the example program using TSO commands

	Non-XPLINK and XPLINK under the z/OS UNIX System Services shell
	Steps for compiling, binding, and running the example program using UNIX commands

	Chapter 3. z/OS XL C++ examples
	Example of a C++ program
	CCNUBRH
	CCNUBRC

	Compiling, binding, and running the z/OS XL C++ example
	Under z/OS batch
	XPLINK under z/OS batch

	Non-XPLINK and XPLINK under TSO
	Steps for compiling, binding, and running the C++ example program using TSO commands

	Non-XPLINK and XPLINK under the z/OS UNIX shell
	Steps for compiling, binding, and running the C++ example program using UNIX commands

	Example of a C++ template program
	CLB3ATMP.CXX

	Compiling, binding, and running the C++ template example
	Under z/OS batch
	Steps for compiling, binding, and running the C++ template example program under z/OS batch
	CCNUNCL

	Under TSO
	Steps for compiling, running, and binding the C++ template example program using TSO commands

	Under the z/OS UNIX shell
	Steps for compiling, binding, and running the C++ template example program using UNIX commands

	Chapter 4. Compiler Options
	Specifying compiler options
	IPA considerations
	Applicability of compiler options under IPA
	Interactions between compiler options and IPA suboptions
	IPA compiles versus compiles with IPA optimization

	Using special characters
	Under TSO
	Under the z/OS UNIX System Services shell
	Under z/OS batch

	Specifying z/OS XL C compiler options using #pragma options
	Specifying compiler options under z/OS UNIX System Services

	Compiler option defaults
	Summary of compiler options
	Compiler options for file management
	Options that control the preprocessor
	Options that control the processing of an input source file
	Options that control the compiler listing
	Options that control the IPA object
	Options that control the IPA Link step
	Options for debugging and diagnosing errors
	Options that control the programming language characteristics
	Options that control object code generation
	Options that control program execution
	Portability options
	Description of compiler options
	AGGRCOPY
	Effect on IPA Compile step
	Effect on IPA Link step

	AGGREGATE | NOAGGREGATE
	ALIAS | NOALIAS
	ANSIALIAS | NOANSIALIAS
	Effect on IPA Link step

	ARCHITECTURE
	Effect on IPA Compile step
	Effect on IPA Link step

	ARGPARSE | NOARGPARSE
	Effect on IPA Compile step
	Effect on IPA Link step

	ASCII | NOASCII
	ATTRIBUTE | NOATTRIBUTE
	Effect on IPA Compile step
	Effect on IPA Link step

	BITFIELD(SIGNED) | BITFIELD(UNSIGNED)
	CHARS(SIGNED) | CHARS(UNSIGNED)
	CHECKOUT | NOCHECKOUT
	COMPACT | NOCOMPACT
	Effect on IPA(OBJONLY) compilation
	Effect on IPA Compile step
	Effect on IPA Link step

	COMPRESS | NOCOMPRESS
	Effect on IPA Compile step
	Effect on IPA Link step

	CONVLIT | NOCONVLIT
	Effect on IPA Compile step

	CSECT | NOCSECT
	The CSECT option with no qualifier
	The CSECT option with the qualifier suboption
	Effect on IPA Link step

	CVFT | NOCVFT
	Effect on IPA Link step

	DBRMLIB
	DEBUG | NODEBUG
	Effect on IPA Compile step
	Effect on IPA Link step

	DEFINE
	DIGRAPH | NODIGRAPH
	Effect on IPA Link step

	DLL | NODLL
	Effect on IPA Compile step
	Effect on IPA Link step

	ENUMSIZE
	EVENTS | NOEVENTS
	EXECOPS | NOEXECOPS
	Effect on IPA Compile step
	Effect on IPA Link step

	EXH | NOEXH
	Effect on IPA Link step

	EXPMAC | NOEXPMAC
	EXPORTALL | NOEXPORTALL
	Effect on IPA Compile step
	Effect on IPA Link step

	FASTTEMPINC | NOFASTTEMPINC
	Effect on IPA Link step

	FLAG | NOFLAG
	Effect on IPA Link step

	FLOAT
	Using IEEE floating-point
	Effect on IPA Compile step
	Effect on IPA Link step

	GOFF | NOGOFF
	Effect on IPA Compile step
	Effect on IPA Link step

	GONUMBER | NOGONUMBER
	Effect on IPA Compile step
	Effect on IPA Link step

	HALT(num)
	Effect on IPA Link step

	HALTONMSG | NOHALTONMSG
	IGNERRNO | NOIGNERRNO
	Effect on IPA Compile step
	Effect on IPA Link step

	INFO | NOINFO
	Effect on IPA Link step

	INITAUTO | NOINITAUTO
	Effect on IPA Compile step
	Effect on IPA Link step

	INLINE | NOINLINE
	Effect on IPA Compile step
	Effect on IPA Link step

	INLRPT | NOINLRPT
	Effect on IPA Link step

	IPA | NOIPA
	IPA Compile step suboptions
	IPA Link step suboptions
	IPA(PDF) suboptions

	KEYWORD | NOKEYWORD
	LANGLVL
	LIBANSI | NOLIBANSI
	Effect on IPA Compile step
	Effect on IPA Link step

	LIST | NOLIST
	Effect on IPA Compile step
	Effect on IPA Link step

	LOCALE | NOLOCALE
	Effect on IPA Compile step
	Effect on IPA Link step

	LONGNAME | NOLONGNAME
	Effect on IPA Compile step
	Effect on IPA Link step

	LP64 | ILP32
	Effect on IPA Compile step
	Effect on IPA Link step

	LSEARCH | NOLSEARCH
	Searching for PDS or PDSE files
	Searching for HFS files
	Additional syntax
	Specifying hierarchical file system files
	Specifying sequential data sets and PDSs

	MARGINS | NOMARGINS
	MAXMEM | NOMAXMEM
	Effect on IPA Compile step
	Effect on IPA Link step

	MEMORY | NOMEMORY
	Effect on IPA Link step

	NAMEMANGLING
	NESTINC | NONESTINC
	OBJECT | NOOBJECT
	Effect on IPA Compile step
	Effect on IPA Link step

	OBJECTMODEL
	Effect on IPA Link step

	OE | NOOE
	Effect on IPA Link step

	OFFSET | NOOFFSET
	Effect on IPA Compile step
	Effect on IPA Link step

	OPTFILE | NOOPTFILE
	Examples
	Effect on IPA Link step

	OPTIMIZE | NOOPTIMIZE
	Effect on IPA(OBJONLY) compilation
	Effect on IPA Compile step
	Effect on IPA Link step

	PHASEID | NOPHASEID
	PLIST
	Effect on IPA Compile step
	Effect on IPA Link step

	PORT | NOPORT
	Default error recovery
	Strict error recovery
	Effect on IPA Link step

	PPONLY | NOPPONLY
	REDIR | NOREDIR
	Effect on IPA Compile step
	Effect on IPA Link step

	RENT | NORENT
	Effect on IPA Compile step
	Effect on IPA Link step

	ROCONST | NOROCONST
	Interaction with #pragma variable
	Interaction with #pragma export
	Effect on IPA Compile step
	Effect on IPA Link step

	ROSTRING | NOROSTRING
	Effect on IPA Compile step
	Effect on IPA Link step

	ROUND
	Effect on IPA Compile step
	Effect on IPA Link step

	RTTI | NORTTI
	Effect on IPA Link step

	SEARCH | NOSEARCH
	Effect on IPA Compile step
	Effect on IPA Link step

	SEQUENCE | NOSEQUENCE
	SERVICE | NOSERVICE
	Effect on IPA Link step

	SHOWINC | NOSHOWINC
	SOURCE | NOSOURCE
	SPILL | NOSPILL
	Effect on IPA Compile step
	Effect on IPA Link step

	SQL | NOSQL
	SSCOMM | NOSSCOMM
	START | NOSTART
	Effect on IPA Compile step
	Effect on IPA Link step

	STATICINLINE | NOSTATICINLINE
	STRICT | NOSTRICT
	Effect on IPA Compile step
	Effect on IPA Link step

	STRICT_INDUCTION | NOSTRICT_INDUCTION
	Effect on IPA Compile step
	Effect on IPA Link step

	SUPPRESS | NOSUPPRESS
	Effect on IPA Link step

	TARGET
	TARGET release suboptions
	TARGET run-time environment suboptions (LE,IMS)

	TEMPINC | NOTEMPINC
	Effect on IPA Link step

	TEMPLATERECOMPILE | NOTEMPLATERECOMPILE
	Effect on IPA Link step

	TEMPLATEREGISTRY | NOTEMPLATEREGISTRY
	Effect on IPA Link step

	TERMINAL | NOTERMINAL
	Effect on IPA Link step

	TEST | NOTEST
	Additional z/OS XL C compile suboptions
	Effect on IPA Compile step
	Effect on IPA Link step

	TMPLPARSE
	Effect on IPA Link step

	TUNE
	Effect on IPA Compile step
	Effect on IPA Link step

	UNDEFINE
	UNROLL
	UPCONV | NOUPCONV
	WARN64 | NOWARN64
	WSIZEOF | NOWSIZEOF
	XPLINK | NOXPLINK
	Effect on IPA Compile step
	Effect on IPA Link step

	XREF | NOXREF
	Effect on IPA Compile step
	Effect on IPA Link step

	Using the z/OS XL C compiler listing
	IPA considerations
	Example of a C compiler listing
	z/OS XL C compiler listing components
	Heading information
	Prolog section
	Source program
	Includes section
	Cross-Reference Listing
	Structure and Union Maps
	Messages
	Message Summary
	Inline Report
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference
	Storage Offset Listing
	Static Map

	Using the z/OS XL C++ compiler listing
	IPA considerations
	Example of a C++ compiler listing
	z/OS XL C++ compiler listing components
	Heading information
	Prolog section
	Source Program
	Cross-Reference Listing
	Includes section
	Messages
	Message Summary
	Inline Report
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference
	Storage Offset Listing
	Static Map

	Using the IPA Link step listing
	Example of an IPA Link step listing
	IPA Link step listing components
	Heading information
	Prolog section
	Object File Map
	Source File Map
	Compiler Options Map
	Global Symbols Map
	Inline Report for IPA inliner
	Partition Map
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference
	Storage Offset Listing
	Static Map
	Messages
	Message Summary

	Chapter 5. Binder options and control statements
	Chapter 6. Run-Time options
	Specifying run-time options
	Using the #pragma runopts preprocessor directive

	Part 3. Compiling, binding, and running z/OS XL C/C++ programs
	Chapter 7. Compiling
	Input to the z/OS XL C/C++ compiler
	Primary input
	Secondary input

	Output from the compiler
	Specifying output files
	Listing output
	Object module output
	Preprocessor output
	Template instantiation output

	Valid input/output file types
	Compiling under z/OS batch
	Using cataloged procedures for z/OS XL C
	IPA considerations

	Using cataloged procedures for z/OS XL C++
	IPA considerations

	Using special characters
	Examples of compiling programs using your own JCL
	Specifying source files
	Specifying include files
	Specifying output files
	Compiling under TSO
	Using the CC and CXX REXX EXECs
	Specifying sequential and partitioned data sets
	Specifying HFS files or directories
	Using special characters
	Specifying compiler options under TSO

	Compiling and binding in the z/OS UNIX System Services environment
	Compiling without binding using compiler invocation command names supported by c89 and xlc
	Compiling z/OS XL C application source to produce only object files
	Compiling z/OS XL C++ application source to produce only object files
	Compiling and binding application source to produce an application executable file

	Compiling and binding in one step using compiler invocation command names supported by c89 and xlc
	Building an application with XPLINK using the c89 or xlc utilities
	Building a 64-bit application using the c89 or xlc utilities
	Invoking IPA using the c89 or xlc utilities
	Specifying options for the IPA Compile step

	Using IPA(OBJONLY) with the c89 or xlc utilities
	Using the make utility

	Compiling with IPA
	The IPA Compile step
	The IPA Link step

	Compiling with IPA(OBJONLY)
	Working with object files
	Browsing object files
	Identifying object file variations

	Using feature test macros
	Using include files
	Specifying include file names
	Forming file names
	Forming data set names with LSEARCH | SEARCH options
	Forming DDname
	Forming sequential data set names
	Forming PDS name with LSEARCH | SEARCH + specification
	Forming PDS with LSEARCH | SEARCH Options with No +
	Examples of forming data set names

	Search sequence
	Determining whether the file name is in absolute form
	Using SEARCH and LSEARCH

	Search sequences for include files
	With the NOOE option
	With the OE option
	Compiling z/OS XL C source code using the SEARCH option
	Compiling z/OS XL C++ source code using the SEARCH option

	Chapter 8. Using the IPA Link step with z/OS XL C/C++ programs
	Invoking IPA using the c89 and xlc utilities
	Specifying options
	Other considerations

	Compiling under z/OS batch
	Using cataloged procedures for IPA Link

	Creating a module with IPA
	Example 1. all C parts
	CCNGHI1.C
	CCNGHI2.C
	CCNGHI3.C
	Building example 1. under UNIX System Services
	Building example 1. in batch

	Example 2. all C parts built with XPLINK
	Building example 2. under UNIX System Services
	Building example 2. in batch

	Creating a DLL with IPA
	Example 1. a mixture of C and C++
	Building example 1. under UNIX System Services
	Building example 1. under batch

	Example 2. using the IPA control file
	Building example 2. under UNIX System Services
	Building example 2. in batch

	Using Profile-Directed Feedback (PDF)
	Steps for utilizing PDF optimization
	Steps for building a module in UNIX System Services using PDF

	Reference Information
	IPA Link step control file
	Object file directives understood by IPA

	Troubleshooting

	Chapter 9. Binding z/OS XL C/C++ programs
	When you can use the binder
	When you cannot use the binder
	Your output is a PDS, not a PDSE
	CICS
	MTF
	IPA

	Using different methods to bind
	Single final bind
	Bind each compile unit
	Build and use a DLL
	Rebind a changed compile unit

	Binding under z/OS UNIX System Services
	z/OS UNIX System Services example
	Steps for single final bind using c89
	Advantage

	Steps for binding each compile unit using c89
	Advantage

	Steps for building and using a DLL using c89
	Advantage

	Steps for rebinding a changed compile unit using c89
	Advantage

	Using the non-XPLINK version of the Standard C++ Library and c89
	Peformance

	Using the non-XPLINK version of the Standard C++ Library and xlc
	Peformance

	Binding under z/OS batch
	z/OS batch example
	Steps for single final bind under z/OS batch
	Advantage

	Steps for binding each compile unit under z/OS batch
	Advantage

	Steps for building and using a DLL under z/OS batch
	Advantage

	Build and use a 64-bit application under z/OS batch
	Build and use a 64-bit application with IPA under z/OS batch
	Using the non-XPLINK version of the Standard C++ Library and z/OS batch
	Restrictions concerning use of non-XPLINK Standard C++ Library DLL

	Steps for rebinding a changed compile unit under z/OS batch
	Advantage

	Writing JCL for the binder

	Binding under TSO using CXXBIND
	TSO example
	Steps for single final bind under TSO
	Advantage

	Steps for binding each compile unit under TSO
	Advantage

	Steps for building and using a DLL under TSO
	Advantage

	Steps for rebinding a changed compile unit under TSO
	Advantage

	Chapter 10. Binder processing
	Linkage considerations
	Primary input processing
	C or C++ object module as input

	Secondary input processing
	Load module as input
	Program object as input

	Autocall input processing (library search)
	Incremental autocall processing (AUTOCALL control statement)
	Final autocall processing (SYSLIB)
	Non-XPLINK libraries
	XPLINK libraries
	LP64 libraries

	Rename processing
	Generating aliases for automatic library call (library search)

	Dynamic Link Library (DLL) processing
	Statically bound functions
	Imported variables
	Imported functions

	Output program object
	Output IMPORT statements
	Output listing
	Header
	Input Event Log
	Module Map
	Data Set Summary
	Renamed Symbol Cross Reference

	Cross Reference Table
	Imported and Exported Symbols Listing
	Mangled to Demangled Symbol Cross Reference
	Processing Options
	Save Operation Summary
	Save Module Attributes
	Entry Point and Alias Summary
	Long Symbol Abbreviation Table
	DDname vs Pathname Cross Reference Table
	Message Summary Report

	Binder processing of C/C++ object to program object
	Rebindability
	DLL considerations

	Error recovery
	Unresolved symbols
	Inconsistent reference vs. definition types
	Inconsistent name usage

	Significance of library search order
	Duplicates
	Duplicate functions from autocall
	Hunting down references to unresolved symbols
	Incompatible linkage attributes
	Non-reentrant DLL problems
	Code that has been prelinked

	Chapter 11. Running a C or C++ application
	Setting the region size for z/OS XL C/C++ applications
	Running an application under z/OS batch
	Specifying run-time options under z/OS batch
	Specifying run-time options in the EXEC statement
	Using cataloged procedures

	Running an application under TSO
	Specifying run-time options under TSO
	Passing arguments to the z/OS XL C/C++ application

	Running an application under z/OS UNIX System Services
	z/OS UNIX System Services Application environments
	Specifying run-time options under z/OS UNIX System Services
	Restriction on using 24-bit AMODE programs
	Copying applications between a PDS and HFS
	Running a data Set member from the z/OS Shell
	Running z/OS UNIX System Services applications under z/OS batch
	Using the BPXBATCH utility
	Invoking BPXBATCH from TSO/E
	Invoking BPXBATCH using JCL
	Submitting a non-HFS z/OS UNIX System Services executable to run under z/OS batch

	Part 4. Utilities and tools
	Chapter 12. Object Library Utility
	Creating an object library under z/OS batch
	Creating an object library under TSO
	Object Library Utility Map

	Chapter 13. Filter Utility
	CXXFILT options
	SYMMAP | NOSYMMAP
	SIDEBYSIDE | NOSIDEBYSIDE
	WIDTH(width) | NOWIDTH
	REGULARNAME | NOREGULARNAME
	CLASSNAME | NOCLASSNAME
	SPECIALNAME | NOSPECIALNAME
	Unknown type of name

	Under z/OS batch
	Under TSO

	Chapter 14. DSECT Conversion Utility
	DSECT Utility options
	SECT
	BITF0XL | NOBITF0XL
	COMMENT | NOCOMMENT
	DECIMAL | NODECIMAL
	DEFSUB | NODEFSUB
	EQUATE | NOEQUATE
	HDRSKIP | NOHDRSKIP
	INDENT | NOINDENT
	LOCALE | NOLOCALE
	LOWERCASE | NOLOWERCASE
	LP64 | NOLP64
	OPTFILE | NOOPTFILE
	PPCOND | NOPPCOND
	SEQUENCE | NOSEQUENCE
	UNIQUE | NOUNIQUE
	UNNAMED | NOUNNAMED
	OUTPUT
	RECFM
	LRECL
	BLKSIZE

	Generation of structures
	Under z/OS batch
	Under TSO

	Chapter 15. Coded Character Set and Locale Utilities
	Coded Character Set Conversion Utilities
	iconv Utility
	Under z/OS batch
	Under TSO
	Under the z/OS Shell

	genxlt Utility
	Under z/OS batch
	Under TSO

	localedef Utility
	Under z/OS batch
	Under TSO
	Under the z/OS Shell

	Part 5. z/OS UNIX System Services utilities
	Chapter 16. Archive and Make Utilities
	Archive libraries
	Creating archive libraries
	Creating makefiles
	Makedepend Utility

	Chapter 17. BPXBATCH Utility
	BPXBATCH usage
	Parameter
	Usage notes
	Files

	Chapter 18. c89 — Compiler invocation using host environment variables
	Format
	Description
	Options
	Operands
	Environment variables
	Files
	Usage notes
	Localization
	Exit values
	Portability
	Related information

	Chapter 19. xlc — Compiler invocation using a customizable configuration file
	Format
	Description
	Invocation commands
	Setting up the compilation environment
	Environment variables
	Setting environment variables
	Setting environment variables in z/OS shell
	Setting environment variables in tcsh shell
	Setting environment variables for the message file

	Setting up a configuration file
	Configuration file attributes
	Tailoring a configuration file
	Default configuration file

	Invoking the compiler
	Invoking the binder
	Supported options
	–q options syntax
	Flag options syntax

	Specifying compiler options
	Specifying compiler options on the command line
	Specifying flag options
	Specifying compiler options in a configuration file
	Specifying compiler options in your program source files
	Specifying compiler options for architecture-specific 32-bit or 64-bit compilation

	Part 6. Appendixes
	Appendix A. Prelinking and linking z/OS XL C/C++ programs
	Restrictions on using the prelinker
	Prelinking an application
	Using DD Statements for the standard data sets - prelinker
	Primary input (SYSIN)
	Prelinker message file (SYSMSGS)
	Prelinker and z/OS Language Environment library (STEPLIB)
	Secondary input (SYSLIB)
	Definition side-deck (SYSDEFSD)
	Listing (SYSOUT)
	Output (SYSMOD)
	Prelinker error messages (SYSPRINT)

	Input to the prelinker
	Primary input
	Secondary input

	Prelinker output
	Prelinker Map

	Mapping long names to short names

	Linking an application
	Using DD statements for standard data sets—linkage editor
	Primary input (SYSLIN)
	Listing (SYSPRINT)
	Output (SYSLMOD)
	Temporary workspace (SYSUT1)
	Secondary input (SYSLIB)

	Input to the linkage editor
	Primary input
	Secondary input
	Additional object modules as input

	Output from the linkage editor
	Detecting link-edit errors
	Library routine considerations

	Link-editing multiple object modules

	Building DLLs
	Linking your code

	Using DLLs
	Prelinking and linking an application under z/OS batch and TSO
	z/OS Language Environment Prelinker Map
	Processing the prelinker automatic library call
	References to currently undefined symbols (external references)
	Prelinking and linking under z/OS batch
	Using IBM-supplied cataloged procedures
	Specifying prelinker and link-edit options using cataloged procedures

	Writing JCL for the prelinker and linkage editor
	Using the EXEC statement
	Using the PARM parameter
	Example of JCL to prelink and link
	Specifying link-edit options through JCL

	Secondary input to the linker
	Using additional input object modules under z/OS batch
	Under TSO
	Prelinking and linking under TSO
	Example of prelinking and linking under TSO

	Using CPLINK
	Examples

	Using LINK
	Input to the LINK command
	LIB operand of the LINK command
	LOAD operand of the LINK command
	Specifying link-edit options through the TSO LINK command
	Storing load modules in a load library

	Prelinking and link-editing under the z/OS Shell
	Using your JCL
	Setting c89 to invoke the prelinker
	Using the c89 utility

	Prelinker control statement processing
	IMPORT control statement
	INCLUDE control statement
	LIBRARY control statement
	RENAME control statement
	Usage notes

	Reentrancy
	Natural or constructed reentrancy
	Using the prelinker to make your program reentrant
	Steps for generating a reentrant load module in C
	Steps for generating a reentrant load module in C++

	Resolving multiple definitions of the same template function
	External variables

	Appendix B. Prelinker and linkage editor options
	Prelinker options
	DLLNAME(dll-name)
	DUP | NODUP
	DYNAM | NODYNAM
	ER | NOER
	MAP | NOMAP
	MEMORY | NOMEMORY
	NCAL | NONCAL
	OMVS | NOOMVS
	UPCASE | NOUPCASE

	Linkage editor options

	Appendix C. Diagnosing problems
	Problem checklist
	When does the error occur?
	Steps for problem diagnosis using optimization levels
	Steps for diagnosing errors that occur at compile time
	Steps for diagnosing errors that occur at IPA Link time
	The error occurs at bind time
	The error occurs at prelink time
	The error occurs at link time
	Steps for diagnosing errors that occur at run time

	Steps for avoiding installation problems

	Appendix D. Cataloged procedures and REXX EXECs
	Tailoring cataloged procedures, REXX EXECs, and EXECs
	Data sets used
	Description of data sets used
	Examples using cataloged procedures

	Other z/OS XL C utilities
	Using the old syntax for CC
	Using CMOD

	Appendix E. Calling the Compiler from Assembler
	Example of using the Assembler ATTACH macro (CCNUAAP)
	Example of JCL for the Assembler ATTACH macro (CCNUAAQ)
	Example of using the Assembler LINK macro (CCNUAAR)
	Example of JCL for the Assembler LINK macro (CCNUAAS)
	Example of using the Assembler CALL macro (CCNUAAT)
	Example of JCL for Assembler CALL macro (CCNUAAU)

	Appendix F. Layout of the Events file
	Description of the Fileid field
	Description of the Filend field
	Description of the Error field

	Appendix G. Customizing default options for z/OS XL C/C++ compiler
	Appendix H. Accessibility
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks
	Standards

	Glossary
	Bibliography
	z/OS
	z/OS XL C/C++
	z/OS Run-Time Library Extensions
	Debug Tool
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS Transaction Server for z/OS
	DB2
	IMS/ESA®
	MVS
	QMF
	DFSMS

	INDEX

